
Establishing radar-derived rainfall 
thresholds for a landslide early 
warning system: a case study in the 
Sichuan Basin, Southwest China
Pinliang Li1, Qiang Xu1, Jialiang Liu2, Fulin Zhang1, Xu Ji1, Dalei Peng1, Chuanhao Pu1, 
Wanlin Chen1, Shuang Yuan1 & Chaoyang He1

Rainfall-induced landslides often result in significant human and property losses, and reliable 
rainfall thresholds can effectively mitigate the hazards associated with them. However, constructing 
reliable rainfall thresholds in mountainous areas with sparse rain gauge stations is challenging. This 
study aims to establish reliable empirical rainfall thresholds for the landslide early warning systems 
(LEWSs) in the study area, utilizing radar-derived rainfall data processed by deep learning. Firstly, the 
accuracy of radar-derived rainfall data was verified based on the data with rain gauge measurements. 
Subsequently, utilizing frequency theory and Bayesian probability analysis methods, in conjunction 
with the collected landslide data and radar-derived rainfall data, various exceedance probability 
thresholds for rainfall-induced landslides were determined. Furthermore, the influence of cumulative 
effective antecedent rainfall on the initiation of landslides was investigated. The proposed threshold 
equations and the effect of antecedent rainfall on landslides are intended to aid in enhancing the 
LEWSs for this region. The findings provide valuable insights for managing rainfall-induced landslides, 
and can be applied to other areas with sparse rainfall data, offering a scientific basis for improved 
landslide prediction and risk management.
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With global climate warming, extreme rainfall events have become more frequent1,2. Rainfall plays a critical 
role in destabilizing slopes through infiltration, thereby greatly increasing the likelihood of rainfall-induced 
landslides3,4. Rainfall-induced landslides often occur suddenly and without warning, causing extensive damage 
to both property and human lives5. For example, the Manipur landslide on June 30, 2022, resulted in 61 casualties 
and buried approximately 435  m of railway line under debris6. Similarly, the cluster landslides in Jiangwan 
Township, Shaoguan, Guangdong on April 20, 2024, triggered by extreme rainfall, led to substantial economic 
losses7. Landslide early warning systems (LEWSs) are essential for mitigating the impact of rainfall-induced 
landslides5,8. Rainfall thresholds are crucial components of LEWSs and are often used to predict the probability 
of landslide initiation in a given study area. When rainfall conditions reach or exceed rainfall thresholds, the 
stability of a slope is significantly compromised, increasing the risk of landslides9–11.

Rainfall thresholds can be determined using physical models or empirical statistical approaches12,13. Physical 
models simulate the process of rainfall infiltration leading to landslide initiation by integrating hydrological 
and slope stability models14–16. However, the applicability of physical models is limited due to the extensive and 
detailed data requirements concerning surface and subsurface environments, which are challenging to obtain 
at a regional scale13,17. Empirical statistical rainfall thresholds are employed to define the relationship between 
past rainfall events and landslides. Owing to their reduced data requirements, empirical rainfall thresholds 
are widely used to determine early warning thresholds for rainfall-induced landslides12,18. Various empirical 
rainfall thresholds, such as the rainfall intensity duration (I–D) threshold5,19,20, the rainfall event duration (E–D) 
threshold21–23, and the rainfall event intensity (E–I) threshold24, have been proposed based on the relationships 
between different rainfall parameters and landslides. Additionally, some researchers suggest that cumulative 
effective antecedent rainfall can serve as a useful indicator for threshold models, as it accounts for rainfall 
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losses due to runoff and evaporation2,10. However, there is an ongoing debate about the appropriate period for 
calculating antecedent rainfall in specific study areas.

