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Due to the complex construction conditions, long work cycles, and high uncertainty inherent in 
agricultural water conservancy projects, accurate construction cost prediction is crucial for investment 
decisions. This study presents an innovative cost prediction model for these projects, integrating BIM 
with neural networks. Firstly, BIM technology is utilized to digitize and visualize engineering-related 
information. Subsequently, a prediction model based on SSA optimized PGNN is constructed. The 
digital data obtained from BIM is subsequently integrated with the prediction model to estimate 
the construction costs of agricultural water conservancy projects. In this study, actual engineering 
projects are selected as case studies, utilizing material price data from January 2016 to February 2021 
in Liaoning Province, along with real project data for modeling purposes. The results indicate that the 
maximum relative error between the predicted and actual values of the combined model is only 2.99%. 
Furthermore, the RMSE and R2 of the simulated prediction results are 0.1358 and 0.9819, respectively. 
The proposed model demonstrates higher prediction accuracy and efficiency. Compared with the 
PGNN model, the RMSE is reduced by 33%, and R2 is increased by 6%. These findings suggest that the 
BIM-SSA-PGNN prediction model provides more accurate and efficient construction cost predictions 
for agricultural water conservancy projects, promoting technological integration and innovation 
while optimizing construction project costs. This study provides a scientific basis for management to 
promote the transformation of the industry towards digital and intelligent sustainable development.

Keywords  Agricultural water conservancy engineering, Construction cost, BIM technology, Sparrow search 
algorithm (SSA), Grey BP neural network (PGNN)

As agricultural water conservancy engineering projects expand and become more complex, accurate construction 
cost prediction is essential for evaluating project feasibility and selecting optimal design schemes, which 
directly influences the economic viability and overall quality of the project. Due to the inherent complexity 
and uncertainty of these projects, personnel and machinery costs fluctuate, making construction costs difficult 
to control and often leading to significant cost overruns1. Consequently, developing an accurate method for 
predicting construction costs is essential.

There are two fundamental approaches to predicting construction costs: (1) traditional mathematical and 
statistical methods and (2) machine learning methods2,3. Traditional mathematical and statistical methods 
encompass linear regression analysis4,5, grey prediction6, and time series analysis7,8, which have notable 
limitations. Their prediction accuracy is often constrained, and they struggle to model non-linear relationships 
in data, making it difficult to meet the industry’s increasing demands for better accuracy and efficiency. 
Furthermore, these methods fail to quickly adapt to changes in the market or project progress9–11. In contrast, 
the rapid advancement of artificial intelligence has led to the growing adoption of machine learning (ML) for 
construction cost prediction. ML is particularly effective at extracting data features from high-dimensional, 
non-linear datasets12–14, enabling it to capture complex relationships between input and output data. By 
leveraging past project data, ML can generate reliable and swift cost estimates15–18. Kim et al. demonstrated 
that artificial neural networks (ANNs) outperform traditional statistical methods based on limited historical 
data for long-term forecasts19. Cheng et al.20 highlighted the challenges of predicting construction costs due to 
fluctuations in building prices. They proposed a hybrid model combining least squares support vector machines 
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(LS-SVMs) and differential evolution (DE) to predict the construction cost index, achieving a root mean square 
error of just 1.354% on the test dataset. This model holds promise as a valuable tool to aid decision-makers in 
construction management. Chou et al.21 developed an ANN model to predict project bidding prices, finding 
that a model with three neurons in the hidden layer outperformed traditional or case-based reasoning methods, 
with an average absolute percentage error of 13.09%. El Kholy et al.22 and Tijani ć et al.23 summarized that ANNs 
represent a promising approach for estimating construction costs, providing more accurate results and reducing 
estimation errors. Furthermore, ML models have demonstrated significant applicability across diverse domains. 
For instance, Kennedy et al. employed ML models to predict the compressive strength of concrete and granular 
sand, achieving robust predictive performance24,25.

In the practical application of neural network models, prediction performance is often influenced by the 
values of hyperparameters. To address this issue, some scholars have adopted intelligent optimization algorithms 
to enhance the performance of cost prediction models. For instance, AI et al.26 developed a model for predicting 
environmental governance costs by optimizing the parameters of a support vector machine using the particle 
swarm optimization algorithm. Their findings revealed that this method achieved higher prediction accuracy 
compared to the BP neural network and LSSVM models, making it more suitable for predicting costs prior to 
environmental governance. More recently, Zheng et al.27 constructed a random forest (RF) prediction model 
optimized with the bird swarm algorithm (BSA) to predict construction costs. Compared to backpropagation 
neural networks and support vector machines, their model demonstrated superior prediction accuracy and 
efficiency, providing a solid basis for optimizing construction project cost management.

Despite advancements in using artificial neural networks (ANNs) for cost prediction, these models still face 
challenges in practical engineering applications. There is an urgent need to integrate advanced information 
technology and artificial intelligence methods to improve the accuracy and real-time performance of engineering 
cost prediction28. In recent years, the emergence of Building Information Modeling (BIM) technology has opened 
up new possibilities for improving construction cost forecasting. BIM integrates geometric, material, time, and 
cost data, providing a powerful data source for accurate cost predictions29,30. Abanda et al.31 emphasized that BIM 
technology can automate the cost estimation process using standard measurement methods, thereby addressing 
the inaccuracy of cost prediction. Wang et al.32 explored the feasibility of using BIM for cost estimation in 
the construction industry, while Yang et al.33 highlighted the importance of cost analysis in the early stages of 
construction project planning and proposed a method combining cost estimation models with BIM technology 
for more accurate cost predictions, supported by case studies. Li et al.34 combined BIM data with intelligent 
modeling to improve the coordination of prefabricated shear wall structures, enhancing design and construction 
integration. Additionally, some scholars have explored the integration of BIM with machine learning or neural 
networks. For instance, Hong et al.35 used BIM technology combined with neural network methods to predict 
net costs. In addition, Abbasnejad et al.36 further evaluated the effectiveness of integrating BIM with neural 
networks through mathematical modeling, demonstrating enhanced decision-making efficiency and improved 
cost prediction accuracy.

