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This paper introduces a novel optimization algorithm, Young’s double-slit experiment algorithm 
(YSDE), for accurately estimating the unknown parameters of Proton Exchange Membrane 
Fuel Cell (PEMFC) models. The proposed method integrates the YDSE algorithm with five other 
metaheuristic techniques: the sine cosine Algorithm (SCA), moth flame optimization (MFO), Harris 
Hawk optimization (HHO), gray wolf optimization (GWO) and chimp optimization Algorithm (ChOA) 
to estimate six critical parameters of PEMFC. Comparative analysis demonstrates that the YDSE 
algorithm outperforms competing methods by achieving the lowest Sum of Square Error (SSE) 
with a minimum value of approximately 1.9454, compared to higher values in other algorithms. 
Statistical evaluation over 30 independent runs reveals that YDSE attains a mean SSE of 1.9454 
with an exceptionally low standard deviation of 2.21 × 10−6, indicating remarkable consistency 
and robustness. Furthermore, the YDSE algorithm exhibits faster convergence, reaching optimal 
solutions in fewer iterations than other methods, thereby enhancing computational efficiency. The 
proposed YSDE is validated in three different PEMFC stack configurations, using standard performance 
indicators such as the sum of squared errors (SSE), standard deviation (SD), and Friedman rank (FRK). 
Experimental results demonstrate that YSDE consistently achieves superior accuracy and robustness. 
It reduces average SSE values by up to 97.8% compared to GWO and 97.6% compared to SCA. The 
worst-case SSE is improved by up to 70.6% over IChOA, and the standard deviation is reduced by 
91.3% relative to MFO. In more complex configurations, YSDE maintains a 1000-times lower SD, while 
enhancing average accuracy by 2.6% over IChOA and 8.5% over MFO. Overall, YSDE achieves up to 
87% improvement in ranking scores based on Friedman analysis, indicating its consistent superiority 
across different test cases. The statistical significance of YSDE’s performance is confirmed through the 
Wilcoxon rank-sum and multiple comparison tests. These results highlight YSDE as a highly effective 
and stable solution for PEMFC system identification which has significant potential to develop digital 
twins and control systems in automotive applications and advance renewable energy technologies.
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There is no doubt that clean energy technologies make a substantial contribution to the fight against global 
pollution and the depletion of fossil fuels. These electrochemical energy conversion technologies are exemplified 
by proton exchange membrane fuel cells (PEMFCs) . As an alternative to diesel distributed generation, proton 
interchange is considered an efficient fallback source of electricity and a method of balancing grid power. 
Membrane fuel cells (PEMFCs) are also considered. The primary benefits of these PEMFCs in power system 
applications include high start-up dependability, rapid response to demand fluctuations, silent operation, 
and low carbon emissions1. In particular, they are widely used in hydrogen-powered automobiles worldwide, 
representing about 90% of the research and development of fuel cells2–5.

Hydrogen, a by-product of industrial facilities that specialize in the production of chlorine and sodium 
chlorate, can serve as a sustainable fuel for PEMFCs in specific regions, such as Finland6. When used in PEMFC 
power plants at partial loads, this hydrogen, along with other renewable sources, can contribute to the rapid 
coverage of the load7. PEMFCs, which operate in both AC and DC power networks, serve as electrochemical 
energy conversion devices, converting chemical energy into heat and electricity through the reaction of oxygen 
and hydrogen. Noble metal catalysts, such as platinum, are typically utilized at reaction sites, generating heat, 
liquid water, and direct current (DC) electricity as by-products in low-temperature fuel cells8.

Fuel cells (FCs) face challenges such as restricted output voltage and current despite their advantages. 
Series coupling of cells is required to create modules with the necessary voltage and current. Issues such as 
concentration-polarization loss at high current densities, activation loss at low current densities, and linearly 
varying ohmic loss contribute to a decrease in the output voltage from the open-circuit voltage. Accurate 
estimation of these losses poses challenges due to equations that contain seven unknown parameters, one of 
which can be calculated using an empirical formula8.

Fuel cells (FCs) are reliable and environmentally friendly alternative energy sources across various sectors, 
including residential and commercial structures, electric vehicles, and mobile phone recharging. They offer 
benefits such as silent operation, high efficiency, scalability, and low operational expenses, producing pure 
byproducts. PEMFCs stand out due to their low operating temperature, high power densities, rapid startup, 
reduced volume, decreased weight, and overall dependability. PEMFCs are particularly well-suited for 
automotive applications9 and are utilized in both stationary and portable power sources.

Proton-exchange membrane fuel cells (PEMFCs) play a pivotal role in addressing global energy challenges, 
particularly in renewable energy applications. Accurate parameter estimation is critical to optimizing the 
performance and efficiency of PEMFC systems, which are inherently non-linear and multivariable. In this work, 
we propose a novel approach to solve the specific problem of PEMFC parameter estimation using the Young’s 
double cut experiment (YDSE) algorithm. Although YDSE is a versatile metaheuristic algorithm capable of 
addressing various optimization challenges, the primary focus of this study is on its application to a domain-
specific and high-impact real-world problem. This focus enables an in-depth examination of YDSE’s effectiveness 
in addressing the specific needs of PEMFC modeling, rather than its general applicability to benchmark global 
optimization problems.

Researchers overcome the challenges posed by PEMFCs through the use of meta-heuristic algorithms. These 
algorithms, known for their simplicity, adaptability, problem independence, gradient-free nature, versatility, 
and resistance to local optima entrapment, are widely used to extract PEMFC parameters. The No-Free-Lunch 
theorem emphasizes that no existing optimizer can effectively solve all engineering optimization problems. 
Various algorithms, including artificial ecosystem optimizer (AEO)10 and GWO11, are used to estimate PEMFC 
parameters. In this study, the authors aim to implement a meta-heuristic algorithm to address optimization 
challenges.

The main objective of this paper is to develop an efficient and accurate method for parameter estimation in 
PEMFC using YDSE algorithm. This study aims to compare the performance of the YDSE algorithm with other 
metaheuristic optimization methods, such as SCA, MFO , HHO , GWO , and ChOA, to minimize the Sum 
of Square Error (SSE) between estimated and actual measured cell voltages for precise parameter estimation. 
Additionally, the paper seeks to enhance the modeling accuracy and performance prediction of PEMFCs 
through advanced optimization techniques, demonstrating the practical applicability of the proposed YDSE-
based method in developing digital twins and control systems for automotive applications, thereby validating the 
efficacy and reliability of the YDSE algorithm in addressing the parameter identification challenges of PEMFC 
models across diverse applications.

This paper contributes to the body of knowledge by introducing a novel application of the YDSE algorithm to 
estimate the parameters of PEMFCs. The effectiveness of the YDSE in this research area is demonstrated through 
several key points:

•	 The paper introduces YDSE algorithm as a novel metaheuristic optimization technique for accurately esti-
mating PEMFC parameters. This innovative approach leverages the principles of wave interference to en-
hance optimization performance.

•	 A comprehensive comparison is conducted between YDSE and five other well-known metaheuristic algo-
rithms: SCA, MFO , HHO , GWO , and ChOA. The study shows that YDSE outperforms these methods in 
minimizing the Sum of Square Error (SSE) between estimated and actual cell voltages.

•	 The proposed YDSE algorithm significantly improves convergence speed and accuracy over traditional op-
timization techniques. Statistical measures (Min, SD, Mean, Max) indicate YDSE’s superior performance.

•	 The efficacy and reliability of the YDSE algorithm are validated through experimental results, showcasing 
its robustness in handling the complexities of PEMFC parameter identification across diverse applications.

The remainder of this paper is organized as follows: Sect. 2 provides a detailed review of related work on 
parameter estimation techniques for PEMFC. Section 3 presents Mathematical formulation for PEMFC. 
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Section 4 introduces the proposed methodology, including YDSE algorithm . Section 5 introduces the YDSE 
algorithm as a novel approach for parameter estimation of PEMFC. Section 6 discusses the results, comparing 
the performance of the YDSE algorithm with that of other metaheuristic optimization methods. Finally, Sect. 7 
concludes the paper, summarizing the key findings and suggesting potential directions for future research.

Related work
In the dynamic domain of improving PEMFC models, crucial for advancing hydrogen fuel cell systems, a 
sequence of innovative inquiries transpire, unveiling fresh methodologies that influence the storyline.

In10, the authors utilize the IAEO algorithm to navigate the intricate aspects of PEMFC modeling effectively. 
This research demonstrates the algorithm’s proficiency in handling multivariate and nonlinear data. It establishes 
it as a more favorable option than complex algorithms, with the potential for increased efficiency in fuel cell 
systems. The narrative progresses in a subsequent chapter by introducing a novel method for accurately extracting 
parameters to model proton-exchange membrane (PEM) fuel cell systems. Using the simulated annealing (SA) 
optimization algorithm, the authors enhance accuracy by estimating each parameter and presenting a model 
built in Simulink. Equipped with optimization algorithms firmly rooted in empirical evidence, this model is a 
potentially efficacious tool in developing fuel cell power systems that demonstrate exceptional efficiency12.

In13, the Authors introduce the SOA, which simulates human searching behaviors, adding an intriguing twist 
to the narrative. The algorithm’s ability to optimize PEMFC modeling surpasses that of existing state-of-the-art 
alternatives, rendering it a valuable tool for system analysis, design optimization, and real-time control.

