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The activation of the PPARG transcription factor is linked to reduced non-small cell lung cancer 
(NSCLC) growth. Bioinformatics, cheminformatics, and molecular docking/dynamics studies assessing 
pioglitazone and telmisartan as repurposed PPARG agonists for treating NSCLC with a targeted 
delivery system was done. Bioinformatics confirmed that the expression of the PPARG gene can 
predict outcomes in lung adenocarcinoma and is related to immune cells present in the tumor. 
Cheminformatics data showed that pioglitazone and telmisartan have a strong attraction to the 
PPARG receptor, with good efficiency as ligands. Both drugs were found to be lipophilic, suggesting 
compatibility with a targeted delivery formulation that may include albumin. Further cheminformatics 
predictions highlighted systemic toxicity values and the need for targeted delivery to minimize 
toxic side effects. Molecular docking and dynamics simulations showed that the telmisartan-MyoVc 
cargo domain complex was strong and stable during an 18 ns simulation period. Bioinformatics 
and cheminformatics data support pioglitazone and telmisartan as promising repurposed drugs for 
LUAC, highlighting their lipophilicity and compatibility with exosomal components like albumin. 
Cheminformatics also pointed out potential off-target effects and hepatotoxicity, emphasizing the 
importance of exosomal targeted delivery. Molecular docking and MD simulations confirmed the 
affinity and stability of drug-exosomal vehicle complexes. The proposed engineering of exosomal cargo 
for targeted delivery of these drugs to lung cells could enhance NSCLC treatment and address drug 
resistance while minimizing systemic toxicity.
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HAS	� Human serum albumin
HSP90	� Heat Shock Protein 90
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ImmuCellAI	� Immune Cell Abundance Identifier
iTDDS	� Innovative Drug delivery system
KEGG	� Kyoto Encyclopedia of Genes and Genomes
L.E	� Ligand efficiency
LogP	� Partition coefficient
LUAD	� Lung Adenocarcinoma
MAOB	� Monoamine oxidase B
MD	� Molecular dynamics
MM	� Molecular Mechanics
MOE	� Molecular Operating Environment
Mwt	� Molecular weight
MyoV, VC,5C	� Myosin V, VC, 5 C
NAMD	� Nanoscale Molecular Dynamics
NCBI	� National Center for Biotechnology Information
NCDs	� Non-communicable diseases
NK	� Natural killer cells
NR	� Nuclear receptors (NR) ligands
NSCLC	� Non-Small Cell Lung Cancer
NT	� Nanotechnology
o/w	� Octanol-water
PAH	� Pulmonary Arterial Hypertension
PDB	� Protein Data Bank
PEG	� Polyethylene glycol
PLGA	� Polylactic-coglycolic acid
PPAR-gamma/PPARG	� Peroxisome Proliferator-Activated Receptor Gamma
PPARA	� Peroxisome Proliferator-Activated Receptor Alpha
PPI	� Protein-Protein Interaction
QM	� Quantum Mechanics
QSAR	� Quantitative Structure-Property Relationships
RMSD	� Root-Mean Square Deviations
SCLC	� Small Cell Lung Cancer
SEA	� Similarity Ensemble Approach
SIB	� Swiss Institute of Bioinformatics
SMILES	� Simplified Molecular Input line entry specification
TCGA	� The Cancer Genome Atlas
TDD	� Targeted Drug Delivery
TDDS	� Targeted Drug delivery system
TISIDB	� The integrated repository portal for tumor-immune system interactions
TPSA	� Topological polar surface area
TZDs	� Thiazolidinediones

Problem statement
The creation of an effective system/formula for treating lung cancer is critical, especially given the annual 
increase in new cancer cases.

Literature review
Cancer-related fatality impedes progress toward Sustainable Development Goal (SDG) #3 of “Better Health.”
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As the field of drug delivery systems (DDS) has evolved, nanotechnology (NT) has made significant 
contributions to the development of smart nanocarriers1,2 such as synthetic lipid-based nanocarriers that 
provide a unique platform for drug encapsulation3,4. Furthermore, natural cell-derived carrier systems have 
sparked substantial interest5.

The lncRNADisease database6 and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database7 
include these types of lung cancer: lung adenocarcinoma (LUAD), lung cancer that has spread to the brain, 
lung squamous cell carcinoma, pulmonary adenocarcinoma, non-small cell lung cancer (NSCLC), and small 
cell lung cancer (SCLC). Genetic changes in the lung and related pathways (Fig. 1) from KEGG include Ras or 
ErbB, MAPK (mitogen-activated protein kinase), calcium, and PI3K-AKT signaling pathways, which are linked 
to oncogenes or tumor suppressor genes.

Interestingly, both in vitro8–10 and in vivo11 studies have shown that activating peroxisome proliferator-
activated receptor gamma (PPARG) slows down the growth of NSCLC lung cancer cells and/or might help 
stop the spread of developed NSCLC12. KEGG data on lung cancer genetic pathways that matched the results 
of earlier experimental studies, which demonstrated MAPK’s regulatory capability over PPARG activity13, 14‚15 
providing proof-of-concept for the direction of our research.

Repositioning diverse pharmaceuticals with distinct modes of action is a strategic approach to mitigate or 
postpone cancer treatment resistance15. Selective PPARG activators have been previously investigated for their 
roles as antidiabetic agents or insulin sensitizers and their involvement in lipid metabolism16,17. The efficacy 
of thiazolidinediones (TZDs), a category of oral PPARG activators that mitigate tumor growth progression 
in the liver18 and in NSCLC xenograft animal models11,19,20, has been established for decades. BioGRID4.421 
and the integrated repository portal for tumor-immune system interactions (TISIDB)22 consistently identified 
pioglitazone as a distinctive interactor of PPARG, classified as a member of TZDs with the most extensive safety 
margin. Telmisartan, an angiotensin II receptor type 1 (AT1) antagonist, utilized in hypertension management, 
was identified as a partial PPARG agonist23–25. Moreover, recent studies have demonstrated the anticancer 
properties of telmisartan against many cancer types, including NSCLC26–28. Unexpectedly, the PI3K/AKT 
signaling pathway28 contributed to the anticancer efficacy of telmisartan against NSCLC with PPARG activation, 
aligning with the lung oncogenes depicted in Fig. 1.