Research by various scholars has consistently highlighted the significant potential of neural networks in 
predicting construction costs. When combined with data from BIM technology, neural networks can further 
enhance the accuracy and efficiency of these predictions. This integration offers strong theoretical and 
practical foundations for future applications in architecture and related engineering fields. However, a notable 
limitation of these studies is their narrow focus on construction projects within a single domain, which limits 
their universality and applicability. Therefore, there is an urgent need for comprehensive research to develop 
scientifically sound construction cost prediction models specifically tailored to the field of agricultural water 
conservancy engineering.

The Grey BP Neural Network (PGNN), a prominent machine learning model, is renowned for its exceptional 
capabilities to process time series data and identify patterns. It has proven highly effective in addressing complex, 
nonlinear problems, making it a valuable tool for predicting the temporal fluctuations in construction costs37. 
Furthermore, PGNN has shown remarkable proficiency in predicting building factor prices38,39. Consequently, 
the objective of this study is to develop and validate a construction cost prediction model for agricultural water 
conservancy projects that integrates BIM and PGNN neural networks, referred to as the BIM-PGNN model. 
Additionally, the introduction of the Sparrow Optimization Algorithm (SSA) facilitates the optimization of 
weights and threshold hyperparameters within the PGNN neural network, overcoming issues like local optima 
and overfitting, which are common in traditional neural networks. This study aims to provide a theoretical basis 
and technical support for predicting the construction costs of agricultural water conservancy projects.

Research method
Digital analysis of intelligent buildings based on BIM technology
Currently, BIM technology involves the creation and use of digital information models for design management, 
construction management, and operational maintenance of construction projects. This technology integrates 
building data and information models, enabling efficient information sharing and transmission across the 
entire lifecycle of a project, from design to operation and maintenance. The comprehensive application of BIM 
technology throughout the lifecycle of engineering projects represents the current development trajectory of 
the construction industry and the dominant trend for future advancements. Fully utilizing BIM technology 
can significantly enhance project management capabilities and production efficiency within construction 
enterprises, driving sustainable development across various sectors, including water conservancy engineering. 
BIM technology is characterized by key features such as visualization, coordination, simulation, and optimization. 
The BIM methodology facilitates the digitization and visualization of building information through a structured 
workflow encompassing planning and design, conceptual design, preliminary design, analysis, drawing 
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production, prefabricated components, 4D/5D construction simulation, construction logistics, operation and 
maintenance, and renovation and demolition.

In this study, BIM5D technology, an extension of BIM, was utilized to extract construction quantities for 
agricultural water conservancy projects. BIM5D technology primarily relies on the BIM platform to establish a 
three-dimensional model of water conservancy projects, forming a five-dimensional building information model 
that integrates 3D (three-dimensional model), 1D (schedule), and 1D (cost budget). The specific construction 
workflow of the BIM5D model is shown in Fig.  1. In the context of cost prediction for agricultural water 
conservancy engineering construction, BIM5D technology provides essential data, including project progress, 
costs, funds, resources, and construction organization, enabling coordinated and shared change information 
with high visualization accuracy. By dynamically extracting precise data on construction quantities for fixed 
periods, different materials, and various flow segments, BIM5D technology lays the foundation for accurate cost 
prediction.

PGNN neural network model and its optimization
The BP neural network is the most widely used multi-layer feed-forward neural network model in machine 
learning. Trained on sample data using the error back-propagation algorithm offers advantages such as good 
fault tolerance and strong associative memory, particularly for solving nonlinear problems and handling limited 
sample data40. This network typically consists of input, hidden, and output layers, with the propagation process 
primarily divided into forward propagation and back-propagation.

The PGNN model, also known as the Grey BP Neural Network model, combines the Grey GM (1,1) model 
and the BP Neural Network (BPNN) model. It incorporates the grayscale features of Grey System Theory 
and the self-learning adaptability of the BP Neural Network, enabling effective handling of nonlinear data 
sequences41,42. The formulation of the time series material unit price prediction problem based on PGNN 
is as follows: Let the original data sequence of material unit price eigenvalues for n months be denoted as 
X(0) =

{
x(0)(1), x(0)(2), · · · , x(0)(n)

}
. After applying the GM (1,1) model, the predicted unit price sequence 

is obtained as follows:

	
x(0)(t + 1) = (1 − eα)

(
x(0)(1) − µ

α

)
e−αt� (1)

where α is the development coefficient; and μ is the grey action quantity.
The specific steps for predicting material unit prices using the Grey BP Neural Network model are as follows: 

① Preprocess the material unit price data and establish a Grey GM (1,1) model to obtain the unit price prediction 
sequence; ② Subtract the predicted unit price sequence from the original sequence to obtain the residual sequence 
of material unit prices; ③ Use the residual sequence as the output sample to train a Grey BP Neural Network 
model, which generates the unit price correction sequence; ④ Add the predicted unit price sequence to the 
correction sequence to obtain the final predicted material unit prices using the Grey BP Neural Network model.