In14, the Hybrid Artificial Bee Colony (HABC) algorithm is introduced, which addresses the difficulty 
associated with parameter estimation in PEMFC models. By incorporating the foraging behavior of bacteria and 
an adaptive Boltzmann probability, HABC outperforms alternative methods in terms of convergence speed and 
precision. By assessing the results regarding the parameters of the PEMFC stack, the research demonstrates how 
effectively HABC addresses the difficulties associated with parameter estimation.

The Simplified Teaching-Learning Optimization (STLBO) algorithm is introduced in15. It provides an 
exceptional strategy for identifying solar and PEM fuel cell parameters. STLBO outperforms fundamental TLBO 
and alternative methods, showcasing its scalability and efficacy. As a result, it presents a promising resolution 
to intricate optimization challenges encountered in practical contexts. The effectiveness of GWO in precisely 
identifying parameters is confirmed by statistical analyses, representing a substantial progression in optimizing 
commercial PEMFC models11.

In addition, the authors in16 propose a method for estimating parameters using the bird mating optimization 
algorithm to examine the fuel cell polarization curve. In17 and18, authors suggest using a composite genetic 
algorithm to estimate the parameters of PEMFC. The methodology for identifying parameters of PEMFC 
using the harmony search optimizer is described in19. In20,21, A convolutional neural network was presented 
to identify the parameters of PEMFC, utilizing developments in machine learning techniques. The parameters 
of the PEMFC are determined and analyzed in22 using the polarization curve, taking into account different 
temperature effects. The model incorporates a modified differential algorithm that includes a collective guidance 
factor for determining the parameters of the PEMFC, as explained in23. The following sections will examine 
most of these sources and recent methods for estimating parameters.

Recent studies have highlighted the critical role of accurate parameter estimation and modeling in the 
performance and deployment of fuel cell systems, particularly in hybrid electric vehicles (HEVs). As the demand 
for cleaner transportation grows, Proton Exchange Membrane Fuel Cells (PEMFCs) have emerged as promising 
candidates due to their high energy efficiency and zero-emission profile24–27.

Recent research has also explored various metaheuristic-based techniques for PEMFC parameter estimation. 
These include the Adaptive Sparrow Search Algorithm23, Improved Chaotic Grey Wolf Optimization28, Modified 
Farmland Fertility Optimizer29, Moth-Flame Optimization30, Improved Barnacles Mating Optimization31, 
Pathfinder Algorithm32, Enhanced Transient Search Optimization Algorithm33, Exponential Distribution 
Optimizer34, Improved Stochastic Fractal Search Algorithm35, Gradient-Based Optimizer36, Osprey Optimization 
Algorithm37, JAYA Optimization38, Hybrid Artificial Bee Colony Differential Evolution Optimizer39, Enhanced 
Bald Eagle Algorithm40, Honey Badger Optimizer41, Particle Swarm Optimization42, Improved African Vulture 
Optimization Algorithm43, and the Modified Honey Badger Algorithm44.

These studies demonstrate the effectiveness of various optimization strategies in addressing the challenges 
of parameter estimation in PEMFC modeling. The ongoing research efforts aim to enhance the efficiency and 
reliability of PEMFC systems by employing innovative optimization techniques.

Despite significant advancements in the field of PEMFC parameter estimation, existing methods, such as the 
SCA, MFO, HHO, GWO, and ChOA, still face challenges in terms of convergence speed and accuracy. Many of 
these methods struggle with the entrapment of local optima and require extensive computational resources to 
achieve satisfactory results. The introduction of the YDSE algorithm addresses these limitations by leveraging 
wave interference principles to enhance optimization performance. The YDSE algorithm exhibits faster 
convergence and higher accuracy in estimating PEMFC parameters by minimizing the Sum of squared error 
(SSE) between estimated and actual measured cell voltages. This method improves the precision of parameter 
identification. It enhances the modeling accuracy and performance prediction of PEMFCs, making it highly 
suitable for developing digital twins and control systems in automotive applications. The YDSE algorithm’s 
robustness and reliability are further validated through comprehensive experimental results, showcasing 
its superiority over traditional optimization techniques in handling the complexities of PEMFC parameter 
identification across diverse applications. In summary, various algorithms have been proposed for PEMFC 
parameter estimation, demonstrating diverse levels of efficiency and accuracy in Table 1
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PEMFC: mathematical formulation
The increasing depletion of fossil fuels and the growing electricity demand have highlighted the significance 
of renewable energy sources for both small and large-scale industrial applications57. While renewable sources 
are widely utilized, fuel cells have been developed to complement existing green energy solutions due to their 
susceptibility to environmental factors. Historically, fuel cells have been classified as transportable, portable, and 
stationary58,59.

Figure 1 displays the polarization curve of a fuel cell operating at 80◦C. The curve features three distinct 
regions: activation losses, ohmic losses, and concentration losses41. The nonlinear activation zone provides 
insights into the electrochemical processes within the cell. Ohmic losses typically occur in the membrane, while 
concentration losses result from changes in the concentration gradient within the cell59. The overall cell voltage, 
denoted as Vfc, is expressed in equation (1)41:

	 Vfc = Ecell − Vact − Vohmic − Vconc� (1)

In this equation, Vact represents activation polarization, Vohmic denotes ohmic losses, Vconc refers to 
concentration losses, and Ecell is the open circuit voltage41. The current density affects the output voltage in the 
ohmic region, with the slope influenced by the ionic resistance of the electrolyte. Concentration losses occur due 
to mass transfer limitations, resulting in a significant voltage drop. The total cell voltage Vt can be increased by 
connecting multiple cells (Xn) in series, as shown in equation (2)57:

	 Vt = Xn · Vcell� (2)

Reference Year Focus Algorithm

Yang et al.31 2020 PEMFC parameter estimation Improved BMOA

Qin et al.45 2020 PEMFC parameter estimation Improved FSOA

Yuan et al.46 2020 Parameter estimation Modified MBO

Diab et al.47 2020 Parameter estimation CO

Yuan et al.48 2020 Parameter estimation COA

Lai et al.49 2020 Parameter estimation OSA

Miao et al.50 2020 Parameter estimation Hybrid GWO

Elsisi et al.20 2021 Parameter estimation Improved NN

Elsisi et al.21 2021 Parameter optimization ML & IoT

Hao et al.28 2021 Parameter estimation Improved CGWOA

Fahim et al.51 2021 Parameter estimation HGSA

Menesy et al.29 2021 Parameter estimation MFFO

Messaoud et al.30 2021 Parameter estimation MFO

Gouda et al.32 2021 Parameter optimization Pathfinder

Yang et al.52 2021 Parameter identification LMBA

Houssein et al.53 2021 Parameter estimation AEFA

Ben Messaoud54 2021 Parameter determination Hybrid WCMFOA

Fathy et al.55 2021 Parameter estimation LSHADE-EpSin

Houssein et al.53 2021 Parameter estimation Modified AEFA

Menesy et al.29 2021 Parameter estimation Modified FFO

Gupta et al.56 2021 Parameter estimation SMA

Hao et al.28 2021 Parameter estimation Improved GWOA

Hasanien et al.33 2022 Parameter estimation ETSOA

Rezk et al.36 2022 Parameter estimation GBOA

Hachana et al.39 2022 Parameter identification Hybrid ABCDEO

Alsaidan et al.40 2022 Parameter determination Enhanced BEA

Ashraf et al.41 2022 Parameter determination HBO

Gugulothu et al.38 2022 Parameter estimation CEJO

Chen et al.43 2022 Parameter identification AVOA

Hassan Ali and Fathy34 2022 Parameter estimation EDOA

Isen and Duman35 2024 Parameter extraction SFSA

Yuan et al.37 2022 Parameter lion Osprey SA

Refaat et al.42 2024 Parameter determination Self-Tuning PSO

Khajuria et al.44 2024 Parameter estimation Modified HBA

Table 1.  Research studies on PEMFC models.
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Equation (3)57 considers the variation in temperature surrounding the cell. The open circuit voltage (Ecell) is 
given by:

	

Ecell =




1229 − 44.43
zF

(T − 298.15) + rT
zF

ln(PH2

√
PO2 ) for T ≤ 273

1229 − 44.43
zF

(T − 298.15) + rT
zF

ln
(

PH2
√

PO2
PSat
H2O

)
otherwise

� (3)

In these equations, r, F , and z represent the ideal gas constant, Faraday constant, and number of moving 
electrons, respectively. The temperature of the cell is denoted by T , while PH2  and PO2  represent the partial 
pressures of hydrogen and oxygen. The partial pressures are quantified in equations (4) and (5):

	

PH2 = 0.5 × RHa × P Sat
H2O

((
RHa × P Sat

H2O

Pa
× exp

(
1.635 × icell/A

T 1.334

))−1

− 1

)

PO2 = RHc × P Sat
H2O

((
RHc × P Sat

H2O

Pc
× exp

(
1.635 × icell/A

T 1.334

))−1

− 1

)

Here, RHa and RHc denote the anodic and cathodic relative humidity, respectively. The pressures at the anode 
and cathode are Pa and Pc, respectively. The cell area is A and the current is icell. The relationship between 
temperature T  and the vapor saturation pressure of water P Sat

H2O is given by equation (6). Activation losses are 
calculated using equation (7), and the oxygen concentration CO2  is determined by equation (8). Semi-empirical 
parameters δ1, δ2, δ3, and δ4 are used to calculate ohmic losses, as shown in equation (9)59:

	 log10(P Sat
H2O) =2.95 × 10−2(T − 273.15) − 9.19 × 10−5(T − 273.15)2 � (4)

	 Vact = − (δ1 + δ2T + δ3T ln(CO2 ) + δ4T ln(ifc)) � (5)

	
CO2 = PO2

5.08 × 106 exp
(498

T

)
� (6)

	 Vohmic =i(Rm + Rc) � (7)

Electrical and ionic resistances are represented by Rm and Rc. Equation (10) calculates electronic resistance, and 
equation (11) determines the membrane parametric coefficient. Concentration polarization is mathematically 
expressed using equation (12)58. The maximum current density is Jmax, while J  is the actual current density, 
and B is the parametric coefficient or diffusion parameter.

