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Random forest models have demonstrated utility in the determination of New York Heart Association 
(NYHA) Heart Failure Classifications. This study aims to determine the prediction accuracy of a 
random forest model to derive NYHA Classification from medical students’ free-text history of present 
illness (HPI). NYHA Classifications established terminology for delineation of various heart failure 
presentations, this terminology was converted into keywords shared by standardized patients. 649 
typed HPIs were de-identified, tokenized, cleaned, and assessed for number of correct keywords, 
incorrect keywords, and keyword usage. Models were trained using bootstrapped training data and 
assessed on test data. In testing, the model demonstrated a 0.775% error rate in identifying NYHA 
II, 26.3% for NYHA III, and 6.90% for NYHA IV. Overall reporting a 0.420% estimated error rate on 
the bootstrap sample training set and an 8.20% misclassification rate on the testing set. In future 
applications, developing a method of instantaneous feedback centered around keywords and their 
importance measures, specifically as determined by the variable importance plot (VIP), may aid 
students in their determination of NYHA Classifications and improve their lexical density.
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Electronic Health Records  (EHR) are conglomerates of data formats including structured and unstructured 
data1–3. The Edward Via College of Osteopathic Medicine (VCOM) Hospital Integrated Clinical Cases (HICC) 
course has adapted this EHR format in subjective, objective, assessment, and plan (SOAP) Note documentation, 
as a critical part of the student assessment. This standard note type is structured; however, each section may 
contain highly pertinent data entered in an unstructured format. Here, heuristics are important, textual analysis 
provides a solution to uncovering the hidden data, namely the timely diagnosis of a patient’s ailment3.

Textual analysis has been used for a multitude of applications, such as discovering language patterns, 
identifying document similarity and dissimilarity, classifying and sorting using clustering methods, and locating 
unusual behavior or anomalies in textual data1–6. Neural networks have outperformed current prediction 
systems for mortality risk in the Intensive Care Unit (ICU), risk levels in patients with atrial fibrillation, and 
risk of possible cardiac arrest in patients with heart disease4,7. Diagnostically, neural networks have surpassed 
current systems for identifying and evaluating cardiac arrhythmias, as well as genotypes and phenotypes of 
cardiovascular diseases8–10. Hospitals have been using text analytics and natural language processing for 
improved efficiency by reducing documentation time3. Advanced systems provide treatment recommendations 
based on textual input directly typed or vocalized into an EMR, known as a Computerized Clinical Decision 
Support System (CDSS)11. Analytical systems have been developed to assist physicians in extracting relevant 
information from unstructured modalities like free-text, demographics, imaging, and disease trends in high-risk 
populations like seafarers2,10. By having easier access to a more inclusive picture of a patient, these systems can 
help physicians in their differential diagnosis, while better understanding their patient’s needs2,10.
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The New York Heart Association (NYHA) Functional Classification for Heart Failure stratifies patients by 
severity of subjective symptoms and eligibility determination for clinical trials12. Typically these determinations 
stem from the unstructured textual data within the EMR1,13,14. To date, the literature demonstrates the utility 
of machine-learning methodologies, such as natural language processing (NLP) and decision trees in the 
identification of NYHA Classification from unstructured data13–15. The primary goal of this study is to predict 
NYHA Classification in the unstructured history of present illness (HPI) section of first year medical students’ 
standardized Block 4 HICC Cardiopulmonary Testing utilizing a random forest model.

Methods
The VCOM Institutional Review Board determined our study exempt from review on September 22, 2022 
[1948897-1], as the study does not directly involve human subjects; instead, de-identified pre-collected data is 
evaluated. All activities were performed under relevant guidelines and regulations, including the Declaration of 
Helsinki. Informed consent was not required as human subjects were not directly involved.

The data utilized for our analysis was generated by first year Osteopathic Medical Students (OMS1) from all 
four VCOM campuses (Blacksburg, VA; Spartanburg, SC; Auburn, AL; Monroe, LA) during their Block 4 HICC 
Cardiopulmonary Testing. Specifically, following their standardized patient examinations on one of four cases: 
Myocarditis (NYHA II), Familial Hypertrophic Cardiomyopathy (NYHA II), Sarcoidosis Cardiomyopathy 
(NYHA III), and Ischemic Cardiomyopathy (NYHA IV), students completed their unstructured content entry 
into a simulated EMR as part of their typical Block 4 testing process. This sampling method was of convenience, 
due to the pre-existing integration of these processes within our institution. Importantly, standardized patients 
were instructed on the case background, case presentation, physical exam, and level of clinical impairment 
based on NYHA Classification. Patients learned the appropriate descriptors to employ in their portrayal of the 
assigned case for the appropriate NYHA Classification. Post-examination, raw student data was de-identified 
and overall performance data was excluded. NYHA I Classification descriptors were not used in this series of 
testing; therefore, the study will only discuss NYHA II through IV. 649 free-text HPIs and assigned standardized 
cases were collected.