The PGNN neural network model offers distinct advantages, particularly in modeling dynamic changes in 
sequence data, a key feature for intelligent construction cost prediction. Construction costs are influenced by 
various factors, such as market fluctuations and material price changes, which often exhibit temporal variation. 
The grey model effectively captures these time series characteristics, providing more accurate and real-time 
predictions. Furthermore, BP neural networks are highly effective in processing nonlinear and dynamic data, 
making them particularly useful for addressing challenges in the construction field, where projects often involve 
complex nonlinear relationships and dynamic fluctuations43.

While PGNN neural networks can simulate dynamic data changes and predict the prices of agricultural water 
conservancy construction materials in real-time, they face challenges in practical applications, such as slow 
convergence, low computational efficiency, and difficulty in achieving global optimality. To enhance the global 
optimization ability of the network, the Sparrow Search Algorithm (SSA) is introduced to optimize the PGNN 
neural network. The SSA algorithm optimizes the weights and thresholds of the PGNN network by simulating 
the hunting and anti-hunting behavior of sparrow populations, thereby improving the training efficiency and 

Fig. 1.  BIM5D modeling process diagram.
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predictive performance of the network44. Additionally, the SSA algorithm avoids the random assignment of 
network weights and thresholds, guiding the network away from local minima toward a global or near-global 
optimal solution45,46.

This algorithm adopts two behavioral strategies: searching and following. Searchers actively seek food 
sources, while followers obtain food from the searchers. When sparrows detect a predator, they emit an alarm 
signal and move to a safer location. Sparrows that find better food sources may transition to searchers, while the 
overall ratio of searchers to followers remains constant.

1) Search behavior.
Searchers with higher fitness values are responsible for locating food and guiding the entire population’s 

actions. They find food more quickly and cover a larger search area than followers during the hunting process. 
T﻿he location of the searcher is updated using formula (2):

	
Xt+1

i,j =
{

Xt
i,j · exp

(
−i

α·itermax

)
ifR2 < ST

Xt
i,j + QLifR2 ≥ ST

� (2)

where Xi, j represents the position of the j-th dimension of the i-th search sparrow; t is the current iteration 
number; α is a random number between 0 and 1; itermax is the maximum number of iterations of the algorithm; 
Q is a random number that following a normal distribution; L is a 1 × d-dimensional matrix; R2 is the warning 
value within the range of 0 to 1; and ST is the safe value ranging from 0.5 to 1.

2) Following behavior.
Followers constantly monitor the searchers during the hunting process and compete for high-quality food 

discovered by the searchers. The position of the follower is generated by formula (3):

	
Xt+1

i,j =

{
Q · exp

(
Xt

worst−Xt
i,j

i2

)
ifi > n

2

Xt+1
P +

∣∣Xt
i,j − Xt+1

P

∣∣ · A+ · Lotherwise
� (3)

where Xt
worst represents the worst position of the searcher; Xt+1

P represents the best position of the searcher; and 
A is a 1 × d-dimensional matrix randomly assigned −1 or 1.

Some sparrows in the population serve as"warning signs,"guiding others to safer hunting areas. These 
sparrows position themselves between the edge and the safe zones. The location of a warning sparrow is 
randomly generated according to formula (4):

	
Xt+1

i,j =

{
Xt

best + β ·
∣∣Xt

i,j − Xt
best

∣∣ iffi > fg

Xt
i,j + K ·

( |Xt
i,j −Xt

worst|
(fi−fw)+ε

)
iffi = fg

� (4)

where Xt
best is the optimal position of the sparrow population; β is a random number that follows a normal 

distribution (0,1); K is a random number with a value range of −1–1; ε is a constant. fi is the current individual 
fitness value of the sparrow in the algorithm; fg  is the optimal fitness value of the sparrow in the algorithm; and 
fw  is the worst fitness value.

The process of optimizing the PGNN neural network using the SSA algorithm is illustrated in Fig. 2, and the 
specific steps involved are as follows:

1) Neural Network Structure Determination and Initialization Parameter Setting: Establish the population 
size, maximum iteration count, the proportion of searchers and followers within the population, and the warning 
values. The topology of the PGNN neural network is determined based on the input and output data from the 
training unit price sample.

2) Fitness Function Calculation: The average mean square error between the output values of the training 
and testing samples and the expected values is used as the fitness value for the sparrow algorithm to determine 
the current optimal initial position:

	
fitness =

∑n

i=1

[
(Yi − Zi)2 + (Yi′ − Zi′)2]

2n
� (5)

where n is the number of samples; Yi and Zi are the output and expected values of the training samples for unit 
price; and Yi and Zi are the output and expected values of the testing samples for unit price.

3) The iterative process is initiated to adjust the weights and thresholds. Continuously update the position 
coordinates of each functional sparrow using Eqs. (2)-(4), and optimize the optimal individual position of 
the population at various iterations. Use the best individual and the global optimal solution from the sparrow 
population in the current iteration to determine the weights and thresholds of the PGNN model.

4) Network Training: Repeat steps (2) to (3) until the maximum number of iterations is reached, outputting 
the minimum fitness value to obtain the optimal weights and thresholds for the network. Alternatively, continue 
the process until either the iteration limit is reached or the training results meet the specified error accuracy 
requirements.