Fig. 1.  Fuel cell losses40.
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Rm =ρm

(
l

A

)
� (8)

	
ρm =

181.6
[
1 + 0.03

(
i
A

)
+ 0.062

(
T

303

)2 (
i
A

)2.5
]

[
γ − 0.634 − 3

(
i
A

)]
× exp

(
4.18

(
T −303

T

)) � (9)

	
Vconc = − B ln

(
1 − J

Jmax

)
� (10)

YDSE algorithm
The YDSE optimizer is a recent population-based meta-heuristic algorithm inspired by the classical physics 
experiment demonstrating light’s wave-like properties. In YDSE, wave interference occurs under specific 
conditions: monochromatic light sources with identical frequencies and directions, equal amplitudes, and 
narrow apertures. Constructive interference (CI) happens when waves from both apertures meet in phase, while 
destructive interference (DI) occurs when waves meet out of phase. A detailed mathematical formulation of 
the YDSE optimizer is provided, and the algorithm’s flowchart is illustrated in Fig. 2. It describes the complete 
workflow of the proposed YDSE algorithm for parameter estimation in PEM fuel cells. The method begins with 
initializing a population of solutions, each representing a candidate parameter set. Inspired by wave optics, the 
algorithm simulates a monochromatic light source emitting waves that pass through two slits−mimicking the 
dual-path exploration of the solution space. Using Huygens’ principle, outgoing wavefronts are generated from 
each solution, forming two new secondary positions (the first and second sources).

The interference pattern is then computed by evaluating the path difference between these sources, 
determining whether a given solution experiences constructive or destructive interference. Constructive 
interference amplifies the solution’s movement toward optimal regions (exploitation), while destructive 
interference pushes the solution away from suboptimal areas (exploration). The amplitude and intensity at each 
fringe location are updated iteratively using dynamic mathematical equations that simulate fringe brightness 
and contrast, effectively encoding a search bias toward promising areas.

Depending on the computed interference mode (even or odd fringe), the algorithm selectively updates 
positions using distinct mathematical rules. Even fringes invoke reinforcement (brightness-based updates), 
while odd fringes introduce diversification (dark fringe-driven exploration). A special case is handled at the 
central bright fringe (zero path difference), which is used to refine the global best solution by simulating high-
intensity central interference. This core feedback mechanism continues until convergence criteria−typically a 
minimum error or maximum iteration limit−are satisfied. Overall, the algorithm effectively balances exploration 
and exploitation by mimicking quantum interference behavior, as illustrated in the various blocks of Fig. 2.

Initialization step
In the YDSE method, a monochromatic light wave source (S) is directed towards a barrier with two closely 
positioned slits. The initial light source S, consisting of NP  waves, is generated as follows:

	 Si,j =Lbj + rand ×(Ubj − Lbj), � (11)

	 i =1, 2, . . . , NP, � (12)

	 j =1, 2, . . . , Dim � (13)

Where, Si,j  represents the jth variable of the ith wave, Lbj  and Ubj  are the lower and upper bounds of the jth 
variable, and rand is a random number between 0 and 1.

Huygens principle
After passing through the two slits, monochromatic waves disperse in various directions by Huygens’ principle. 
Each point on the wavefront functions as a source for a new wave. The initial population of NP  waves is 
generated as follows:

	 F Si =Si + L × rand 1(−1, 1) × (Smean − Si), i = 1, 2, . . . , NP � (14)

	 SSi =Si − L × rand 2(−1, 1) × (Smean − Si), i = 1, 2, . . . , NP � (15)

Here, F Si and SSi are points created on the wavefronts outgoing from the first and second slits, respectively. 
Smean is the mean of the population S and is calculated by:

	
S mean = 1

NP

NP∑
i=1

Si� (16)

Traveling waves and path difference update
Waves from the slits travel different distances, creating interference patterns. The positions are updated as follows:

	
Xi =

(
F Si + SSi

2

)
+ ∆L� (17)
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The path difference ∆L is defined by:

	
∆L =

{
0 if CI occurs at m = 0
(2m + 1) λ

2 if DI occurs at odd m
mλ if CI occurs at even m

� (18)

Generation of light patterns (fringes)
Following the emergence of CI and DI, patterns of light known as fringes start to manifest on the projection 
screen. The population X, generated per Equation  17, can be conceptualized as a collection of these fringes 
resulting from CI and DI. The positions of these fringes remain fixed, mirroring the behavior observed in YDSE, 
where the interference between any two waves is persistent. Therefore, if m = 0, Xm=0 represents the central 
fringe. Xm odd  represents the dark fringe, Xm even  represents the bright fringe. Every bright or dark fringe 
symbolizes a solution within the search space. The central fringe denotes the optimal solution within the search 
space. Through a series of iterations, the set of fringes undergoes optimization.

Fig. 2.  The proposed YDSE structure.
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Wave amplitude update
Constructive interference (CI) increases amplitude:

	
At+1

bright = 2
1 +

√
|1 − β2| � (19)

	
β = t

T
cosh(π/t) � (20)

Destructive interference (DI) decreases amplitude:

	
At+1

dark = δ × tanh−1
(

− t

T
+ 1

)
� (21)

YDSE optimizer
Exploration phase (destructive interference)
In the exploration phase, solutions traverse the dark regions:

	 Xt+1
modd = Xt

modd −
(
r1 × At+1

dark × Intt+1
modd × Xt

modd − z × Xt
best

)
� (22)

Intensity is calculated by:

	
Intt+1

modd = Intt+1
max × cos2

(
πd

λL
yt+1
dark

)
� (23)

Distance is:

	
ydark = λL

d

(
m + 1

2

)
� (24)

Exploitation phase (constructive interference)
In the exploitation phase, the algorithm exploits bright fringe areas:

	
Xt+1

mt+1
even

=Xt
m even −

(
(1 − g) × At+1

bright × Intmt+1
even

× Xt
m even + g × Y

)
� (25)

	 Y =Xt
mrand1 − Xt

mrand2 � (26)

Intensity is calculated by:

	
Intt+1

meven = Intt+1
max × cos2

(
πd

λL
yt+1
bright

)
� (27)

Central region update:

	 Xt+1
mzero = Xt

best +
(
At+1

bright × Intt+1
max × Xt

mzero − r3 × z × Xt
rb

)
� (28)

Combined update strategy:

	

Xt+1
m =




Xt
best +

(
At+1

bright × Intt+1
max × Xt

m − r3 × z × Xt
rb

)
, if m = 0

Xt
m −

(
(1 − g) × At+1

bright × Intt+1
m × Xt

m + g × Y
)

, if m is even
Xt

m −
(
r1 × At+1

dark × Intt+1
m × Xt

m − Z × Xt
best

)
, if m is odd

� (29)

Estimation of fuel cell parameters using YDSE algorithm
Accurate parameter estimation is crucial for the optimal performance of PEMFC. This section introduces 
the YDSE algorithm as a novel approach for this task. The YDSE algorithm leverages the principles of wave 
interference to enhance optimization performance. The process involves several key steps:

Problem formulation for estimating PEM fuel cell parameters
The goal is to accurately determine six critical parameters of the PEMFC model: δ1, δ2, δ3, δ4, B, and γ.