The use of exosomes, as a regenerative-biological cell therapy, shows promise for treatment of various non-
communicable diseases (NCDs)29. We will use exosomes to transport natural or manufactured anticancer drugs, 
to tumor cells as safe and non-immunogenic way30–32. It would be more appropriate to utilize exosomes, which 
are naturally occurring extracellular vesicles (ECVs) in the blood or tissues, instead of drug-encapsulated nano-
scaffolds made of blended FDA-approved polymers like polyethylene glycol (PEG) or polylactic-co-glycolic acid 
(PLGA).

Online databases Vesiclepedia and Exocarta33 show that exosomes, which are a type of extracellular vesicle 
(ECV), contain parts of cell membranes, such as transmembrane proteins, surface markers, albumin, growth 
factors and their receptors, proteoglycan receptors, cytokines, heterotrimeric G proteins, heat shock protein 90 

Fig. 1.  Lung genetic alterations and related pathways retrieved from KEGG, where Ras or ErbB, MAPK, 
calcium, and PI3K-AKT signaling pathways comprising either oncogenic or tumor suppressor genetic 
alteration signaling pathways give rise to atypical hyperplasia, then primary and metastatic adenocarcinoma.
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(HSP90), and non-muscle myosin34. This non-muscle myosin probably works with cytoskeletal actin in target 
organs, along with adhesion molecules and proteins from the extracellular matrix.

Aim and objectives
Per, we emphasize pioglitazone and telmisartan as distinctive ligands for the NSCLC repressor PPARG in the 
current in-silico targeted delivery investigation; therefore, we will use chem-bio-informatics35 to find out how 
well the chosen drugs work for treating lung cancer when delivered by exosome cargo, before testing them in 
the lab.

Second, to establish the drug’s affinity for the carrier protein, we will run the test drugs through a stiff 
molecular docking process in the exosome cargo domain, using albumin as a protein component of the target 
exosome. In addition, we will run a molecular dynamics simulation on the drug-cargo combination to see how 
stable it is when interacting with the protein in the drug delivery system.

Materials and methods
Bioinformatics databases
Biological information
Transcriptome data and clinical information for LUAD were gathered from The Cancer Genome Atlas (TCGA) 
using the Genomic Data Commons download tool.

Lung cell type enriched transcriptome
The Human Protein Atlas36 shows that the lung-specific proteome has 195 raised genes, 17 enriched genes, and 
42 group-enriched genes. The Human Protein Atlas gave us the results acquired from the following links:

https://genemania.org/search/homo-sapiens/pparg.
​h​t​t​p​:​/​​/​s​t​i​t​c​​h​.​e​m​b​l​​.​d​e​/​c​g​​i​/​n​e​t​​w​o​r​k​.​p​​l​?​%​2​0​t​​a​s​k​I​d​=​​K​p​c​z​a​w​H​j​Z​z​r​z.
​h​t​t​p​s​:​​/​/​t​h​e​b​​i​o​g​r​i​d​​.​o​r​g​/​1​​1​1​4​6​4​​/​s​u​m​m​a​​r​y​/​h​o​m​​o​-​s​a​p​i​​e​n​s​/​p​p​a​r​g​.​h​t​m​l.

Systematic data base-mining and enrichment-analyses of PPARG gene expression profile and prognostic role in 
lung adenocarcinoma (LUAD)
UALCAN data base mining  The open-access platform UALCAN (http://ualcan.path.uab.edu/) is based on 
level 3 RNA-seq and pathological files from the TCGA database37 and was used to examine the relative transcrip-
tional levels of the PPARG gene between tumor and non-cancerous tissues, as well as the correlation of PPARG 
gene mRNA levels with pathological features.

Differential expression of PPARG gene in LUAD and normal tissues  We are looking at how much PPARG is 
expressed in normal tissues compared to tumor tissues using data from the GTEx Portal38,39 Release V8, which 
can be found at this link: ​h​t​t​p​s​:​​/​/​e​x​p​h​​e​w​a​s​.​c​​a​/​v​1​/​g​​e​n​e​/​E​​N​S​G​0​0​0​​0​0​1​3​2​1​​7​0​?​a​n​a​​l​y​s​i​s​​_​s​u​b​s​e​​t​=​B​O​T​H​​#​c​a​r​d​i​​o​-​e​n​d​
p​o​i​n​t​s​-​r​e​s​u​l​t​s​-​s​e​c​t​i​o​n.

​h​t​t​p​s​:​​/​/​w​w​w​.​​g​t​e​x​p​o​​r​t​a​l​.​o​​r​g​/​h​o​​m​e​/​g​e​n​​e​/​E​N​S​G​​0​0​0​0​0​1​​3​2​1​7​0.
http://ualcan.path.uab.edu/cgi- bin/TCGAExResultNew2.pl? genenam = PPARG&ctype = LUAD.
The expression of the PPARG gene in LUAD is shown according to the type of tumor, its stage, whether it has 

spread to lymph nodes, and the mutation status of the TP53 protein. https://ualcan.path.uab.edu/cgi- ​b​i​n​/​T​C​G​
A​E​x​R​e​s​u​l​t​N​e​w​2​.​p​l​? genenam = PPARG&ctype = LUAD.