To verify the superiority of the Sparrow Search Algorithm (SSA) in hyperparameter optimization, 
performance tests were conducted using benchmark functions, including unimodal test functions (F1, F2) 
and high-dimensional multimodal functions (F10, F13). The unimodal functions were selected to evaluate 
the exploitation ability of the algorithm, i.e., rapidly locating the optimal solution, while the high-dimensional 
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multimodal functions aimed to assess its exploration capability for avoiding local optima. The mathematical 
definitions of these benchmark functions are provided in Table 1. This study compares SSA with three other 
metaheuristic algorithms: Genetic Algorithm (GA)47, Particle Swarm Optimization (PSO)48, and Whale 
Optimization Algorithm (WOA). To ensure statistical robustness, all algorithms were configured with identical 
parameters: a population size of 30, a maximum iteration count of 200, and 20 independent runs. The average 
results were adopted as final performance metrics, with convergence curves illustrated in Fig. 3.

Fig. 3.  Convergence curves for different algorithms.

 

Basis function Range of x values Dimension n Theoretical optimum

F1 =
∑n

i=1
x2

i [−100,100] 30 0

F2 =
∑n

i=1
|xi| +

∏n

i+1
|xi| [−10,10] 30 0

F10 = −20
∑n

i=1
exp

(
−0.2

√
1/n

∑n

i=1
x2

i

)
− exp

(∑n

i=1
cos(2πxi)/n

)
+ 20 + e [−32,32] 30 0

F13 = 0.1
{

sin2 (3πx1) +
∑n−1

i=1
(xi − 1)2

[
1 + sin2 (3πxi + 1)

]
+ (xn − 1)

[
1 + sin2 (2πxn)

]}
+

∑n

i=1
u (xi, 5,100,4)

[−50,50] 30 0

Table 1.  Selected benchmark function.

 

Fig. 2.  Flowchart of PGNN model optimized by SSA algorithm.
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As illustrated in Fig. 3, SSA demonstrated superior performance in two critical dimensions: (1) For unimodal 
test functions (F1, F2), SSA exhibited faster convergence speed and final solutions closer to the theoretical 
optimum, confirming its enhanced optimization efficiency; (2) In high-dimensional multimodal functions 
(F13, F15) characterized by complex search spaces, SSA achieved global optima with minimal iterations, 
whereas comparative algorithms frequently stagnated in local optima or exhibited slower search dynamics. 
These empirical findings substantiate that SSA effectively balances exploration and exploitation mechanisms 
compared to GA, PSO, and WOA, thereby improving both search precision and convergence acceleration, which 
contribute to elevated predictive accuracy in subsequent model.

Construction cost prediction model for agricultural water conservancy engineering based on 
BIM and SSA-PGNN
To effectively predict the construction cost of agricultural water conservancy projects, this study established a 
prediction model that integrates BIM technology and the SSA- PGNN neural network. After normalizing the data, 
the model consists of two key components: extracting actual engineering quantities using BIM and constructing 
an SSA-PGNN unit price prediction model. Firstly, a 3D model of the agricultural water conservancy engineering 
is established. Based on this model, the scheduling plan and cost budget are imported to construct the BIM5D 
database, and the required engineering quantities are extracted based on specific criteria. Subsequently, the 
PGNN neural network model, optimized using the SSA algorithm, is utilized to predict the unit price for labor 
and machinery, facilitating real-time, dynamic cost predictions for agricultural water conservancy projects. The 
specific process framework is shown in Fig. 4.

Case study and result analysis
Data acquisition and pre-processing
To assess the performance of the proposed construction cost prediction model for agricultural water conservancy 
projects based on BIM and the SSA-PGNN neural network, an agricultural water conservancy project in Yanghe 
Town, Anshan City, Liaoning Province, was used as a case study. The primary focus of our study was on the 
construction period of specific structures, including"mortar masonry rectangular groove","concrete road (3 m 
wide)","agricultural bridge (6  m × 4  m × 1.5  m)","agricultural bridge (6  m × 6  m × 2  m)","agricultural culvert 
(φ 1000 × 4  m)","agricultural culvert (φ 600 × 6  m)", and"high mortar masonry retaining walls (1.2  m and 
1.5 m)."Due to the substantial contribution of steel reinforcement and concrete to the direct construction cost, 
the study concentrated on evaluating the total construction cost of grade III seismic steel bars (HRB400 φ 18-
25 mm) and C25 and C30 concrete materials. The data was sourced from open data platforms of the government 
and industry, encompassing a total of 62 material information prices for C25, C30 concrete, and HRB400 steel 
bars in Liaoning Province from January 2016 to February 2021, as shown in Fig. 5.

The sample input data comprised the prices of concrete and steel bars over the first 12 months, with the 
corresponding output data representing the price in the 13th month. A PGNN neural network model, optimized 
using the SSA algorithm, was then developed. The 62 material information price data points were divided into 50 
groups, with the randperm function used to randomly assign 40 groups as the training set and 10 groups as the 
testing set in the ratio of 8:2. Additionally, K-fold cross-validation with K = 5 was implemented on the training 
set, where different subsets of the training data were alternately utilized for model training and validation, 
thereby enabling a more reliable assessment of the model’s generalization performance.