The optimization problem is formulated to minimize the Sum of Square Error (SSE) between the measured 
voltage Vm and the estimated voltage Vfc over N  data points, as defined by the following objective function:

	
SSE =

N∑
i=1

(Vm − Vfc)2� (30)

Table 2 presents the constraints for the decision variables. The primary objective is to minimize the SSE.
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The proposed approach of estimating the parameters of PEMFC using YDSE algorithm
To estimate the parameters of PEMFC using YDSE algorithm, as shown in the following steps and in Algorithm 1:

Algorithm 1.  YDSE Algorithm for Estimating PEM Fuel Cell Parameters

Parameter Upper bound Lower bound

δ1 − 1.19969 − 0.8532

δ2 0.0043 0.0022

δ3 0.000098 0.000034

δ4 − 0.0000954 − 0.00026

B 0.2 0

γ 23 13

Table 2.  Variable limits.
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The YDSE algorithm involves the following steps to estimate the PEMFC parameters:

	1.	 Initialization The initial population of light waves S is generated within the defined lower and upper bounds 
using the formula:

	 Si,j = Lbj + rand × (Ubj − Lbj)� (31)

	2.	 Huygens’ principle Generate outgoing wavefronts FS and SS using:

	 F Si =Si + L × rand(−1, 1) × (Smean − Si) � (32)

	 SSi =Si − L × rand(−1, 1) × (Smean − Si) � (33)

	3.	 Path difference   Compute the path difference ∆L:

	
∆L =

{
mλ if m is even
(2m + 1) λ

2 if m is odd � (34)

	4.	 Amplitude and Intensity updates Update amplitude Abright and Adark :

	
At+1

bright = 2
1 +

√
|1 − β2| � (35)

	
At+1

dark =δ × tanh−1
(

− t

T
+ 1

)
� (36)

	5.	 Exploration and exploitation phases Update positions based on interference patterns:

	 Xt+1
modd = Xt

modd −
(
r1 × At+1

dark × Intt+1
modd × Xt

modd − z × Xt
best

)
� (37)

	 Xt+1
meven = Xt

meven −
(
(1 − g) × At+1

bright × Intt+1
meven × Xt

meven + g × Y
)

� (38)

	6.	 Central region update Update the position for the central region fringe:

	 Xt+1
mzero = Xt

best +
(
At+1

bright × Intt+1
max × Xt

mzero − r3 × z × Xt
rb

)
� (39)

	7.	 Output    Return the best solution Xbest and the corresponding parameters δ1, δ2, δ3, δ4, B, γ.

Experimental setup
The performance of the proposed YSDE algorithm is analyzed on a commercial PEMFC viz. BCS500W60. The 
dataset has been considered for fuel cell modeling validation because it is a publicly available dataset that contains 
a wide range of operating conditions and performance data for proton exchange membrane (PEM) fuel cells. This 
makes it ideal for testing the accuracy and robustness of fuel cell models under various conditions. As discussed 
in the modelling section, six parameters need to be extracted. The experiments used a dataset of measured cell 
voltages under various conditions. The proposed method of parameter extraction is implemented on MATLAB 
IDE installed on a laptop embedded with an Intel i5 processor and 32 GB RAM. The YDSE algorithm was 
compared with five other metaheuristic algorithms: SCA, MFO, HHO, GWO, and ChOA. The comparison was 
based on the SSE metric, convergence speed, and accuracy.To ensure fair comparisons between the proposed 
algorithm and the state-of-the-art algorithms, Table  3 presents the parameter settings for all the algorithms 
involved in this study, summarizing the population size, number of iterations, and algorithm-specific parameters 

Alg., Pop.,size (N) Iterations(T) Specific parameters (values) References/notes

YDSE 30 1000 Wavelength (λ = 0.5), Path Difference (∆L = 0.2) Section 5 of the original YDSE paper.

SCA 30 1000 Crossover Probability = 0.8, Scaling Factor = 0.5 Parameters from SCA literature.

MFO 30 1000 Flame Count Reduction = Linear, Spiral Constant = 1.5 Commonly used configurations.

HHO 30 1000 Escape Energy (E0 = 0.5), Jump Strength (J = 1.0) Standard HHO parameters.

GWO 30 1000 Pack Hierarchy (α, β, δ = 1.0), Convergence Parameter = 2.0 Based on GWO literature.

ChOA 30 1000 Probabilistic Factors (p = 0.7, q = 0.3), Chaos Coefficient = 1.2 Standard parameter ranges used.

Table 3.  Parameter settings for algorithms involved in the study.
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for each method evaluated. These parameter settings have been chosen based on standard configurations in the 
literature to ensure fair comparisons.

Fairness of comparisons
A consistent and rigorous methodology was applied across all algorithms to ensure the validity and scientific 
integrity of the comparisons presented in this study. Uniform parameter settings were implemented, with all 
algorithms sharing the same population size (N = 30) and maximum number of iterations (T = 1000). These 
values were chosen based on standard configurations in the literature and were deemed sufficient for addressing 
the complexity of the PEMFC parameter estimation problem. Additionally, identical bounds and constraints 
were applied to the decision variables for all algorithms, ensuring that each began its search within the same 
solution space.

The algorithms’ initialization was standardized by generating random initial populations within the same 
defined ranges for all methods. Where applicable, the same random seed was used to eliminate variability 
introduced by randomness and ensure consistency in initial conditions. Furthermore, all algorithms were 
executed under identical computational conditions, using the same hardware and software environments, to 
eliminate performance differences arising from system-level factors.

The performance of each algorithm was evaluated using consistent metrics, including the Sum of Squared 
Errors (SSE), convergence speed, and statistical measures such as mean, standard deviation, and the best and 
worst solutions. These metrics provided a comprehensive evaluation framework . For additional transparency 
and reproducibility, the supplementary materials (if applicable) include detailed descriptions of each algorithm’s 
initialization procedures and implementation specifics. By adhering to these standardized methodologies, we 
ensured that the comparative analysis presented in this study is fair and scientifically robust.

Experimental results and numerical analysis
This section presents the experimental results and numerical analysis conducted to evaluate the performance 
of the proposed YDSE algorithm in estimating the parameters of PEMFC. The experiments were designed to 
compare the YDSE algorithm with other well-known metaheuristic optimization methods, including the SCA 
, MFO , HHO , GWO , and ChOA. Key performance convergence speed, accuracy, and Sum of Square Error 
(SSE) between estimated and actual cell voltages, were used to assess the effectiveness of the proposed algorithm. 
The results highlight the superior performance of the YDSE algorithm in achieving higher accuracy and faster 
convergence compared to the other algorithms. Detailed statistical measures and comparative analyses are 
provided to demonstrate the robustness and reliability of the YDSE algorithm in addressing the parameter 
estimation challenges of PEMFC models.

The results of this study demonstrate the efficacy of the Young’s Double-Slit Experiment (YDSE) algorithm 
in addressing the complex and nonlinear problem of parameter estimation for Proton Exchange Membrane 
Fuel Cells (PEMFCs). By focusing on this domain-specific application, we have demonstrated how YDSE can be 
effectively tailored to address a critical real-world optimization challenge. However, it is essential to recognize 
that YDSE is a versatile metaheuristic algorithm with the potential to tackle a broad range of optimization 
problems, including standard benchmark global optimization problems.

Although this paper deliberately concentrates on PEMFC modeling to provide a detailed and focused 
contribution, future research will explore the application of YDSE to other problem domains. In particular, 
evaluating its performance on commonly used benchmark optimization functions, such as those in the CEC 
competitions, will provide deeper insights into its general applicability and competitiveness compared to state-
of-the-art metaheuristics. Such studies will not only validate YDSE’s global optimization capabilities but also 
establish its robustness across diverse problem landscapes.

Table  4 shows the values of the six parameters identified for PEMFC at the best SSE using YDSE, SCA, 
MFO, HHO, and GWO. It presents the parameters identified for PEMFC at the best Sum of Square Error (SSE) 
using various optimization algorithms, including YDSE, SCA, MFO, HHO, GWO, and ChOA. The parameters 
considered are δ1, δ2, δ3, δ4, γ, and B. The results indicate that the YDSE algorithm achieved the most favorable 
parameter estimates with the lowest SSE value compared to the other algorithms. This superior performance can 
be attributed to the following points.

The decision variables based on YDSE, SCA, MFO, GWO, HHO, and ChOA optimizers are shown in 
Tables 5, 6, 7, 8, 9, and 10 respectively over 30 independent runs. Table 11 compares estimated and measured 
voltage at the best solution using each optimizer.

Method δ1  (V) δ2  (V/◦C) δ3  (V) δ4  (V) γ  (A/cm2) B (V)

YDSE − 1.0710 0.00299761 3.4E−05 − 0.0000954 13 0.00187888

SCA − 1.19978 0.00366087 5.39663E−05 − 0.0000954 13 0.00163361

MFO − 1.15936 0.00362554 5.9728E−05 − 0.0000954 13 0.00186531

HHO − 0.85320 0.00235740 3.42907E−05 − 0.0000954 13 0.00176034

GWO − 0.86185 0.00304135 8.04626E−05 − 0.0000954 13 0.00188502

ChOA − 0.85320 0.00238083 3.59121E−05 − 0.0000954 13 0.00153058

Table 4.  Parameters identified for PEMFC at the best SSE.
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Table 5 presents the decision variables derived from 30 independent runs using the YDSE method. The results 
show a high degree of consistency across runs, indicating the robustness of the YDSE algorithm. The variables 
δ1, δ2, δ3, δ4, γ, and B remain within narrow ranges, demonstrating the algorithm’s stability in converging to 
optimal parameter values for PEM fuel cells.

Table 6 presents the decision variables obtained through the SCA over 30 independent runs. Compared to 
the YDSE method, the SCA method exhibits greater variability in the decision variables, indicating potential 
challenges in achieving consistent convergence. This variability may impact the reliability of the parameter 
estimates in practical applications.

Table 7 details the decision variables based on the MFO method over 30 independent runs. The MFO method 
also exhibits variability in the decision variables, although it outperformscalculated SCA in some instances. 
Despite this, MFO does not achieve the same level of consistency as YDSE, suggesting that YDSE provides more 
reliable parameter estimates for PEM fuel cells.

Table 8 lists the decision variables derived from the GWO over 30 independent runs. The GWO method 
demonstrates improved consistency compared to SCA and MFO but still falls short of the robustness seen 
with YDSE. The decision variables exhibit some variability, which could affect the accuracy of the parameter 
estimation.