The TP53 mutation status was determined using whole exome sequencing data from TCGA, which was 
obtained via Mutation Annotation Format (MAF) files generated by VarScan2 on the Genomic Data Commons 
portal. The samples with and without the TP53 mutation were matched to RNA-seq data.

GEPIA database mining  GEPIA, an interactive website (http://gepia.cancer-pku.cn/) Using data from the ​C​a​n​
c​e​r Genome Atlas and the TCGA database, “expression level analyses”40 were conducted to study the prognostic 
values and survival related to PPARG gene expression in lung cancer and nearby normal tissue samples. The 
gene expression patterns of the PPARG-correlated genes are also extracted and rated alongside PPARG. We 
acquired the data results from the following link: ​h​t​t​p​s​:​​/​/​u​a​l​c​​a​n​.​p​a​t​​h​.​u​a​b​.​​e​d​u​/​c​​g​i​-​b​i​n​​/​T​C​G​A​E​​x​H​e​a​t​M​​a​p​5​K​K​​.​p​l​
?​%​2​​0​c​a​n​t​y​​p​e​=​L​U​A​​D​&​c​o​r​​r​e​l​F​i​l​​e​=​P​P​A​R​​G​%​2​3​%​2​​3​Q​l​W​d​S​8​a​2​H.

ImmuCellAI analysis  The Immune Cell Abundance Identifier (ImmuCellAI) program, ​h​t​t​p​:​/​/​b​i​o​i​n​f​o​.​l​i​f​e​.​h​u​s​
t​.​e​d​u​.​c​n​/​I​m​m​u​C​e​l​l​A​I​​​​​, calculates the abundance of 24 immune cells from gene expression datasets obtained by 
RNA-Seq and microarray data41.

The 24 immune cells are divided into 18 T-cell subtypes and six other types: B cells, natural killer (NK) cells, 
monocyte cells, macrophage cells, neutrophil cells, and dendritic cells. The 24 immune cells are divided into two 
layers: innate immunity, which includes DC, B cells, monocytes, macrophages, NK, neutrophils, CD4 T, CD8 
T, NKT, and Tgd. Layer 2 of adaptive immunity includes CD4 naive, CD8 naive, Tc, Tex, Tr1, nTreg, iTreg, Th1, 
Th2, Th17, Tfh, Tcm, Tem, and MAIT.

We obtained the expression data for the 24 immune infiltrating cells corresponding to LUAD samples from 
the ImmuneCellAI website. The revised database includes an R package for retrieving heatmap and pairwise 
correlation matrix visualizations. The database application is called Tumor Immune Estimation Resource 
(TIMER 2.0).

https://cistrome.shinyapps.io/timer/ is a web server that brings together resources for studying immune cell 
abundance and gene expression in LUAD42. We validated the ImmuneCellAI data using the TIMER 2.0 database 
and found it to be supportive.
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The GEPIA database, http://gepia.cancer-pku.cn/, provides correlation curves between PPARG expression 
levels and immune infiltration of tumor-infiltrating lymphocytes, CD8 + T cells, CD4 + T cells, macrophages, 
neutrophils, and dendritic cells in LUAC.

PPARG protein-protein interaction and functional network
The Protein-Protein Interaction (PPI) network was constructed using GeneMANIA version 3.6.0 ​h​t​t​p​:​/​/​w​w​w​.​
g​e​n​e​m​a​n​i​a​.​o​r​g​/​​​​​​​4​3​​ Utilizing a massive collection of functional association data to predict PPARG gene function 
and discover additional genes connected to PPARG, BioGRID4.4 database https://thebiogrid.org/ and STITCH 
version: 5.0 http://stitch.embl.de/ Protein and genetic relationships, pathways, co-expression, co-localization, 
and protein-domain similarity are all association data used to draw the rank showing important interacting 
molecules. The data obtained from GeneMANIA and STITCH for the PPARG network of predicted functional 
partners met the results obtained from BioGRID4.4 ​h​t​t​p​s​:​​/​/​t​h​e​b​​i​o​g​r​i​d​​.​o​r​g​/​1​​1​1​4​6​4​​/​s​u​m​m​a​​r​y​/​h​o​m​​o​-​s​a​p​i​​e​n​s​/​p​p​a​
r​g​.​h​t​m​l (Accessed April 20th, 2024).

The data could be visualized through these links:
GeneMANIA network: https://genemania.org/search/homo-sapiens/pparg.
STITCH network: ​h​t​t​p​:​/​​/​s​t​i​t​c​​h​.​e​m​b​l​​.​d​e​/​c​g​​i​/​n​e​t​​w​o​r​k​.​p​​l​?​%​2​0​t​​a​s​k​I​d​=​​K​p​c​z​a​w​H​j​Z​z​r​z.
BioGRID4.4 network: ​h​t​t​p​s​:​​​/​​/​t​h​e​b​i​o​g​r​i​​d​.​o​r​​g​/​​1​1​1​4​​6​​4​/​s​u​m​m​​a​​r​y​/​h​​​o​m​o​-​s​​a​p​i​​e​n​s​/​p​​p​a​r​g​.​h​t​m​l (Accessed April 

20th, 2024).

Molecular docking
Polar hydrogens were added to the resulting PDB files44, and docking was carried out using the Molecular 
Operating Environment (MOE) version 2014.0901 software (Chemical Computing Group Inc., Quebec, 
Montreal, Canada).

https://www.chemcomp.com/Research-Citing_MOE.htm.
We treated the protein to remove repeated chains and water molecules. The MOE QuickPrep methodology 

was used to refine the structure, 3D protonation, and partial charge calculation using an RMSD gradient of 0.1 
kcal/mol and the AMBER10:EHT field.