The original unit price data were normalized to the interval [0, 1] using Min–Max normalization as specified 
in Eq. (6), a preprocessing step implemented to mitigate significant errors caused by substantial discrepancies in 
input data magnitudes. This transformation accelerated both the convergence rate and prediction accuracy of the 

Fig. 4.  Analysis and modelling process framework.
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training network by eliminating dimensional heterogeneity and standardizing data scales across measurement 
units.

	
x′

i = xi − xmin

xmax − xmin
� (6)

where x′
i is the normalized data; xi is the unit price data before normalization; xmax is the maximum value of 

each group of unit price data, and xmin is the minimum value.

Extracting agricultural water conservancy engineering quantities based on BIM technology
Revit design software is currently the most widely used BIM modeling platform, supporting tasks such as 3D 
modeling, 3D visualization, and interaction between drawings and models. The family library function enables 
the integration of pre-built components from various projects, thereby reducing the modeling workload 
through the utilizing of shared family libraries and improving modeling efficiency. Revit-generated 3D models 
of individual agricultural water conservancy projects are shown in Fig. 6a.

After establishing the Revit3D models for each individual project, the 3D models are exported as E5D files 
using the BIM5D plugin and imported into the digital project management platform. Individual engineering 
models of roads, bridges, and culverts are imported, as shown in Fig. 6b. Following the import process, project 
schedules from the scheduling plan and cost budgets from pricing software are integrated into the platform to 
establish the BIM5D model.

The construction simulation function in the BIM + technology management system simulates the planned 
construction period for each project. It dynamically displays the construction status of each project component 
over time, providing real-time updates to facilitate progress adjustments and ensure timely completion.

After completing the simulation construction, the BIM5D platform allows dynamic querying of quantities 
for each project component. The BIM5D platform extracts data for all components, classifies them, and 
efficiently determines the required quantities. Associating construction progress with the model facilitates real-
time calculation of work quantities, material usage, and flow period in real-time. Table 2 shows the usage of steel 
bars and concrete for each project during the construction period from March 20th to September 20th, 2021, as 
extracted from the BIM5D platform.

Parameter setting and model evaluation
In this study, the computer configuration used for network training and testing is based on Matlab2023b software 
running on a Windows 10 64 bit operating system environment. The system is equipped with an NVIDIA 
GeForce GTX1650 graphics card with 4 GB of graphics memory, 16 GB of RAM, a 1 TB of hard drive, and an 
Intel (R) Core (TM) i5-9300H CPU operating at 2.40 GHz.

Firstly, the data are normalized to generate a training dataset with random numbers between 0 and 1. This 
preprocessing step minimized material cost data oscillation during gradient updates, accelerated network 
convergence, and reduced training time. Based on empirical equations, the number of hidden layer nodes was 
calculated using a trial-and-error approach, with the selection range determined to be5,14. Simulation experiments 
were performed with varying node counts to determine the optimal number that minimized deviation. Table 3 
shows the average relative error values for different node counts after network training, indicating that the grey 

Fig. 5.  Monthly average price chart of concrete and steel bars.
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Number of nodes in the hidden layer 5 6 7 8 9 10 11 12 13 14

Average relative error(%) 5.25 3.88 5.38 5.79 8.23 9.47 7.79 8.87 3.63 7.22

Table 3.  Average relative error values corresponding to the number of nodes in different hidden layers.

 

Start time End time Amount of HRB400 rebar (t) Amount of C25 concrete (m3) Amount of C30 concrete (m3)

2021.03.20 2021.03.31 0 819.00 0

2021.04.01 2021.04.30 2.72 85.58 20.81

2021.05.01 2021.05.31 3.00 72.32 21.53

2021.06.01 2021.06.30 3.07 65.54 24.60

2021.07.01 2021.07.31 1.99 664.42 8.25

2021.08.01 2021.08.31 0 732.00 0

2021.09.01 2021.09.20 0 942.00 0

Table 2.  Quantity of reinforcement and concrete in each project.

 

Fig. 6.  BIM model of each project.
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BP neural network achieved the best fitting performance when the hidden layer nodes were set to 13. Based on 
these results, the PGNN neural network topology was finalized as 12–13-1.

The runtime performance of the SSA algorithm depends on the population size and the number of iterations. 
The population size was tested within the range of 10 to 80, and the number of iterations ranged from 80 to 150. 
The fitness function error, defined as the mean square error (MSE) of the training set, was used to identify the 
optimal parameters. As shown in Table 4, the minimum errors of 1.2069 and 0.0514 were achieved when the 
population size was set to 30 and the number of iterations to 100. At these values, the algorithm converged.

To evaluate the performance of the SSA- PGNN model proposed in this study, Random Forest (RF), XGBoost, 
PGNN and SSA-BP models were established as comparative models using the same dataset. Specifically, Random 
Forest (RF) employs an ensemble of multiple decision trees, where the final output is derived from averaging 
all individual tree predictions, effectively mitigating overfitting while ensuring stable predictions. XGBoost, 
as a representative gradient boosting framework-based ensemble learning algorithm, achieves high-precision 
predictions through the integration of multiple weak learners, demonstrating particular efficacy in processing 
large-scale datasets. These two models were selected as baseline representatives of traditional machine learning 
(ML) approaches for comparative validation. All machine learning models underwent systematic parameter 
optimization through a trial-and-error approach to identify optimal parameter combinations, and the specific 
parameter settings for each model are shown in Table 5.