Lexical analysis began with tokenization of responses by splitting paragraphs, sentences, and phrases 
into individual terms. These responses were then cleaned by the elimination of capitalization, punctuation, 
abbreviations, and symbols. Inverse Document Frequency was applied to find both important and frequently 
used words. Keyword lists were generated for each standardized case, each validated by an attending physician. 
Next, the amount of correct and incorrect keywords used by each student were calculated for their assigned case. 
The algorithm returned each keyword with a use count, percentage based on the number of correct keywords, 
and a percentage based on incorrect keywords specific to each individual case. A partial empty matrix was 
created with select data from responses consisting of the keyword count total, incorrect keyword total, correct 
keyword percentage, incorrect keyword percentage, and overall keyword usage denoted by either a 0 (did not) 
or a 1 (did use).

The data was organized into a train-test split 5/8-3/8 prepared at random using 405 entries for training (203 
NYHA II, 106 NYHA III, 96 NYHA IV) and 243 entries for testing (129 NYHA II, 57 NYHA III, 57 NYHA IV). 
To further expand our training set, bootstrap sampling or sample selection with replacement was conducted 
10 times, once merged a total of 4,050 entries were generated (2080 NYHA II, 1065 NYHA III, 905 NYHA IV).

Random forest model hyperparameters
Model hyperparameters were as follows: n_estimators, the number of trees in the model was set to 150; max_
depth, depth of individual trees, was set to ‘none’; min_samples_split, the minimum number of samples to 
justify a split, was set to 2; min_samples_leaf, minimum number of samples in a leaf node, was set to 1; max_
features, the number of features considered when splitting a node, was set to 2, and criterion, the function used 
to measure quality of a split, was set to the Gini Impurity Score. Additional parameters, including bootstrapping 
was set to ‘true’, cp. (complexity parameter) used for minimal cost-complexity pruning set to 0.01, and 5 K-folds 
with K-1 folds for training (Table 1).

Parameter Value

n_estimators 150

max_depth None

min_samples_split 2

min_samples_leaf 1

max_features 2

criterion Gini Impurity Score

bootstrap True

cp. 0.01

K-folds 5

Table 1.  Random forest model parameters. 6 hyperparameters and 3 additional parameters are provided.
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Statistical analysis
Discussed data falls under the category of parametric data. Specifically, Poisson Distributed Variables, such as 
the correct word count range and wrong word count range; Binary Distributed Variables, such as the presence 
or lack of keywords; Categorical Nominal Variables, such as NYHA Classification. As appropriate, variables 
were summarized as mean and standard deviation (SD). Multiple comparisons were not made, thus corrections 
were not indicated. All percentages were rounded to three significant figures, while binary data was reported 
as assessed. Final model comparison was made by the misclassification rate, described as the sum of total 
false positives and total false negatives all divided by the total observations. Additional metrics, including the 
sensitivity, specificity, precision, recall, accuracy, F1 score, and Matthews correlation coefficient (MCC) will be 
reported; however, in the medical education setting we assume all errors to be equally important. Thus, the low 
resource and easily interpretable metric, misclassification rate, was selected.

Analyses were conducted using R-Studio 2024.12.0 + 467 and Python version 3.11.

Results
Keywords
57 initial keywords were identified, 25 with zero variability indicated a lack of use by any student regardless of the 
case or intended classification. These 25 variables were dropped to reduce dimensionality as they didn’t provide 
any additional information for the models to improve upon. Additionally, highly correlated variables, such as 
the phrase “six months” were included as complete phrases and split on white-space as “six” and “months”. 11 
initial keywords became 14 after the split for Myocarditis (NYHA II), 6 became 9 after the split for Familial 
Hypertrophic Cardiomyopathy (NYHA II), 7 became 10 with the split for Sarcoidosis Cardiomyopathy (NYHA 
III), and 8 became 10 with the split for Ischemic Cardiomyopathy (NYHA IV). In total, 32 individual keywords 
were assembled, 19 of them unique (Table 2).

 For those students who received a NYHA II case, the average correct keywords used were 8.05 out of the 
maximum 14 possible correct keywords, while the average incorrect were 1.24. In the NYHA III case, the 
average correct keywords were 8.53 out of 10, while the incorrect average was 0.816. For the NYHA IV case the 
average correct keywords were 7.73 out of 10, while the incorrect average was 0.662. Overall, the average correct 
keywords for all cases was 8.09 (SD +/- 2.84) and 0.995 (SD +/- 0.998) for incorrect words (Table 3).