In this study, we employed rigid docking to calculate the binding affinity scores (KJ/mol) of pioglitazone and 
telmisartan to albumin and extracellular exosomes, which serve as carrier proteins for targeted lung medicine 
administration.

For the MyoVc carrier protein, we used the SiteFinder | 3D server’s site finder tool45 to find the largest pocket 
with 57 amino acids, verifying that the tested drugs fit well.

We used the MOE Dock protocol and its descriptors to establish the optimum postures and binding score 
values for the drugs under investigation. We ran molecular docking with the MOE default settings, using the 
triangle matcher as the placement method and London dG as the primary scoring function. We added another 
refinement step by integrating the stiff docking approach with the GBVI/WSA dG affinity score algorithm46. 
Furthermore, the test compound’s first docking pose was the best, with the highest binding energy value. The 
best pose was finally chosen, photographed, and exported as a JPEG.

MD simulation of telmisartan in cargo binding domain from human MyoVc
A molecular dynamics simulation of telmisartan was performed for 18 ns, demonstrating the drug’s stability 
within the cargo-binding region of the human carrier protein MyoVc (PDB code: 4L8T), which is crucial for 
the exosome’s cargo. Molecular dynamic simulations employed Molecular Mechanics with Generalized Born 
and Surface Area solvation method (MM/GBSA) to calculate the free energy of ligand binding to proteins 
(Godschalk et al., 2013).

The initial PDB files for the optimal pose of the telmisartan compound in complex with the protein were 
prepared for the run. MD simulations were conducted for 19 nanoseconds at 310 K, equivalent to body 
temperature, utilizing Nanoscale Molecular Dynamics (NAMD 2.14 Release - Aug 2020) software ​h​t​t​p​s​:​/​/​w​
w​w​.​k​s​.​u​i​u​c​.​e​d​u​/​R​e​s​e​a​r​c​h​/​n​a​m​d​/​​​​​, which is founded on the Charm + + programming model. The pH was kept 
at a standard physiological level of 7. We employed the all-hydrogen AMBER99SB force field to accurately 
represent molecular interactions. The geometry of telmisartan was optimized through quantum mechanics 
(QM) calculations using Gaussian 16 software https://gaussian.com/gaussian16/, and the Schrödinger equation 
was solved for the molecule47. The input consists of the coordinates, net charge, and total spin. The outcome 
comprises the total energy and the wave function, which serve as the basis for calculating all measurable 
properties of the system.

The final charges for Telmisartan were assigned to the compound utilizing Antechamber, and the force field 
parameters adhered to GAFF2 standards48. The general AMBER force field is utilized for rational drug design, 
as detailed on the official website, ensuring precise modeling of molecular forces. The complex was located 
centrally within a traditional three-point water model, the TIP3P water cube, with dimensions that provided 
a minimum 14 Å water buffer surrounding the complex. To replicate physiological conditions, the complex 
was neutralized and adjusted to a 150 mM ionic concentration of sodium and chloride ions, accomplished 
by replacing water molecules with the highest electrostatic potential at their oxygen atoms with these ions. 
The current MD protocol commenced with an initial depreciation of the fully solvated and ionized systems, 
succeeded by a gradual temperature increase to the target level. We imposed substantial constraints on the 
protein backbones and bound telmisartan to avoid unrealistic modifications during the initial simulation phases. 
Following heating, the systems experienced a 1 ns equilibration under periodic boundary conditions, during 
which energy restraints were gradually lifted. The simulations continued for an additional 17 ns, recording 
atomic coordinates at intervals of 0.1 picosecond for comprehensive analysis. This experimental method for 
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molecular dynamics provided a controlled simulation environment, essential for accurately investigating the 
dynamics and stability of the human myosin cargo binding domain and telmisartan complex.

Results and discussion
Bioinformatics studies
This study is part of a bigger project in our group that uses natural products that have been changed into new 
uses, like prodigiosin, camptothecin, and hinokitiol, to target different types of cancer49–51. The project also uses 
man-made small-molecule drugs that target signaling pathways in diseases like cancer52,53.

Two drugs called pioglitazone and telmisartan54 are known to trigger PPARG. This study investigated whether 
they could help cure lung cancer by using exosomes. Exosomes that cells release could be used to deliver drugs 
for the focused treatment of certain diseases55,56.

Before doing any experiments in cells or living things, we used computer analysis, bioinformatics, 
cheminformatics, molecular modeling, and simulation to guess how the two PPARG agonist drugs would react 
and interact with their target molecules in lung cancer, as well as with proteins and drug cargo. This assumption 
was very important before making the drug-exosomal cargo for the lungs. It made sure that it was only taken 
up by lung cancer cells so that the drug could be given in a controlled and long-term way to create an “effective, 
personalized, and targeted” (EPT) treatment.

Lung cell type enriched transcriptome
The Human Protein Atlas indicates that the lung has the most group-enriched gene expression similarity to 
lymphoid tissue, with the PPARG gene being one of the enriched genes expressed in the lung. Table 1 presents 
the number of genes within each specificity group for the lung cell types.

Systematic database mining and enrichment-analyses of PPARG gene expression profile and the prognostic role in 
lung adenocarcinoma (LUAD)
Utilizing the UALCAN database37 associated with the GTEx database gateway, we examined the expression 
levels of the PPARG gene in normal and lung cancer cells, revealing that it is expressed at elevated levels in 
normal tissues relative to malignant tissues (Fig. 2).

Figure 2 illustrates PPARG gene expression based on sample type, using TCGA samples to compare primary 
lung tumors (n = 515) with 59 normal samples, as analyzed by UALCAN, and indicates statistical significance 
(A). The median gene-level TPM is 19.5 for the lung (green line pointing to 8 o’clock) for 578 samples. (B) The 
violin plot and (C) the box plot illustrates that the PPARG gene is expressed at higher levels in lung-normal 
tissue from 59 cases compared to tumor tissue from 515 cases.