Finally, to assess the model’s performance, we use the following metrics: root mean square error (RMSE), 
mean absolute percentage error (MAPE), and coefficient of determination (R2). Lower RMSE and MAPE values 
indicate higher prediction accuracy of the model. R2 values range from 0 to 1, and values closer to 1 indicate 
a better fit between the predicted and actual values, suggesting superior model performance. The formulas for 
calculating RMSE, MAPE and R2 are provided below:

Model Hyper-parameters Value

BP

Number of iterations 2000

Learning rate 0.01

Number of hidden layer nodes 11

Minimum error of training objective 0.00001

Learning function trainlm

RF
Estimator 100

Max depth 5

XGBoost

Estimator 500

Max depth 3

Learning rate 0.01

SSA

Early warning value 0.6

Population size 30

Maximum number of iterations 100

Upper boundary of weight threshold 5

Weight threshold lower boundary −5

Proportion of searchers 0.7

Proportion of early warning personnel 0.2

Table 5.  Quantity of reinforcement and concrete in each project.

 

Serial number

Population Iteration

Population size Algorithm error Number of iterations Algorithm error

1 10 0.018436 80 0.003069

2 20 0.016377 90 0.001163

3 30 0.012069 100 0.000514

4 40 0.012239 110 0.000640

5 50 0.020448 120 0.000614

6 60 0.017388 130 0.001142

7 70 0.022617 140 0.001163

8 80 0.035267 150 0.001758

Table 4.  Comparison of algorithm errors for different population sizes and number of iterations.
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where Yi is the real values; Ŷi is the predicted values; and Yi is the average of the predicted values.

Results and discussion
Prediction results for both the training and testing sets of all five models demonstrated no significant signs of 
overfitting or underfitting. In the unit price prediction of C25 concrete, C30 concrete, and HRB400 steel bars, the 
predicted values of the five models were compared with the true values, and the results are depicted in Fig. 7. The 
comparison of performance evaluation indicators for various prediction models is shown in Table 6.

Figure  7 demonstrates that the proposed SSA-PGNN model provides superior fitting to the nonlinear 
changes in unit prices for agricultural water conservancy materials, including C25 concrete, C30 concrete, and 

Model

C25 concrete C30 concrete HRB400 steel bars

MAPE RMSE R2 Time/s MAPE RMSE R2 Time/s MAPE RMSE R2 Time/s

RF 6.27% 0.452 0.861 45.1 6.73% 0.167 0.873 43.5 6.31% 0.172 0.887 42.5

XGBoost 5.23% 0.424 0.893 40.7 5.71% 0.142 0.902 41.4 5.44% 0.154 0.909 38.6

PGNN 4.42% 0.395 0.939 69.7 4.90% 0.132 0.947 68.0 5.31% 0.143 0.958 65.3

SSA-BP 3.95% 0.216 0.961 30.4 4.73% 0.097 0.970 32.6 3.60% 0.125 0.986 30.4

SSA-PGNN 3.29% 0.140 0.979 29.8 4.04% 0.079 0.983 30.7 2.43% 0.114 0.992 28.7

Table 6.  Comparison of performance evaluation index of different models.

 

Fig. 7.  Comparison between predicted and actual values of different model.
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HRB400 steel bars, compared to the PGNN and SSA-BPNN models. Its predicted unit price curves align more 
closely with actual values, achieving the highest degree of fitting and the most accurate prediction performance.

Furthermore, the statistical results of the performance evaluation indicators in Table 6 indicate that the 
SSA-PGNN prediction model proposed in this study has the smallest RMSE and MAPE values, with an R2 
value closest to 1, thus outperforming other prediction models. Under the same conditions, the PGNN model 
demonstrates superior predictive performance compared to traditional ML models (RF, XGBoost), indicating 
that PGNN exhibits smaller overall prediction deviations and more stable accuracy, particularly showing 
significant advantages in handling nonlinear temporal data such as material unit prices. Simultaneously, the 
SSA-PGNN model exhibits significantly improvements in performance evaluation metrics compared to the 
SSA-BPNN model. For the C25 concrete unit price prediction model, its RMSE and MAPE decreased by 35% 
and 17%, respectively, while R2 increased by 2%. In the C30 concrete unit price prediction model, its RMSE and 
MAPE decreased by 15% and 18%, respectively, while R2 increased by 1%. In the HRB400 steel reinforcement 
unit price prediction model, its RMSE and MAPE decreased by 9% and 32%, respectively, while R2 increased 
by 1%. These results confirm that incorporating grey GM(1,1) processing of historical material price data into 
the BP neural network effectively extracts temporal fluctuation trends, mitigates data randomness, and achieves 
higher prediction accuracy and operational efficiency by synergistically correcting nonlinear errors through 
neural networks.

Under the same conditions, the SSA- PGNN model shows significant improvements in evaluation metrics 
such as RMSE, MAPE, and R2 compared to the PGNN model. In the C25 concrete unit price prediction model, 
its RMSE and MAPE decreased by 64% and 25%, respectively, while R2 increased by 4%. In the C30 concrete 
unit price prediction model, its RMSE and MAPE decreased by 39% and 18%, respectively, while R2 increased 
by 4%. In the HRB400 steel reinforcement unit price prediction model, its RMSE and MAPE decreased by 
20% and 54%, respectively, while R2 increased by 3%. Regarding computational costs, training durations 
for non-optimized models (RF, XGBoost, PGNN) ranged between 40–60  s, whereas SSA-optimized models 
(SSA-BP, SSA-PGNN) achieved reduced training times of approximately 10 s. These improvements highlight 
the importance of using optimization algorithms to optimize the weights and thresholds of the PGNN model, 
which significantly enhances predictive performance and efficiency, as randomly generated hyperparameters 
can negatively impact the model’s generalization ability, training times and prediction accuracy, preventing it 
from reaching optimal performance.