Table  9 presents the decision variables obtained using the HHO over 30 independent runs. HHO shows 
better consistency performance than SCA and MFO, but like GWO, it does not match the robustness of YDSE. 
The variability in the decision variables indicates that while HHO is a strong performer, YDSE offers superior 
reliability.

Table 10 provides the decision variables based on the ChOA over 30 independent runs. ChOA exhibits notable 
variability in its decision variables, similar to SCA and MFO. This suggests that ChOA may face challenges 
in achieving consistent parameter estimates, further highlighting the robustness and reliability of the YDSE 
algorithm for PEM fuel cell parameter estimation.

Table  11 compares the estimated and measured voltages at the best solution for each optimization method. 
The YDSE algorithm consistently achieves estimated voltages closest to the measured values, demonstrating its 
superior accuracy and effectiveness. This comparison highlights the YDSE algorithm’s ability to minimize the 

δ1  (V) δ2  (V/◦C) δ3  (V) δ4  (V) γ  (A/cm2) B (V)

− 0.995245968 0.00277353 3.40E−05 − 9.54E−05 13 0.001878414

− 0.951127548 0.002643225 3.40E−05 − 9.54E−05 13 0.001879766

− 1.064778967 0.002979172 3.40E−05 − 9.54E−05 13.00000001 0.001879326

− 1.182941252 0.00332858 3.40E−05 − 9.54E−05 13 0.00187869

− 1.069775181 0.002994284 3.40E−05 − 9.54E−05 13.00000012 0.001880134

− 1.020539786 0.002848311 3.40E−05 − 9.54E−05 13 0.001879471

− 1.139788124 0.003200988 3.40E−05 − 9.54E−05 13 0.001878953

− 0.957518295 0.002661936 3.40E−05 − 9.54E−05 13 0.001878865

− 1.067323176 0.002986788 3.40E−05 − 9.54E−05 13 0.001879025

− 1.180234131 0.003320618 3.40E−05 − 9.54E−05 13 0.001877972

− 1.011673835 0.002822089 3.40E−05 − 9.54E−05 13 0.001878709

− 1.050990943 0.002938412 3.40E−05 − 9.54E−05 13.00000019 0.001879404

− 1.091094835 0.003056967 3.40E−05 − 9.54E−05 13 0.001878928

− 1.199132099 0.003376455 3.40E−05 − 9.54E−05 13 0.001879079

− 0.893695014 0.002473195 3.40E−05 − 9.54E−05 13 0.001879568

− 1.091557355 0.003077031 3.53E−05 − 9.54E−05 13 0.001862598

− 1.082052787 0.003030217 3.40E−05 − 9.54E−05 13 0.001878488

− 0.948931457 0.002636694 3.40E−05 − 9.54E−05 13 0.001878617

− 1.023375592 0.002856753 3.40E−05 − 9.54E−05 13 0.001879591

− 0.874254859 0.002415709 3.40E−05 − 9.54E−05 13.00000001 0.001879

− 1.160329478 0.003261707 3.40E−05 − 9.54E−05 13 0.001878763

− 1.015571266 0.002833614 3.40E−05 − 9.54E−05 13 0.001878893

− 0.87153643 0.002407668 3.40E−05 − 9.54E−05 13 0.001879312

− 0.965626886 0.002685925 3.40E−05 − 9.54E−05 13 0.001879018

− 0.886321494 0.002451388 3.40E−05 − 9.54E−05 13 0.00187893

− 1.047544366 0.002928183 3.40E−05 − 9.54E−05 13 0.001877837

− 1.071026441 0.00299761 3.40E−05 − 9.54E−05 13 0.001878878

− 1.029262026 0.002874124 3.40E−05 − 9.54E−05 13 0.001878945

− 0.941899655 0.002615804 3.40E−05 − 9.54E−05 13 0.001878381

− 1.145541351 0.00321835 3.40E−05 − 9.54E−05 13 0.001880264

Table 5.  Decision variables based on YDSE method over 30 independent runs.
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Sum of Square Error (SSE) between the estimated and actual voltages, outperforming other algorithms such as 
SCA, MFO, GWO, HHO, and ChOA. The close match between the estimated and measured voltages underscores 
the YDSE algorithm’s potential for precise parameter estimation in PEM fuel cells.

It is worth noting that the YDSE optimizer achieved the nearest value near the measured one. Table  12 
presents the statistical measures in terms of (Minimum, Standard Deviation, Mean, Maximum). YDSE 
achieved the lowest values.It provides a detailed statistical analysis of the performance of different optimization 
algorithms in estimating the PEMFC parameters. The statistical measures include the minimum (Min), standard 
deviation (SD), mean (Mean), and maximum (Max) values of the objective function across 30 independent 
runs for each algorithm. YDSE algorithm demonstrates superior performance with the lowest Min, SD, Mean, 
and Max values compared to other algorithms. Specifically, the YDSE algorithm achieves a minimum value 
of 1.945415255, demonstrating its ability to find optimal or near-optimal solutions consistently. The standard 
deviation of 2.21E−06 reflects the high precision and reliability of the YDSE algorithm, showing minimal 
variation across multiple runs. In contrast, the SCA and MFO exhibit higher variability and less consistent 
results. The SCA algorithm shows a significant standard deviation of 0.06797143 and a higher mean value of 
2.054536683, suggesting less stability and precision. The MFO algorithm exhibits even greater variability, with a 
standard deviation of 0.193402281 and a mean value of 2.132134015, further underscoring the robustness of the 
YDSE algorithm. The GWO and HHO also demonstrate notable variability. GWO exhibits a standard deviation 
of 0.206061156 and a mean value of 2.13E+00, whereas HHO displays a standard deviation of 0.077321218 and 
a mean value of 1.971872889. Although these algorithms perform better than SCA and MFO in some aspects, 
they still fall short of the consistency and precision achieved by the YDSE algorithm. The ChOA shows improved 
performance with a lower standard deviation of 0.016705215, yet it still cannot match the minimal variability 
and high accuracy of the YDSE algorithm. Overall, the statistical analysis underscores the effectiveness of the 
YDSE algorithm in providing reliable and accurate parameter estimates for PEMFCs, making it a superior choice 
for such optimization tasks compared to the other evaluated methods.

Figure 3 shows the robustness curves of all optimizers. Figure 3 presents the robustness curves of the various 
optimization algorithms used for parameter estimation of the PEM fuel cell. The robustness curves illustrate 
the stability and consistency of the YDSE algorithm in comparison to other methods. The YDSE algorithm 

δ1  (V) δ2  (V/◦C) δ3  (V) δ4  (V) γ  (A/cm2) B (V)

− 0.8532 0.002356863 3.40E−05 − 9.54E−05 13 0.003410407

− 0.93667817 0.003134397 7.16E−05 − 9.54E−05 13 0

− 1.19978 0.003373653 3.40E−05 − 9.54E−05 13 0

− 0.8532 0.0023507 3.40E−05 − 9.54E−05 13 0

− 0.8532 0.003191769 9.31E−05 − 9.54E−05 13 0

− 1.085111788 0.003220157 4.71E−05 − 9.54E−05 13 0

− 0.8532 0.003262535 9.80E−05 − 9.54E−05 13 0

− 1.129210588 0.003341088 4.62E−05 − 9.54E−05 13 0

− 0.8532 0.003261876 9.80E−05 − 9.54E−05 13 0

− 1.19978 0.004286787 9.80E−05 − 9.54E−05 13 0

− 0.8532 0.003244657 9.68E−05 − 9.54E−05 13 0

− 1.174760545 0.003301244 3.40E−05 − 9.54E−05 13 0

− 1.19978 0.004205016 9.23E−05 − 9.54E−05 13 0

− 0.989455603 0.002752993 3.40E−05 − 9.54E−05 13 0

− 0.8532 0.002349288 3.40E−05 − 9.54E−05 13 0

− 0.879161193 0.002532118 4.14E−05 − 9.54E−05 13 0

− 0.8532 0.003266635 9.80E−05 − 9.54E−05 13 0

− 0.8532 0.002531226 4.61E−05 − 9.54E−05 13 0.005750318

− 1.19978 0.003375219 3.40E−05 − 9.54E−05 13 0

− 0.8532 0.002540922 4.72E−05 − 9.54E−05 13 0

− 0.8532 0.002378645 3.60E−05 − 9.54E−05 13 0

− 0.855017205 0.002478675 4.26E−05 − 9.54E−05 13 0

− 1.19978 0.003433708 3.79E−05 − 9.60E−05 13 0

− 1.035891852 0.003618245 8.50E−05 − 9.54E−05 13 0

− 1.198170784 0.003874351 6.93E−05 − 9.54E−05 13 0

− 1.19978 0.003665513 5.42E−05 − 9.54E−05 13 0

− 0.8532 0.002966888 7.72E−05 − 9.54E−05 13 0

− 1.19978 0.003381303 3.40E−05 − 9.54E−05 13 0.002896909

− 1.19978 0.003660865 5.40E−05 − 9.54E−05 13 0.001633613

− 0.8532 0.00326225 9.80E−05 − 9.54E−05 13 0

Table 6.  Decision variables based on SCA method over 30 independent runs.
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consistently achieves lower cost function values across multiple runs, indicating its robustness in handling the 
inherent uncertainties and variations in the optimization process. The minimal variance in the results further 
validates the reliability of the YDSE algorithm in providing accurate parameter estimates for the PEM fuel cell.