PPARG gene expression plots (Fig. 3) based on tumor histology (Fig. 3A), tumor stage (Fig. 3B), nodal 
metastasis (Fig. 3C), and tissue TP53 mutation status (Fig. 3D) verified the significantly higher levels of gene 
expression in normal lung cells and tissues compared to the different histological features of LUAC and the lung 
tumor tissues at stages 1–4, respectively. PPARG gene expression was consistently higher in normal cases than in 
LUAC cases, regardless of whether they had absent or positive lymph nodal metastases and whether their TP53 
status was non-mutated or mutated. The data presented in this phase of bioinformatics also demonstrates the 
role of PPARG gene activation in lung tissue protection against LUAC proliferation and metastases.

Figure 3. is using TCGA samples, we assessed the transcript/million of the PPARG gene in LUAD according to 
histological subtypes (A), individual cancer stages (B), nodal metastasis (C), and TP53 mutation status (D). [NOS: 
Lung Adenocarcinoma—Not Otherwise Specified; Mixed: Lung adenocarcinoma Mixed subtype with transparent 
cells: lung The condition is known as clear cell adenocarcinoma. LBC Nonmucinous: Lung Bronchioloalveolar 

Lung cell type

Number of enriched genes

Total number enrichedVery high High Moderate

Respiratory ciliated cells 591 53 37 681

Alveolar cells type 1 43 41 48 132

Alveolar cells type 2 20 122 221 363

Mitotic cells 111 26 16 153

NK-cells 3 13 39 55

B-cells 4 1 6 11

Endothelial cells 0 9 88 97

Smooth muscle cells 14 13 36 63

Fibroblasts 28 64 164 256

Macrophages 4 51 105 160

Neutrophils 61 52 47 160

Mast cells 10 4 3 17

T-cells 6 29 54 89

Plasma cells 166 15 4 185

All cell types 1061 493 868 2422

Table 1.  Number of genes in each specificity category in the lung cell types.
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Carcinoma. A solid pattern in the lung is a defining feature of non-mucinous adenocarcinoma. Acinar: Lung. 
Acinar adenocarcinoma, LBC-mucinous: lung bronchoalveolar carcinoma. Mucinous (colloid) Carcinoma 
Papillary: Lung papillary adenocarcinoma. Mucinous: Lung Mucinous adenocarcinoma. Micropapillary: Lung 
micropapillary adenocarcinoma. Signet Ring: Lung. Signet Ring Adenocarcinoma. N0: No regional lymph node 
metastasis; N1: Metastases in 1 to 3 axillary lymph nodes; N2: Metastases in 4 to 9 axillary lymph nodes; N3: 
Metastases in 10 or more axillary lymph nodes; nodal metastasis is not available for one sample. NX: Eleven 
samples failed to detect cancer in the neighbouring LN.

The heatmap of PPARG gene expression in LUAC and other related genes revealed that PPARG is the most 
important gene associated with LUAC’s poor prognosis, particularly when compared to normal tissue (Fig. 4) 
from the GEPIA database.

Additionally, ImmuneCellAI41 is used to gather expression data from 24 types of immune infiltrating (TIF) 
cells in LUAD samples to find and categorize the TIF cell subtype that has strong links to LUAC.

 The new database includes an R tool for retrieving the pairwise correlation matrix (Fig. 5A) and heatmap 
(Fig. 5B) visualizations. Furthermore, examining the immune infiltration cell abundance in 576 ImmuneCellAI 
samples (Fig. 5B) revealed high levels of expression of macrophages, NK, DC, and other T-cell subtypes, which 
is corroborated by results from the TIMER 2.0 database program42. Additionally, the pairwise correlation matrix 
showed a strong connection between T-cell subtypes, macrophages, and DCs (Fig. 5A).

Accordingly, we studied the correlation of the PPARG gene expression level to the tumor-infiltrating 
lymphocytes, CD8+, CD4+, macrophages, neutrophils, and dendritic cells in LUAC as an excellent sign for 
cancer disease prognosis57. Surprisingly, the gene expression was negatively correlated to B cells and positively 
correlated to CD8 + and CD4 + subtypes of T-lymphocytes in terms of the partial correlation values (Spearman’s 
rho) obtained from the GEPIA database (Fig. 6).

Fig. 2.  PPARG gene expression based on sample type, from TCGA samples, comparing primary lung tumor 
(n = 515) to 59 normal samples, by UALCAN, showing statistical significance (A) median gene-level TPM is 
19.5 for the lung (green line pointing to 8 o’clock) for 578 samples. (B) violin plot and (C) box plot showing 
the higher expression of the PPARG gene in lung-normal tissue for 59 cases compared to tumor tissue for 515 
cases.
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To better understand how the PPARG gene functions in LUAD, we examined critical genes that interact with 
it via gene-protein linkages and gene-gene links, as well as creating and analyzing a PPI network.

Therefore, drugs such as pioglitazone and telmisartan can stimulate the PPARG protein, potentially aiding 
in the destruction of cancer cells58 either by affecting genes or through pathways related to PPARG that were 
identified via computer analysis (Fig. 7).

Cheminformatics studies of the repurposed Pioglitazone and Telmisartan
In-silico measurement of physicochemical properties and Tox2159

We used the Admetlab 2.0 online tool to assess the physicochemical features of pioglitazone and telmisartan, 
such as logP (lipophilicity) and TPSA (topological polar surface area). We also investigated how well the drugs 
bind to plasma proteins, their ability to cause breathing problems, their effects on mitochondrial membrane 
potential, aromatase enzyme activity, aryl hydrocarbon receptor activity, human liver toxicity, and liver injury 
caused by drugs used to treat the same drugs.