This study employed SPSS software to conduct independent samples t-tests on the prediction results of 
the SSA-PGNN and PGNN models, with the confidence interval set at 95% for significance analysis of test 
set results. The computational results for different materials are presented in Table 7. We observed that the Sig 
values for all three materials exceeded 0.05, indicating that the prediction results of the two models met the 
homogeneity of variance test. Subsequently, the t-test results revealed that the sig (Bilateral) values were all below 
0.05, demonstrating a statistically significant difference between the predicted values of the two models.

In summary, the comparative analysis demonstrates that the SSA-PGNN model outperforms other models in 
key metrics such as prediction accuracy, RMSE, and R2. The SSA-PGNN prediction model has better accuracy 
and stability in unit price prediction, confirming its scientific validity.

The prediction results of HRB400 steel bars, C25 concrete, and C30 concrete unit prices from March 2021 to 
September 2021, based on the established SSA-PGNN prediction model, are shown in Fig. 8. Combined with the 
steel bars and concrete consumption extracted from the BIM5D platform, the main material cost information of 
the actual project was obtained. Subsequently, the BIM-SSA-PGNN model developed in this study was utilized 
to predict the construction cost of the actual project in Yanghe Town, Anshan City, Liaoning Province. These 
predictions were then compared with those of the PGNN model and the SSA-BPNN model, with the results 
presented in Table 8.

Performance analysis of the BIM-SSA-PGNN model revealed that its prediction accuracy remained 
consistently high across different months, achieving a MAPE of only 2.99%. This accuracy surpasses that of the 
BIM-ANN model proposed by Zhang et al.49, which reported a MAPE of 4.29% when predicting the price of 
HRB400 steel bars. The data spanned from April 2019 to October 2022, while this study employed a broader 
temporal range, demonstrating the importance of data sample size for neural network model performance. This 
also validates the perspective of Cheng et al.20, who emphasized that construction prices fluctuate over time, 
leading to difficulties in predicting construction costs, thus highlighting the criticality of prediction models’ 

Material Assumption

Levene 
test of
variance 
equation t-test pf mean–variance

F Sig t df sig（Bilateral） Mean difference Standard error

C25 concrete
Variance is equal 0.203 0.658 -2.630 18.000 0.017 -16.419 6.243

Variance inequality – – -2.630 15.229 0.019 -16.419 6.243

C30 concrete
Variance is equal 1.952 0.179 -2.508 18.000 0.022 -16.146 6.437

Variance inequality – – -2.508 14.106 0.025 -16.146 6.437

HRB400 steel bars
Variance is equal 2.718 0.117 4.201 18.000 0.001 297.914 70.921

Variance inequality – – 4.201 13.633 0.001 297.914 70.921

Table 7.  The calculation results of t-test.
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capability to capture temporal data variations. On the other hand, Baduge et al.50 argued that neural network 
models could be extensively applied in performance prediction of construction materials including concrete, 
steel, and timber to optimize cost-effectiveness. These findings substantiate the feasibility and applicability of the 
BIM-SSA-PGNN prediction model established in this study, particularly in generating satisfactory outcomes for 
material price forecasting.

Furthermore, the BIM-SSA-PGNN model demonstrates optimal performance among the compared models, 
with an R2 value of 0.9819 and an RMSE of 0.1358, underscoring its stability in cost prediction, effectiveness in 
capturing cost fluctuations, and viability for supporting intelligent construction cost management. Compared 
with the SSA-BP model, this model reduced RMSE by 19% and improved R2 by 2%, demonstrating superior 
performance. This conclusion aligns with the viewpoints of Pham et al.51 and Alshboul et al.52, indicating that the 
proposed model effectively captures construction cost fluctuations and explains that such variations primarily 
originate from historical price volatility.

Therefore, the BIM-SSA-PGNN model exhibits significant advantages over traditional methods in 
construction cost prediction. The digital and visualization capabilities of BIM technology enable accurate 
extraction of engineering data information from projects. Combined with the rapid processing capacity of the 
SSA-PGNN model for time-series data, it achieves precise prediction of construction costs for agricultural water 
conservancy projects, providing the agricultural water conservancy industry with more accurate and reliable 
cost management tools.

Practical application and future work
Practical application
Management application aspect. The proposed BIM-SSA-PGNN model provides a scientific decision-making 
tool for the whole-lifecycle management of agricultural water conservancy projects. By integrating engineering 
data (e.g., quantities, schedules, and resource demands) through BIM5D technology with the predictive 
capabilities of the SSA-PGNN model, managers can dynamically generate cost baselines during the planning 
phase, monitor cost deviations in real time during construction, and adjust resource allocation strategies 
based on prediction results. Specifically, the model can combine construction schedule simulations to predict 
the cost impacts of different schedule compression schemes, assisting managers in achieving multi-objective 

Month True value
SSA-PGNN
prediction value

SSA-BP
prediction value

PGNN
prediction value

3 263,324.88 265,356.00 274,987.44 272,039.04

4 44,951.66 44,975.43 46,698.14 46,406.48

5 37,861.71 38,043.00 39,309.70 39,303.79

6 42,269.57 42,449.07 43,860.44 42,221.06

7 215,982.71 219,069.40 225,061.55 223,178.05

8 230,316.48 226,773.60 240,520.56 237,943.92

9 302,193.60 304,266.00 315,579.42 312,197.64

MAPE 2.99% 3.88% 5.15%

R2 0.9819 0.9643 0.9290

RMSE 0.1358 0.1683 0.2041

Table 8.  Comparison of construction cost prediction results of different models.