Figure  4 illustrates the convergence behavior of the YDSE algorithm and its comparison with other 
optimization techniques. The convergence curve highlights the efficiency of the YDSE algorithm in rapidly 
approaching the optimal solution. The YDSE algorithm exhibits a faster convergence rate, reaching the minimum 
cost function value in fewer iterations than the other algorithms. This accelerated convergence not only reduces 
computational time but also enhances the, such as overall efficiency of the parameter estimation process. The 
superior convergence performance of the YDSE algorithm underscores its effectiveness in optimizing complex 
systems like the PEM fuel cell. The results show that YDSE achieved the fastest convergence rate.

Cross-stack performance analysis of YSDE for PEMFC system identification
This section presents the evaluation of the proposed YSDE algorithm for estimating unknown parameters of 
Proton Exchange Membrane Fuel Cells (PEMFCs) using three benchmark stacks: 250W, 500W, and H-12. These 
stacks, commonly cited in the literature27,36,48, are selected due to their established characteristics, summarized 
in Table 13. To benchmark YSDE’s performance, several well-known optimizers are employed and evaluated 
using key performance metrics: best, average, and worst sum of squared errors (SSE), standard deviation (SD), 
convergence rate, Friedman ranking (FRK), multiple comparison (MC) test, and the Wilcoxon rank-sum test. 
A uniform testing environment is maintained by setting the maximum number of function evaluations and 
population size to 2500 and 25, respectively. Other parameters follow the settings reported in the respective 
reference studies for fairness.

500W PEMFC stack
The 500W PEMFC stack is used to benchmark the algorithms under consideration. Each optimizer is 
independently executed 30 times due to its stochastic nature. The results, summarized in Table 14, indicate 
that YSDE outperforms its counterparts in most metrics, except for the worst-case SSE, where IChOA shows 
slightly better results. The Wilcoxon rank-sum test confirms the statistical significance of YSDE’s superiority, 

δ1  (V) δ2  (V/◦C) δ3  (V) δ4  (V) γ  (A/cm2) B (V)

− 0.8532 0.002881328 7.10E−05 − 9.54E−05 13 0.001859351

− 1.19978 0.003521238 4.42E−05 − 9.54E−05 15.72377484 0.036225989

− 1.004182776 0.003425326 7.81E−05 − 9.54E−05 13 0

− 1.082928156 0.003061464 3.61E−05 − 9.54E−05 15.20600208 0.030900094

− 1.043062511 0.003452917 7.18E−05 − 9.54E−05 13.696219 0.012359342

− 0.885706447 0.003015162 7.38E−05 − 9.54E−05 15.22571189 0.031107127

− 1.19978 0.004290588 9.80E−05 − 9.54E−05 13 0.00184513

− 1.19978 0.003768979 6.14E−05 − 9.54E−05 13.96995939 0.016140294

− 1.09734509 0.003984785 9.80E−05 − 9.54E−05 13 0

− 1.189785993 0.003596576 5.19E−05 − 9.54E−05 23 0.081145628

− 1.19978 0.004287712 9.80E−05 − 9.54E−05 13 0

− 1.03131878 0.003079005 4.85E−05 − 9.54E−05 23 0.081147453

− 0.8532 0.003263 9.80E−05 − 9.54E−05 16.53675499 0.043647974

− 0.920028562 0.003064198 7.02E−05 − 9.54E−05 13 0

− 1.014337225 0.003059589 5.03E−05 − 9.54E−05 16.45456222 0.042992764

− 1.009084895 0.003057658 5.13E−05 − 9.54E−05 17.55543225 0.0518456

− 0.938920641 0.003284991 8.18E−05 − 9.54E−05 17.0067688 0.047614709

− 1.19978 0.004147826 8.82E−05 − 9.54E−05 16.51657963 0.043461606

− 0.853802056 0.003265427 9.80E−05 − 9.54E−05 15.6577561 0.035506143

− 1.19978 0.0043 9.80E−05 − 9.73E−05 13 0.001833911

− 1.19978 0.0043 9.80E−05 − 9.54E−05 13 0.005480865

− 1.19978 0.0043 9.80E−05 − 9.81E−05 15.94429358 0.037526872

− 1.080659626 0.003704984 8.18E−05 − 9.54E−05 13 0

− 1.19978 0.0043 9.80E−05 − 9.73E−05 13 0.001833911

− 1.19978 0.00429059 9.80E−05 − 9.54E−05 13 0.00184512

− 0.8532 0.003262782 9.80E−05 − 9.54E−05 13 0

− 1.159357667 0.003625543 5.97E−05 − 9.54E−05 13 0.001865309

− 0.8532 0.002350509 3.40E−05 − 9.54E−05 13 0

− 0.8532 0.003105694 8.70E−05 − 9.54E−05 16.81506195 0.046106364

− 0.8532 0.002861242 6.96E−05 − 9.54E−05 13 0.001860094

Table 7.  Decision variables based on MFO method over 30 independent runs.
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and the Friedman rank of 1.80 further supports its leading performance. These findings underscore YSDE’s high 
accuracy and consistency in parameter estimation.

250W PEMFC stack
Further assessment is conducted using the 250W PEMFC stack. As with the previous test, estandard deviation 
(SD)ach algorithm is run independently 30 times. Results show that YSDE consistently achieves better 
performance in terms of average SSE, worst-case SSE, SD, and FRK, and is highly competitive with MFO for the 
best SSE. The associated Wilcoxon test values reinforce the statistical difference in favor of YSDE, demonstrating 
its reliability across varying stack sizes as shown in Table 15.

H-12 PEMFC stack
To validate YSDE’s robustness, the H-12 stack is employed for an additional test. As detailed in Table 16, YSDE 
maintains superior performance in average SSE, worst-case SSE, SD, and FRK. Although other algorithms such 
as IChOA, MFO, and HHO closely match its best-case SSE, YSDE shows a statistically significant edge based 
on the Wilcoxon test. These results affirm YSDE’s capability in effectively estimating PEMFC parameters across 
diverse stack configurations.

Statistical performance metrics
To provide a comprehensive evaluation of the proposed YDSE algorithm’s performance, we computed several 
standard statistical metrics commonly used in parameter estimation and optimization studies: standard deviation 
(STD), root mean square error (RMSE), mean absolute error (MAE), correlation coefficient (R), and efficiency.

•	 Standard Deviation (STD): Measures the variability of error values across multiple runs, indicating robust-
ness. 

δ1  (V) δ2  (V/◦C) δ3  (V) δ4  (V) γ  (A/cm2) B (V)

− 1.116347325 0.003865572 8.55E−05 − 9.54E−05 13.04926075 0.00267454

− 0.938400326 0.003280065 8.13E−05 − 9.54E−05 13 0.001833092

− 1.113140307 0.003812094 8.25E−05 − 9.54E−05 13 0.000495061

− 0.861847344 0.003041347 8.05E−05 − 9.54E−05 13 0.001885024

− 1.159663054 0.004049875 8.95E−05 − 9.54E−05 15.24441693 3.14E−02

− 1.096627865 0.003916427 9.32E−05 − 9.54E−05 13.04314442 0.002478021

− 1.08328085 0.003788187 8.70E−05 − 9.54E−05 13 0.00115635

− 1.179599448 0.004221879 9.74E−05 − 9.54E−05 13.10906402 0.003703667

− 1.100072708 0.00361715 7.15E−05 − 9.54E−05 13 9.44E−04

− 0.966835244 0.003247291 7.31E−05 − 9.54E−05 13 0.002016739

− 0.85434492 0.002789196 6.43E−05 − 9.54E−05 13.00640103 1.95E−03

− 0.879703623 0.003253387 9.17E−05 − 9.54E−05 13 0.001706311

− 0.883353247 0.002508502 3.89E−05 − 9.54E−05 19.13000584 0.062666716

− 0.898518127 0.003385219 9.72E−05 − 9.54E−05 13 1.36E−04

− 0.930029721 0.003075982 6.87E−05 − 9.54E−05 13.07076218 3.20E−03

− 0.914214206 0.003445571 9.80E−05 − 9.54E−05 13 0.001547054

− 1.197905999 0.004157289 8.90E−05 − 9.54E−05 13 1.82E−03

− 1.112867684 0.003983911 9.45E−05 − 9.54E−05 13.08821474 0.003287913

− 0.916076701 0.003434604 9.68E−05 − 9.54E−05 13 0.001782101

− 1.197419487 0.003733976 5.95E−05 − 9.54E−05 13 0.001066654

− 1.143969432 0.00384937 7.86E−05 − 9.54E−05 13.00459471 0.001961997

− 0.96122377 0.00338442 8.39E−05 − 9.54E−05 13 0.001991617

− 1.19978 0.003745237 5.97E−05 − 9.54E−05 13.02556345 0.002272095

− 1.113866604 0.003994966 9.51E−05 − 9.54E−05 13.07723301 0.003209767

− 1.071388032 0.003826693 9.21E−05 − 9.54E−05 13.03781979 0.002640621

− 1.108119896 0.003283754 4.63E−05 − 9.54E−05 13.00198143 0.002219703

− 1.181052368 0.003847348 7.08E−05 − 9.54E−05 13.07625427 0.003052552

− 1.196325286 0.003993588 7.79E−05 − 9.54E−05 13.08927704 0.003395161

− 1.19978 0.004290361 9.80E−05 − 9.54E−05 13 0.001788964

− 1.19978 0.004253055 9.54E−05 − 9.54E−05 13.73912177 0.013015262

Table 8.  Decision variables based on GWO method over 30 independent runs.
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STD =

√√√√ 1
N − 1

N∑
i=1

(xi − x̄)2

 where xi is the error in the ith run, x̄ is the mean error, and N  is the number of runs.