According to the results in Table 2, pioglitazone (logP = 3.01) and telmisartan (logP = 6.249) are both 
effective in mixing with fats, but telmisartan performs better. The TPSA values for pioglitazone (68.290 Å²) 
and telmisartan (72.940 Å²) indicate that these drugs can mix with lipids, but not adequately enough to pass 
through the blood-brain barrier, keeping them safe from possible side effects in the central nervous system. The 
TPSA values of pioglitazone (68.290 Å²) and telmisartan (72.940 Å²) revealed that these test drugs are lipophilic 
but not adequate to penetrate the blood-brain barrier (BBB), making them safe regarding any potential central 
nervous system (CNS) side effects62,63. These findings also demonstrated that telmisartan and pioglitazone may 
be employed efficiently in targeted delivery systems based on various fat-loving materials, such as albumin and 
lung exosomes (Lung-Exo), without producing any physical problems.

Fig. 3.  PPARG gene Expression in transcript/million in LUAD based on histological subtypes (A), individual 
cancer stages (B), nodal metastasis (C), and TP53 mutation status (D), from TCGA samples. [NOS: Lung 
Adenocarcinoma-Not Otherwise Specified, Mixed: Lung Adenocarcinoma Mixed subtype, Clear Cell: Lung 
Clear Cell Adenocarcinoma, LBC-Non mucinous: Lung Bronchioloalveolar Carcinoma Non-mucinous, 
Solid Pattern Predominant: Lung Solid Pattern Predominant Adenocarcinoma, Acinar: Lung Acinar 
Adenocarcinoma, LBC-Mucinous: Lung Bronchioloalveolar Carcinoma Mucinous, Mucinous: Mucinous 
(Colloid) Carcinoma, Papillary: Lung Papillary Adenocarcinoma, Mucinous: Lung Mucinous Adenocarcinoma, 
Micropapillary: Lung Micropapillary Adenocarcinoma, Signet Ring: Lung Signet Ring Adenocarcinoma. N0: 
No regional lymph node metastasis, N1: Metastases in 1 to 3 axillary lymph nodes, N2: Metastases in 4 to 9 
axillary lymph nodes, N3: Metastases in 10 or more axillary lymph nodes, nodal metastasis is not available for 
1 sample, NX: cancer in nearby LN cannot be measured in 11 samples.].
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Based on computer estimates of how dangerous compounds are from the Tox21 Data Challenge, which is 
part of the NIH and FDA’s “Toxicology in the 21 st Century” initiative, we determined that pioglitazone, like 
telmisartan, affects SR-MMP activity (Table 2). Notably, investigations have demonstrated that pioglitazone 
causes mitochondrial damage, supporting the predictions (Table 2). Interestingly, experimental evidence64 
reveals that pioglitazone’s mitochondrial toxicity fits expectations (Table 2). The test compounds demonstrated 
activity on NR-Aromatase and NR-AhR, both of which are part of the TOX21 pathway. The projected results 
(Table 2) indicated that pioglitazone and telmisartan had the potential to cause hepatotoxicity and drug-induced 
liver damage. Some experimental research65,66 demonstrated pioglitazone’s ability to generate hepatic energy 
alterations, which validated the data given in Table 2.

Pioglitazone and Telmisartan biological targets of the highest corresponding probabilities
Using the Swiss Target Predictor67,68, we discovered that pioglitazone and telmisartan are likely to interact with 
various biological targets, including receptors, enzymes, and transporter proteins (Table 3). Both drugs were 
shown to influence the liver bile salt export pump, the kidney enzyme carbonic anhydrase II (CA2), and the lung 
angiotensin-converting enzyme (ACE). The interactions match the known harmful effects of pioglitazone65,66 
and telmisartan69 along with the expected information from Admetlab 2.060,61 about liver toxicity and damage 
(Table 2). The predictor determined that both drugs target the type-1 angiotensin II receptor (AGTR1) (Table 
3). The findings imply that pioglitazone should be investigated for its potential as an AGTR1 binder, which could 
shed light on the structural properties that allow both telmisartan and pioglitazone to have the pharmacological 
effects of PPARG agonists and possibly AGTR1 antagonists.

Fig. 4.  Heatmap of the expression pattern of PPARG and other input genes in LUAD is positively correlated to 
the PPARG gene.
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Prediction of Pioglitazone-PPARG, Telmisartan-PPARG nuclear receptor affinity and ligand efficiency
The Zinc20 database70,71 provided numerical values for how well pioglitazone (pKi = 7.06) and telmisartan 
(pKi = 5.82) bind to their targets, supporting earlier findings that classify pioglitazone as a PPARG agonist and 
telmisartan as a partial agonist23. Additionally, the ligand efficiency values from the database show the binding 
strengths of pioglitazone (0.41) and telmisartan (0.21).

The cheminformatics data in this study for pioglitazone and telmisartan highlights the need to create these 
helpful drugs in lung-derived extracellular vesicles (Lung-Exo) or inhalable exosomes for targeted delivery to 
lung cells, to reduce the known side effects of the repurposed drugs, and to enhance their effectiveness.

Affinity and stability studies of pioglitazone and telmisartan into the protein carrier vehicle 
used for lung-targeted delivery
Molecular docking and dynamics (MD) simulations are used to evaluate how well the repurposed drugs stick 
to their carrier vehicles and to check if the complex remains stable as it travels from where it is given to where 
it works.