A variable importance plot (VIP) was generated to demonstrate the importance of a given variable in regard 
to the overall integrity of the model; in other words, removing a variable from the model would result in an 
appreciable proportion of observations to be misclassified (Fig. 1). Figure 1a demonstrates the Mean Decrease 
Accuracy plot, which expresses the accuracy loss suffered by the model by excluding a particular variable. The 
correct word variable is the most important factor for Mean Decrease Accuracy. Similarly, Fig. 1b demonstrates 
the Mean Decrease Gini plot, which is a representation of the per variable contribution to node homogeneity, a 
measure of node purity. Here, the keyword “months” is most important for Mean Decrease Gini, likely due to the 
artificially assigned symptom duration within each of the set cases. These variables are presented in descending 
importance from top to bottom in each graph (Fig. 1).

Random forests
The generated Random Forest model consisted of 150 trees. Traditionally, increasing the trees in the forest 
imbues the model with more accuracy; however, the mean squared error in our model stabilizes around 50 and 

Case Average correct keywords Average incorrect keywords

NYHA II 8.05 1.24

NYHA III 8.53 0.816

NYHA IV 7.73 0.662

Total 8.09 (+/- 2.84) 0.995 (+/- 0.998)

Table 3.  Keyword averages. The average correct and incorrect keywords used by students by case. Totals are 
reported with a standard deviation.

 

Keywords Column 2 Column 3 Column 4

*muscle aches uncomfortable six weeks

no sob 6 two months *flutter

*marked *unable *cold *chair

*increased comfortable *cough *worse

*gym *dull *pass out *rest

*swelling 2 months two

*most *some two weeks *tired

*any six months *activity sob

Table 2.  Keyword list. All 32 keywords are listed, 19 unique keywords indicated by (*).
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150 (Fig. 2). The lines in the figure represent each of the NYHA Classifications: red represents NYHA II, green 
NYHA III, blue NYHA IV, and black represents the data used strictly for testing. During training the model 
reported a 0% error rate in the identification of NYHA II cases, 1.01% error rate for NYHA III, and 0.552% error 
rate for NYHA IV (Table 4). When the model was assessed on the test data we found a 0.775% error rate for 
NYHA II, 26.3% for NYHA III, and 6.90% for NYHA IV (Table 5).

Figure 3 demonstrates a multidimensional scaling proximities plot, while Fig. 4 is focused on the convergence 
point of these axes. The plots illustrate model performance regarding the testing data set. From the graph we can 
see that there are three distinct lines representing each of the three classification groups, spaced equally in the XYZ 
coordinate plane, thus equally spaced within three-dimensions (Fig. 3). The Spatial distance amongst the groups 
indicates that the random forest model has clearly identified the NYHA classifications. The model performed 
accurately based solely on the keywords used by students, correct word percentage, and wrong word percentage. 
There is slight overlap between groups, observations from other classifications that bleed into the other group 
clusters, indicating misclassification (Fig. 4). The final model demonstrated a 0.420% misclassification rate on 
the bootstrap training set and an 8.20% misclassification rate on the testing set. Additional metrics include, 
sensitivity of 97.7%, specificity of 85.1%, precision of 88.1%, recall of 97.0%, accuracy of 91.8%, F1 score of 
92.7%, and MCC of 0.840 (Table 6).

Discussion
This study led to the development of a 150-tree random forest model for the identification of NYHA Heart 
Failure Classifications II-IV in the unstructured textual data of medical student HPI entries rather than typical 
structured forms15. The model performed well with an 8.20% misclassification rate. Model development began 

Fig. 1.  Variable Importance Plot. (a) Mean Decrease Accuracy variable importance plot and (b) Mean 
Decrease Gini variable importance plot.
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NYHA Classification NYHA II Determined NYHA III Determined NYHA IV Determined Error

NYHA II Expected 126 3 0 0.00775

NYHA III Expected 12 45 0 0.263

NYHA IV Expected 5 0 52 0.0690

Table 5.  Random forests test set output. The expected counts for each case in comparison to the count 
determined by the random forests model using the testing data set.  Model misclassification counts are bolded.

 

NYHA Classification NYHA II Determined NYHA III Determined NYHA IV Determined Error

NYHA II Expected 2080 0 0 0

NYHA III Expected 0 1054 11 0.0101

NYHA IV Expected 0 8 897 0.00552

Table 4.  Random forests training set output. The expected counts for each case in comparison to the count 
determined by the random forests model using the training data set.  Model misclassification counts are 
bolded.

 

Fig. 2.  Trees vs. error. Demonstrates the flux of mean squared error in respect to increasing the number of 
trees in the Random Forest model.

 

Scientific Reports |        (2025) 15:25491 5| https://doi.org/10.1038/s41598-025-10179-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


with lexical analysis and keyword development (Table  2). Significantly, in the medical education setting, we 
administer the scenario in which students extract pre-written case information, these pre-written scenarios 
hinge on the use of very targeted keywords. The students then report their findings in a structured SOAP 
note format, with much of their effort concentrated in the unstructured HPI. This section, a clinical summary 
portraying the relevant details for the current illness, is comparable to the verbal presentation one may provide 
to a medical team.