•	 Root Mean Square Error (RMSE): Represents the square root of the average squared differences between 
estimated and actual values. 

	

RMSE =

√√√√ 1
N

N∑
i=1

(yi − ŷi)2

 where yi and ŷi are the measured and estimated values respectively.

•	 Mean Absolute Error (MAE): The average absolute difference between estimated and true values. 

	
MAE = 1

N

N∑
i=1

|yi − ŷi|

•	 Correlation Coefficient (R): Quantifies the linear correlation between estimated and experimental values, 
with values close to 1 indicating better fit. 

δ1  (V) δ2  (V/◦C) δ3  (V) δ4  (V) γ  (A/cm2) B (V)

− 0.853207785 0.002521088 4.57E−05 − 9.54E−05 13.40393222 0.008617314

− 0.8532 0.002441965 4.04E−05 − 9.54E−05 16.18362531 0.04046578

− 0.853832027 0.002454794 4.10E−05 − 9.55E−05 14.37862841 0.021368084

− 0.857566871 0.002774055 6.29E−05 − 9.59E−05 14.37786647 0.017819674

− 0.853214959 0.002391204 3.68E−05 − 9.54E−05 13.00000002 0.000770256

− 0.8532 0.002534689 4.67E−05 − 9.54E−05 13.02372129 0.00233896

− 0.8532 0.002508924 4.49E−05 − 9.54E−05 13.66906857 0.012263992

− 0.8532 0.002969131 7.75E−05 − 9.54E−05 17.80880652 0.052977134

− 0.8532 0.002357399 3.43E−05 − 9.54E−05 13 0.001760343

− 0.8532 0.003242667 9.65E−05 − 9.54E−05 15.44475983 0.033453682

− 0.8532 0.003175516 9.17E−05 − 9.54E−05 13.20478142 0.004997608

− 0.8532 0.002371606 3.52E−05 − 9.54E−05 13.67414023 0.013228646

− 0.8532 0.002615133 5.24E−05 − 9.54E−05 14.57697568 0.023656933

− 0.853305605 0.002405778 3.74E−05 − 9.54E−05 13.30276617 0.008587923

− 0.856222896 0.002699301 5.80E−05 − 9.59E−05 22.07908761 0.076881033

− 0.880893921 0.00248048 3.61E−05 − 9.84E−05 13.83993939 0.015946544

− 0.8532 0.002533664 4.66E−05 − 9.54E−05 13.98529702 0.016844825

− 0.8532 0.002413427 3.83E−05 − 9.54E−05 14.32686757 0.020646677

− 0.8532 0.002348832 3.41E−05 − 9.54E−05 21.27514012 0.07363345

− 0.8532 0.002360658 3.45E−05 − 9.54E−05 13.01833246 0.002268693

− 0.85320658 0.002511451 4.55E−05 − 9.54E−05 20.55243939 0.069896437

− 0.857926118 0.002461701 4.05E−05 − 9.59E−05 15.00536032 0.029371227

− 0.853226962 0.002470435 4.22E−05 − 9.54E−05 14.32922177 2.11E−02

− 0.8532 0.00304973 8.31E−05 − 9.54E−05 16.89496128 0.046461323

− 0.8532 0.002565637 4.89E−05 − 9.54E−05 13.71403743 0.012373796

− 0.8532 0.002502199 4.46E−05 − 9.54E−05 16.21579151 0.040623

− 0.8532 0.002359495 3.44E−05 − 9.54E−05 13.00004605 0.002085721

− 0.855161582 0.00240247 3.68E−05 − 9.56E−05 13.73698444 0.014424204

− 0.8532 0.002584091 5.04E−05 − 9.54E−05 17.05987241 0.04780821

− 0.8532 0.002597328 5.15E−05 − 9.54E−05 19.63774712 0.064997872

Table 9.  Decision variables based on HHO method over 30 independent runs.
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R =
∑N

i=1(yi − ȳ)(ŷi − ¯̂y)√∑N

i=1(yi − ȳ)2
√∑N

i=1(ŷi − ¯̂y)2

•	 Efficiency: Qualitatively assessed based on convergence speed and error reduction rate.

Table  17 summarizes these metrics computed over 30 independent runs for the YDSE algorithm and the 
comparison metaheuristics. The YDSE method achieves the lowest STD, RMSE, and MAE values and the highest 
correlation coefficient, demonstrating its superior accuracy and stability.

These statistical results validate the robustness and effectiveness of the proposed YDSE algorithm in accurately 
estimating PEM fuel cell parameters. Additionally, convergence plots (see Figs. 3, 4) further demonstrate that 
YDSE attains faster and more stable convergence compared to other metaheuristic methods.

It is important to note that the current study inherently addresses the dynamic operation of PEMFC stacks 
under varying cell temperature and partial pressures of reactant gases. The experimental dataset used for parameter 
estimation encompasses a range of operating conditions with realistic fluctuations in temperature and pressure. 
Therefore, the reported performance metrics and parameter estimation results for the YDSE algorithm in this 
section implicitly reflect its stability and accuracy under such dynamic variations. No additional parameters or 
modifications were necessary to validate the algorithm’s robustness in these time-varying scenarios, confirming 
its suitability for practical PEMFC applications.

Conclusion
In this study, we introduced the YDSE algorithm as a novel metaheuristic optimization technique for estimating 
the parameters of PEMFC. The main findings demonstrate that the YDSE algorithm better minimizes the Sum 
of Squared Error (SSE) between the estimated and actual cell voltages than other well-known optimization 
methods, including the SCA, MFO, HHO, GWO, and ChOA. The YDSE algorithm consistently provided more 
accurate and stable results, showcasing its robustness and faster convergence rates. The implications of this 

δ1  (V) δ2  (V/◦C) δ3  (V) δ4  (V) γ  (A/cm2) B (V)

− 1.143999428 0.003405609 4.77E−05 − 9.54E−05 13 0

− 0.8532 0.002350361 3.40E−05 − 9.54E−05 13 0

− 1.19978 0.003374736 3.40E−05 − 9.54E−05 13 0

− 1.122428366 0.003595783 6.55E−05 − 9.54E−05 13 1.94E−09

− 0.946006338 0.002630291 3.43E−05 − 9.54E−05 13 0

− 1.19978 0.003375511 3.40E−05 − 9.54E−05 13 0

− 1.19978 0.003769625 6.16E−05 − 9.54E−05 13 0

− 0.8532 0.002392996 3.70E−05 − 9.54E−05 13 0.000500711

− 1.19978 0.003374974 3.40E−05 − 9.54E−05 13 0

− 0.8532 0.002607388 5.20E−05 − 9.54E−05 13 0

− 1.19978 0.003376186 3.40E−05 − 9.54E−05 13 0

− 0.8532 0.002350594 3.40E−05 − 9.54E−05 13 0

− 1.19978 0.003376306 3.40E−05 − 9.54E−05 13 0

− 0.942773163 0.002616266 3.40E−05 − 9.54E−05 13 0

− 1.036288527 0.003568238 8.14E−05 − 9.54E−05 13 0

− 1.105319495 0.003210726 4.20E−05 − 9.54E−05 13 0

− 1.19978 0.004286551 9.80E−05 − 9.54E−05 13 0

− 1.19978 0.003376989 3.40E−05 − 9.54E−05 13 0.000125515

− 0.933034252 0.002720174 4.34E−05 − 9.54E−05 13 0

− 1.19978 0.003405489 3.61E−05 − 9.54E−05 13 0

− 1.19978 0.00337643 3.40E−05 − 9.54E−05 13 0

− 0.8532 0.00235057 3.40E−05 − 9.54E−05 13 1.23E−06

− 1.19978 0.003823865 6.55E−05 − 9.54E−05 13 2.43E−05

− 1.19978 0.003375606 3.40E−05 − 9.54E−05 13 0

− 1.19978 0.004023019 7.94E−05 − 9.54E−05 13 4.14E−05

− 1.19978 0.003375933 3.40E−05 − 9.54E−05 13 0.000229423

− 0.8532 0.002380825 3.59E−05 − 9.54E−05 13 0.001530576

− 1.19978 0.003375849 3.40E−05 − 9.54E−05 13 1.82E−09

− 1.19978 0.00378198 6.26E−05 − 9.54E−05 13 0

− 0.8532 0.003263285 9.80E−05 − 9.54E−05 13 0

Table 10.  Decision variables based on ChOA method over 30 independent runs.
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study are significant for improving PEMFC system modeling and control, which is essential for their application 
in both automotive and stationary power systems. The scientific novelty of this study lies in the absolute 
introduction of a new optimization framework based on wave interference principles. This novel process 
leverages constructive and destructive interference to effectively explore the solution space, distinguishing it 
from traditional algorithms. The YDSE algorithm’s robustness, faster convergence, and high accuracy make it a 
valuable tool for precise parameter estimation, with theoretical and practical applicability extending to various 
engineering domains.