Molecular docking studies of pioglitazone and telmisartan into the carrier vehicle used for lung-targeted delivery
Albumin has been selected as a universal carrier for hydrophobic pharmaceuticals. The diverse human cargos 
act as vesicles that associate with the canonical non-muscle Myosin V (MyoV) carrier, specifically its paralog VC 
(MyoVC) or Myo5C, which is involved in cell membrane trafficking and the intracellular transport of cargos, 
including exosomes, according to KEGG.

To evaluate the binding affinity scores of pioglitazone and telmisartan to human serum albumin and 
extracellular exosome carrier protein for targeted pulmonary drug delivery, the albumin protein carrier was 
sourced from the RCSB Protein Data Bank (RCSB PDB) under PDB code 1HK1, which represents human 
serum albumin (HSA) complexed with thyroxine (3,3’,5,5’-tetraiodo-l-thyronine)72. The cargo binding domain 
from human MyoVC was obtained from the Peptide Atlas73 with PDB code 4L8T, which does not contain a 
crystallized ligand74.

We identified the optimal location within the cargo-binding domain of the transporter protein to accommodate 
the tested pharmaceuticals, enabling an assessment of their compatibility following docking simulations. We 
selected the pocket with the highest amino acid content and largest dimensions to ensure compatibility with the 
shape of the target medicines for docking. The pocket selected exhibited the highest amino acid count and largest 
dimensions, thereby ensuring compatibility with the contoured surface of the target medicines for docking. 
Conversely, we incorporated these two medications directly into the albumin carrier to facilitate the targeted 
delivery of thyroxine (T4) within the body.

The docking results demonstrated that both pioglitazone and telmisartan exhibit strong binding to MyoVc 
and albumin carriers (Fig. 8), indicating that their interactions with the amino acids at the binding sites of these 
proteins contribute to the observed high-affinity scores. The findings demonstrate that both drugs effectively 
treat lung cancer, necessitating reduced doses and less frequent administration. Additionally, the human MyoVc 
cargo-binding domain transporter can deliver telmisartan to lung tissues for cancer therapy. Our findings 
indicate that pioglitazone exhibits weaker binding and attraction at the albumin site, suggesting it is less stable 
compared to telmisartan.

Fig. 5.  Different immune infiltrating cell expression levels in LUAD samples retrieved from ImmuneCellAI. 
(A) Pairwise correlation values matrix for exploring the immune infiltration cells abundance in 576 samples, 
and (B) Heatmap presentation of the immune infiltrating cell expression levels in LUAC.
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Figure 9 presents 2D-style docking solutions for pioglitazone, telmisartan, and T4 within the cargo domain of 
MyoVc (PDB entry 4L8T) vesicles (exosomes) in the upper panel and albumin (PDB entry 1HK1) in the middle 
panel, alongside albumin complexed with T4 (the original ligand) in the lower panel. The three-letter and digit 
protein sequence code denotes amino acid residues, whereas the green and blue dotted lines classify contact 
forces following the figure’s descriptive scheme.

MD simulation of telmisartan in complex with cargo binding domain from human MyoVc
We ran molecular dynamics simulations of the telmisartan-human MyoVc cargo-binding domain complex to 
study how the protein behaves and changes at the atomic level for 18 nanoseconds. The intricate system reached 
equilibrium within 1 ns, demonstrating stable atomic fluctuations within 17 ns of the simulation’s duration. This 
verifies that the simulation time was adequate for the aims of the present investigation, designated as a “TDDS 
study75”.

Fig. 6.  Correlation values of PPARG gene expression level (expressed as log2 TPM) with the tumor immune 
infiltration cells level in LUAD.
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Solvation and Equilibration of the Complex
Figure 9 presents a comprehensive structural analysis of the protein-ligand complex, showcasing the solvated 

human MyoVc cargo binding domain in conjunction with the Telmisartan complex, along with the equilibrated 
states of the protein-ligand complex collected at different phases of the simulation. The subsequent perspective 
of the complex illustrates various approaches to examining the simulated conditions of the protein-ligand 
complex (MyoVc-telmisartan).

Root-Mean Square Deviations (RMSD)
An essential component of our research entailed examining the stability and conformational alterations 

of the complex, protein, and ligand separately. Figure 10 displays the RMSD values for the complex, protein, 
and ligand, respectively. These graphs illustrate three separate stages in the execution of molecular dynamics 
simulations.

The initial phase, lasting 2 ns, includes 50,000 steps of energy minimization. A 0.5 ns duration of incremental 
heating elevates the system to ambient temperature. We then utilized a 1 ns equilibration phase to steady the 

Parameter Pioglitazone Telmisartan Comment

LogP (W/O) 3.021 6.249 Optimum

TPSA (Å2) 68.290 72.940 Lipophilic

PPB 97.171% 98.951% Strong binder

Respiratory Toxicity -- -- Non-toxic

SR-MMP ++ ++ Active

NR-Aromatase +++ ++ Active

NR-AhR + + Active

H-HT ++ +++ Hepatotoxic

DILI +++ +++ Hepatotoxic

Table 2.  The predicted physicochemical property and TOX21 of Pioglitazone and Telmisartan. [LogP: 
partition coefficient, o/w: octanol/water, TPSA: topological polar surface area, PPB: Plasma Protein Binding, 
SR-MMP: Mitochondrial Membrane Potential, NR-AhR: nuclear receptor-aryl hydrocarbon receptor, H-HT: 
human hepatotoxicity, DILI: drug-induced liver injury.].

 

Fig. 7.  (A) The GeneMANIA presentation of PPARG’s protein-protein interaction (PPI) network shows 
networks for physical interactions between genes as pink lines, co-expression as violet lines, predictions as 
yellow lines, common route pathways as light blue lines, and genetic interactions as green lines. Additionally, 
shared protein domains were considered when examining these protein relationships. (B) The STITCH 
presentation of PPARG predicted functional partners’ networks.
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system. The concluding step of our simulation method was a prolonged (17 ns) duration of production molecular 
dynamics simulations, during which the most notable dynamic characteristics of the complex were observed and 
assessed.