Model characteristics were paramount in method selection including execution time, cost, accuracy, and 
resource consumption. Comparable studies utilized deep learning NLP models13, rule-based NLP models14, and 
decision trees15. Random forest models performed similarly with less computational overhead15. Novel ensemble 
learning techniques, such as those presented for k-nearest neighbors (kNN)16, extended neighborhood rule 
(ExNRule)17, and pruning strategies for random forest models18, may have precluded the selection of a standard 
random forest approach; however, random forest models closely paralleled ensemble learning performance18 
with overall shorter execution times17. As our model was expected to provide instantaneous feedback upon text 
file submission, limiting execution times was predominant. Limited funding further precluded our team from 
utilizing other model types, as large language models (LLMs) typically function on a cost-per-token system and 
the graphics processing unit (GPU) market was suboptimal. Importantly, LLMs and other machine learning 
(ML) methods can be trained to outperform random forest models; however, they require more training samples 
and consume more computational power, thus necessitating costly GPU upgrades or managed LLM providers.

Misclassification rate provides a simple interpretation of accuracy without delving into specific false positive 
or false negative determinations. This fidelity is necessary in disease prediction and screening; however, in the 
medical education setting class determination and keyword evaluation is sufficient. Overall performance is 

Fig. 3.  Multidimensional scaling proximity plot.
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comparable to the literature, including the disproportionate misclassification of NYHA II and III cases13–15, 
which underscores the challenges of relying on keywords19. Additionally, the model suffers from a paucity of 
training data, as noted previously 203 of the original cases were NYHA II, 106 NYHA III, and just 96 NYHA 
IV. Many comparable studies with better accuracy either included a larger initial dataset or a larger fold cross 
validation13–15.

Determining the optimal tree count is an important aspect of balancing the computational strain of a random 
forest model and directly affects accuracy. As demonstrated in Fig.  3, a maximum default of 150 trees was 
selected; however, 50–75 trees performed similarly. This de-escalation would result in a significant diminution 
in the computational costs of the model due to the reduction in variables required for prediction20.

Keywords are critical for deciphering unstructured textual data; however, traditionally keywords solely aided 
a random forest model in its determinations. Our study begins to assess the use of these keywords in each case, 
building towards the development of efficient, yet accurate case presentations or medical decision making3. 
Similar computational models have been used in the academic setting to support standardized scoring platforms 
for medical education9. However, none have been poised to provide lexical feedback to students.

Here, we demonstrated an average of 8.09 correct keywords in comparison to 0.995 incorrect keywords 
used by students throughout the cases. This demonstrates a tendency for the students to heuristically identify 

Metrics Value

Misclassification rate 0.0820

Sensitivity 0.977

Specificity 0.851

Precision 0.881

Recall 0.970

Accuracy 0.918

F1 score 0.927

MCC 0.840

Table 6.  Random forest model metrics. MCC or Matthews correlation coefficient.

 

Fig. 4.  Zoomed multidimensional scaling proximity plot.
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keywords (Table 2), while self-assigning keyword importance. The students are likely demonstrating an ability 
to surmise the veiled VIP (Fig. 1) through their studies, preparation materials, and standardized patient visits. 
Notably, the development of a VIP could better assist educators in developing a more lexically-based assessment 
system that gives weighted credit to the use of keywords with a higher mean decrease accuracy; therefore, 
increasing model accuracy and maximizing the effectiveness of the medical case presentation.

The limitations of the study stem from the initially limited sample size, unbalanced distribution of NYHA 
Classification cases, and the lack of NYHA I cases. Additionally, the available equipment was rudimentary, 
limiting our bootstrap iterations to 10 and our fold cross validation to 5. Improvements in our available 
equipment would have further increased the training and testing sample sizes, and allowed for the employment 
of a novel ensemble learning technique.

Conclusion
Random forest models can be applied with acceptable accuracy in the determination of NYHA Classifications 
based solely on the free-text HPI from medical student standardized patient simulated cases. Our model 
demonstrated a comparably low 0.420% and 8.20% misclassification rate, for training data and testing data 
respectively. These scores would likely improve with an increased volume of training cases and utilization of more 
purpose-built computational equipment. Continued improvement of this model would comfortably supplement 
an educator in assessing medical students on their performance in simulated cases. Future implementations 
of these findings may lead to the development of an instantaneous feedback system for students to receive 
constructive critique regarding their medical decision making and overall medical lexical density.

Data availability
The textual data analysed during the study are available in the following GitHub repository: ​h​t​t​​​​p​s​:​​/​​/​g​i​t​h​u​​b​.​c​​o​m​/​​
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