 

Fig. 8.  Comparison of PGNN, SSA-BP and SSA-PGNN prediction results.
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optimization among quality, cost, and schedule. Furthermore, the high-precision prediction results generated 
by the model can support budget preparation and contract risk allocation during the bidding phase, reducing 
claims risks caused by cost estimation deviations and enhancing the standardization and foresight of project 
management processes.

Technical application aspect. The technical value of this model lies in the innovative integration of BIM and 
machine learning. By automatically extracting structured quantity data (e.g., concrete volume, steel reinforcement 
specifications) via BIM5D technology and combining it with the SSA-optimized PGNN network, an end-to-
end automated workflow from data acquisition to predictive analysis is achieved. The model synchronizes BIM 
component attributes with real-time market price databases, allowing technical teams to visualize the impact 
weights of material price fluctuations on costs and inversely optimize designs. This integration overcomes 
limitations in traditional cost estimation, enabling self-updating prediction models with enhanced real-time 
adaptability.

Economic application aspect. The model effectively controls hidden cost overrun risks in agricultural 
water conservancy projects through accurate predictions. The SSA-PGNN model can forecast material price 
fluctuations across different construction seasons, helping financial departments optimize cash flow scheduling 
and reduce financial costs caused by advance project payments.

Scalability aspect. By adjusting BIM models and parameters, the model can adapt to diverse engineering 
scenarios such as bridges, tunnels, and residential buildings. Combined with real-time market prices of materials 
and machinery in different regions, it enables cross-engineering domain and cross-regional application 
capabilities. For instance, by constructing a BIM model for residential building projects, concrete quantity data 
can be automatically extracted, and the SSA-PGNN model can predict concrete prices in the target region, 
ultimately deriving concrete costs for regional residential projects.

Future work
Dataset quality and quantity critically influence machine learning model performance. Limited by the current 
dataset size, this study has not yet employed deep learning models such as LSTM and Transformer, which excel 
in handling complex, large-scale datasets. Future studies should prioritize systematic collection and organization 
of engineering-related data to improve cost prediction accuracy using deep learning. Integrating SHAP value 
analysis could further visualize the contribution of engineering features to cost predictions, enhancing project 
planning and management.

Additionally, future research will focus on integrating IoT with BIM models, with a particular emphasis 
on exploring real-time data interaction mechanisms among on-site sensor networks, inspection systems, and 
BIM5D platforms. To achieve this, researchers should develop a predictive system architecture capable of 
synchronizing multi-source heterogeneous data—such as construction progress, resource consumption, and 
market price fluctuations—thereby supporting dynamic cost control throughout project lifecycles. By extending 
this framework to diverse project types, intelligent prediction systems can be established across engineering 
domains, ultimately advancing the construction industry toward real-time collaboration and autonomous 
decision-making.

Conclusion
This study addresses the complexity of predicting construction costs in agricultural water conservancy projects 
by developing a construction cost prediction model based on BIM technology and a PGNN neural network. The 
model’s accuracy and generalization ability are further enhanced through the integration of the SSA algorithm. 
The following conclusions are drawn from case studies:

	1)	 By utilizing BIM technology to create a 3D model of an actual project, introducing the schedule plan and 
cost budget to establish the BIM5D model, and dynamically extracting key engineering quantity informa-
tion within the required time period, a reasonable adaptation between BIM5D technology functions and 
cost prediction task requirements is achieved.

	2)	 To address the nonlinear and periodic characteristics of unit price fluctuations in agricultural water conserv-
ancy projects, the grey GM (1,1) model combined with the BP neural network was selected as the prediction 
model. The SSA algorithm is employed to swiftly search for model weights and thresholds, adjusting the 
population positions to minimize errors, resulting in an optimized process. Experimental results demon-
strate that the SSA-PGNN model outperforms the PGNN model in prediction accuracy.

	3)	 Using the agricultural water conservancy project in Yanghe Town, Anshan City, Liaoning Province, as a case 
study, the BIM-SSA-PGNN model was employed to quickly and accurately process relevant engineering 
quantity data. The model’s performance yielded an average prediction accuracy of 97.01% across different 
months, with an RMSE of 0.1358 and an R2 of 0.9819. The model evaluation indicators surpass those of the 
PGNN model and SSA-BPNN model, verifying its high accuracy and reliability. This model can provide 
reference and technical support for predicting the construction cost of agricultural water conservancy pro-
jects, while enhancing the efficiency and effectiveness of construction cost management and project deci-
sion-making.

	4)	 The proposed construction cost prediction model has significant practical implications for the agricultural 
water conservancy industry. The model effectively captures the dynamic trends in cost changes, account-
ing for complex factors such as design modifications and market price fluctuations, while enhancing the 
real-time accuracy of predictions. This model allows project managers to optimize project planning, adjust 
labor, modify work hours, and reallocate tasks as needed, thereby providing more comprehensive decision 
support and optimization solutions.
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The Supplementary Materials include all data. Some or all of the data, models, or codes that support the find-
ings of this study are available from the first author Kun Han (email: 2,373,903,326@qq.com) upon reasonable 
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