The RMSD analysis of MD simulations for the protein transporter complex (Fig. 10A), apoprotein (Fig. 
10B), and ligand (Fig. 10C) showed that telmisartan can likely stay attached to the human MyoVc cargo-binding 
domain at the specific pocket shown in Fig. 8.

Beta Factor Analysis of Protein Backbone Atoms
To demonstrate the flexibility of the protein backbone atoms and the interactions of telmisartan with the 

human MyoVc cargo-binding domain within the binding site76, we assessed the beta factor of the protein 
complex throughout molecular dynamics simulations concerning the positions of the protein residues77. The 
highest beta factor values, illustrated in the beta factor plot (Fig. 11), were observed at residue numbers 155–180 
(auth: 1450–1475), indicating concordance with the contact force established with His 155 (auth: His 1450), 
as represented by the extracted docking solution of Telmisartan (Fig. 8). Additionally, various protein residue 
numbers exhibited significant changes in atomic motion during the simulation compared to the initial atomic 
trajectories at 30–40 (auth: 1325–1335), 105–115 (auth: 1400–1410), and 300–345 (auth: 1595–1640). The 
graphical representation of the beta factor for the protein complex (Fig. 11) confirmed the flexibility of the 
protein transporter’s active site in the presence of telmisartan and its atomic interactions. Previous research has 
investigated the anti-lung cancer effects of TZDs in clinical settings; however, the most effective PPARG agonist, 
rosiglitazone, exhibits specific undesirable effects, unlike pioglitazone. The side effects of the partial PPARG 
agonist, telmisartan, are infrequent; however, its gene expression profiles confer superior anti-tumor benefits. 
In the present study, telmisartan was recognized as an appropriate candidate for the “Beta Factor Analysis” of 
the human MyoVc cargo binding domain protein during molecular dynamics simulations, which elucidated the 
stability and flexibility of the MyoVc protein-drug complex and its interaction dynamics with telmisartan.

Conclusion
The activation of the PPARG transcription factor is linked to reduced NSCLC growth. Research indicates that 
pioglitazone and telmisartan are potential therapies for NSCLC due to their PPARG-agonistic properties. There 
is a critical need for new targeted drug delivery formulations for these drugs to minimize systemic toxicity. 
The study suggests using extracellular vesicles from lung tissue for targeted drug delivery to pulmonary cancer 
cells. Bioinformatics and cheminformatics data support pioglitazone and telmisartan as promising repurposed 
drugs for LUAC, highlighting their lipophilicity and compatibility with exosomal components like albumin. 
Cheminformatics also pointed out potential off-target effects and hepatotoxicity, emphasizing the importance of 
exosomal targeted delivery. Molecular docking and MD simulations confirmed the affinity and stability of drug-
exosomal vehicle complexes. The proposed engineering of exosomal cargo for targeted delivery of these drugs 
to lung cells could enhance NSCLC treatment and address drug resistance while minimizing systemic toxicity. 
Finally, the study’s computational technique saves the researchers time and money when building formulations 
containing biological components for targeted drug delivery.

Nonetheless, experimental validation is on the way as the sustainability of the current manuscript, to 
emphasize the success of the suggested formulation based on computational work (a limitation).

Drug Gene Name Class pKi (L.E.)

Pioglitazone
PPARG (agonist) Transcription factor/NR

7.06 (0.40)

Telmisartan 5.82 (0.21)

Table 4.  Predicted Pioglitazone and Telmisartan binding affinity and ligand efficiency.

 

Drug Target Common Name CHEMBL ID

Pioglitazone

PPARG Peroxisome proliferator-activated receptor gamma CHEMBL235

MAOB Monoamine oxidase B CHEMBL2039

CA2 Carbonic anhydrase II CHEMBL205

AGTR1 Type-1 angiotensin II receptor CHEMBL227

PPARA Peroxisome proliferator-activated receptor alpha CHEMBL239

ABCB11 Bile salt export pump CHEMBL6020

Telmisartan

ACE Angiotensin-converting enzyme CHEMBL1808

AGTR1 Type-1 angiotensin II receptor CHEMBL227

PPARG Peroxisome proliferator-activated receptor gamma CHEMBL235

AGTR2 Angiotensin II receptor CHEMBL4607

GLRA1 Glycine receptor subunit alpha 1 CHEMBL5845

Table 3.  Predicted Pioglitazone and Telmisartan biological targets of the highest probability.
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Recommendation. Repurposing PPARG-agonist drugs with or without co-supplementary vitamins with 
tumor-modulatory effects and positive impact on various disease metabolic/inflammatory pathways as vitamin 
D78 would be crucial point to study as well.

Fig. 8.  Affinity in complex with Cargo domain of MyoVc (pdb entry 4L8T) vesicles (exosomes) (upper panel) 
and in complex with albumin (pdb entry 1HK1) (middle panel) compared to albumin carrying T4 (the original 
ligand) (lower figure). Blue and green dotted arrows and green dots present hydrophobic interactions and 
hydrogen bonding forces.
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Fig. 8.  (continued)
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Fig. 9.  Human MyoVc Cargo Binding Domain and Telmisartan Solvated (upper panel) complex top and 
side views and equilibrated complex (lower panel) shown in a carton view or with a white surface view with 
Telmisartan in blue within the pink binding pocket.
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Fig. 10.  The RMSD graph for the human (A) MyoVc Cargo Binding Domain and Telmisartan complex, (B) 
MyoVc Cargo Binding Domain protein only, and (C) Telmisartan.
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