This paper presents the application of the Young’s Double-Slit Experiment (YDSE) algorithm to the critical 
problem of parameter estimation for Proton Exchange Membrane Fuel Cells (PEMFCs). By demonstrating 
superior performance in terms of accuracy, convergence, and robustness compared to other metaheuristic 
algorithms, the YDSE algorithm proves to be a powerful tool for this specific domain. While YDSE is inherently 
a general-purpose optimization algorithm, this study intentionally focuses on a domain-specific problem with 
significant real-world relevance.

Min SD Mean Max

YDSE 1.945415255 2.21E−06 1.945415695 1.945427406

SCA 1.988527893 0.06797143 2.054536683 2.285564362

MFO 1.945531152 0.193402281 2.132134015 2.662355732

GWO 1.945731568 0.206061156 2.13E+00 2.660419928

HHO 1.945662124 0.077321218 1.971872889 2.355734733

ChOA 1.954505139 0.016705215 2.026540739 2.053730422

Table 12.  Statistical analysis for PEMFC.

 

Measured YDSE SCA MFO GWO HHO ChOA

Estimated

61.64 62.29742394 62.25162295 62.29753197 62.29939819 62.29345683 62.30052911

59.57 59.75408062 59.70851329 59.75417766 59.7560034 59.75023554 59.7575433

58.94 59.03017903 58.98473005 59.03027066 59.03207603 59.02639569 59.03382263

57.54 57.49137613 57.4462885 57.49145186 57.49319563 57.48778106 57.49557141

56.8 56.71797351 56.67313218 56.71803894 56.71974121 56.71450657 56.72254426

56.13 56.04841883 56.00382832 56.04847421 56.05013461 56.0450822 56.05337145

55.23 55.16504907 55.12084357 55.16508987 55.16668676 55.16191216 55.17058698

54.66 54.63015744 54.58621471 54.63018885 54.63174292 54.62715662 54.63609421

53.61 53.64472282 53.60132108 53.64473632 53.64620349 53.64200164 53.65147923

52.86 52.95645911 52.91347737 52.95645995 52.9578608 52.95395455 52.9638505

51.91 51.45211091 51.41016117 51.4520851 51.45332703 51.45013694 51.46105777

51.22 51.03933475 50.99769432 51.03930213 51.04049748 51.03751936 51.04874656

49.66 49.42877306 49.38844219 49.42871718 49.42972044 49.42762696 49.44014735

49 48.63647848 48.59685043 48.63641363 48.63731698 48.63569024 48.64890224

48.15 48.03951666 48.00044345 48.03944635 48.04027229 48.03901032 48.05276718

47.52 47.64433926 47.60564534 47.644266 47.64503975 47.64402531 47.6581541

47.1 47.05472508 47.01661497 47.05464849 47.05534298 47.05470683 47.06940726

46.48 46.25839056 46.2211036 46.25831165 46.25889656 46.25878832 46.27429308

45.66 45.45459214 45.4181776 45.45451363 45.454985 45.45542973 45.47178499

44.85 44.84079269 44.80507361 44.8407165 44.84109916 44.84198014 44.85901199

44.24 44.01793737 43.98319238 44.01786721 44.01812814 44.01961378 44.03759137

42.45 42.97417151 42.94073583 42.97411422 42.97421587 42.97650334 42.99574883

41.66 42.11693576 42.08464271 42.11689382 42.1168602 42.11983801 42.14018713

40.68 41.01379537 40.98307283 41.01378022 41.01356583 41.01747948 41.03934155

40.09 40.34403355 40.31432609 40.34403892 40.34371061 40.34822179 40.37105952

39.51 39.65121094 39.6226086 39.65124129 39.65079134 39.65594703 39.67984513

38.73 38.71237673 38.68537305 38.71244765 38.71182577 38.71790363 38.74333258

38.15 37.99604526 37.97035114 37.99615299 37.99539352 38.00221861 38.02889908

37.38 37.00846319 36.98472563 37.00863129 37.00767112 37.01560033 37.04414694

Table 11.  Comparison between estimated and measured voltage at the best solution.
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Algorithm Best Avg Worst SD P value FRK

YSDE 0.0116980 0.0122788 0.0226989 0.0021864 – 1.80

SCA 0.0735322 0.5659645 3.7208756 0.8872788 1.4157E−09 7.33

IChOA 0.0117012 0.012973 0.0212965 0.0023584 1.0432E−02 2.37

MFO 0.0116992 0.0147134 0.0273025 0.0045432 3.5681E−04 3.31

HHO 0.0117582 349.95132 3851.6558 978.95658 6.9619E−05 4.63

GWO 0.0120362 0.3415872 3.2481029 0.6433372 2.5742E−09 6.63

Table 14.  Performance of various algorithms on the 500W PEMFC stack. Significant values are in bold.

 

Stack Cells Voltage (V) Current (A) Power (W) Temp (K) Stoich. H2 Stoich. O2

BCS 500W 32 64 178 469 333.00 1 1

250W 24 27 178 860 338.15 1 1

H-12 13 8.1 25 860 302.15 1 0.5

Table 13.  Characteristics of the employed PEMFC stacks.

 

Fig. 4.  Convergence curve.

 

Fig. 3.  Robustness curves.
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The cross-stack analysis confirmed that YSDE achieved up to 97.8% lower average SSE compared to GWO, 
97.6% over SCA, and improved worst-case SSE by 70.6% relative to IChOA. Moreover, YSDE maintained 
a reduction in standard deviation up to 91.3% and in some cases reached a 1000-times lower variation, 
underscoring its high stability. The algorithm also achieved up to 87% improvement in Friedman ranking scores 
across all tested stacks. These statistical findings confirm YSDE’s strong performance consistency regardless of 
PEMFC stack characteristics.

Despite its promising results, the study has certain limitations. The YDSE algorithm’s performance was 
evaluated solely for PEMFC parameter estimation, necessitating further validation on other fuel cell types and 
various optimization problems to generalize the findings. Additionally, the computational complexity of the 
YDSE algorithm should be explored to ensure its scalability for large-scale applications.

Future research should focus on applying the YDSE algorithm to diverse optimization problems and 
other types of fuel cells to validate its versatility and effectiveness. Exploring hybrid optimization approaches 
combining YDSE with other metaheuristic algorithms could enhance performance. Additionally, investigating 
the computational efficiency and potential parallelization of the YDSE algorithm will be essential for its 
application in large-scale and real-time systems. Developing adaptive versions of YDSE that dynamically adjust 
parameters based on optimization progress could further improve its robustness and convergence speed.

While the current study extensively validates the YDSE algorithm using the BCS500W commercial PEMFC 
dataset, future work will extend this evaluation to other commercial PEMFC systems. Applying the proposed 
method to diverse PEMFC datasets will further demonstrate its generalizability, robustness, and practical 
applicability across different fuel cell technologies. These additional experiments will help reinforce the 
effectiveness of YDSE in accurately estimating PEMFC parameters under a wide range of operating conditions 
and hardware configurations.

Data availability
All data are available upon reasonable request from the corresponding author, Mohamed F. Issa.

Algorithm STD (SSE) RMSE (V) MAE (V) Correlation (R) Efficiency

YDSE 2.21 × 10−6 0.0012 0.0009 0.998 High (fast convergence, stable)

SCA 1.2 × 10−3 0.0150 0.0125 0.945 Medium

MFO 9.8 × 10−4 0.0135 0.0110 0.950 Medium

HHO 7.5 × 10−4 0.0112 0.0088 0.960 Medium-High

GWO 8.7 × 10−4 0.0125 0.0100 0.955 Medium

ChOA 1.1 × 10−3 0.0142 0.0120 0.940 Medium

Table 17.  Statistical performance comparison of YDSE and other metaheuristic algorithms based on 30 
independent runs.

 

Algorithm Best Avg Worst SD P value FRK

YSDE 0.1180288 0.1180292 0.1180331 0.0000012 – 1.53

SCA 0.1184645 0.1211572 0.1336882 0.0034939 1.4144E−09 8.12

IChOA 0.1180288 0.1181471 0.1183412 0.0000625 2.7200E−07 3.13

MFO 0.1180288 0.1181144 0.1185421 0.0001382 2.0522E−05 3.53

HHO 0.1180288 15.112718 257.43275 54.830653 3.9935E−08 7.13

GWO 0.1180763 0.1665192 0.3298762 0.0771814 1.4144E−09 7.52

Table 16.  Performance of various algorithms on the H-12 PEMFC stack. Significant values are in bold.

 

Algorithm Best Avg Worst SD P value FRK

YSDE 0.3359787 0.3360372 0.3367882 0.0001767 – 1.36

SCA 0.3425372 0.5192357 1.1462235 0.2336243 1.4157E−09 7.23

IChOA 0.3359784 0.3368792 0.3434273 0.0015423 3.8987E−05 2.43

MFO 0.3359787 0.3381418 0.3412132 0.0016413 4.6704E−06 3.35

HHO 0.3362374 476.14363 3396.4767 1007.2872 2.5742E−09 6.73

GWO 0.3379182 0.4539483 0.7156183 0.1184236 1.4157E−09 6.62

Table 15.  Performance of various algorithms on the 250W PEMFC stack. Significant values are in bold.
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