Accurate rainfall data and a comprehensive landslide database are crucial for establishing empirical 
thresholds, with their reliability closely linked to the quality of the input rainfall data25. Previous studies 
have predominantly utilized rain gauge measurements to identify rainfall events that induce landslides26,27. 
However, the application of rain gauge measurements presents two main challenges. First, the limitations of 
rain gauges in capturing spatial variations in rainfall make it difficult to accurately reflect the true amount of 
rainfall in landslides. This shortcoming is significant, especially in mountainous areas prone to landslides28,29. 
To address this issue, researchers rely on interpolation models to predict the rainfall distribution30. However, 
the selection and application of these models introduce uncertainty, which can further affect the reliability of 
rainfall thresholds31. Additionally, the high installation and maintenance costs of rain gauges result in sparse 
network coverage in mountainous areas, leading to data gaps that hinder research on rainfall thresholds32,33. 
Compared with unreliable rain gauge networks, radar-derived rainfall offers a solution to address the limitations 
of rain gauges, providing high spatial- and temporal-resolution observations that are particularly beneficial for 
landslide studies34,35. Nonetheless, the traditional empirical relationship between radar echo reflectivity (Z) and 
rainfall intensity (R), known as the Z-R relation, has limitations in capturing the dynamic evolution of rainfall 
processes, and its universal applicability is poor, resulting in significant differences between the retrieved rainfall 
conditions and the actual ground conditions36. With the rapid development of deep learning, it has provided an 
effective means to process radar data for more accurate estimation of ground rainfall37–39.

This study aimed to establish reliable I-D thresholds for rainfall-induced landslides applicable to LEWSs, 
utilizing data from 217 historic landslides in the Sichuan Basin and radar-derived rainfall data processed 
through deep learning. Additionally, it examined the impact of antecedent rainfall on the initiation of landslides. 
The advantages of developing rainfall thresholds based on radar rainfall data are discussed, in comparison to 
global, national, and regional thresholds derived from international studies. The study also addresses potential 
uncertainties and proposes a multilevel warning model to enhance the accuracy of LEWSs. These findings 
provide valuable insights into rainfall-induced landslides in regions with limited rainfall data and have potential 
applicability in other geographical areas.

Study area and data
Study area
The study area is located in the northeastern part of the Sichuan Basin, and encompasses the cities of Nanchong 
and Bazhong (105.44°–107.76° E, 30.46°–32.74° N). The terrain is complex, with altitudes ranging from 154 to 
2458 m (Fig. 1a). The southern region is primarily hilly, whereas the rest of the region is mountainous. The area 
experiences a subtropical humid monsoon climate, with an annual average rainfall of 1100 mm. Geologically, the 
area is characterized by lacustrine and fluvial sedimentary rocks from the Jurassic and Cretaceous periods. The 
lithology mainly consists of soft rocks (mudstone and conglomerate) and hard rocks (siltstone and sandstone), 
which are often interbedded in rhythmic patterns40. The rocks are rich in hematite, giving them a distinctive red 
color, and are commonly referred to as “red beds”41. These formations are characterized by poor cementation, 
low strength, and a high susceptibility to deformation and weathering. The overlying soil layer consists of 
Quaternary weathered materials, primarily composed of clay minerals and clastic components, exhibiting strong 
hydrophilicity and rheological behavior. Experimental results have shown that the natural soil in this area has an 
internal friction angle of 17° and cohesion of 15 kPa, while the internal friction angle at saturation is 10°, with a 
cohesion of 8 kPa. The soil exhibits low permeability, with a saturated hydraulic conductivity ranging between 
2 × 10−⁷ and 1.4 × 10−⁶ m/s, indicating that infiltration through the surface layer alone is typically insufficient to 
trigger landslides42. However, due to long-term cycles of wetting and drying, the surface soil has become highly 
loosened and contains numerous irregular cracks. These fissures facilitate preferential flow paths for rainfall 
infiltration, allowing water to penetrate more rapidly into the subsurface. Therefore, the study area is highly 
prone to rainfall-induced landslides43.

Landslide data
The landslide database used in this study was sourced from the Department of Natural Resources of Sichuan 
Province (DNRSP) and the State Key Laboratory of Geohazard Prevention and Geo-environment Protection 
(SKLGP). This dataset includes 244 landslide events recorded between 2018 and 2021, with detailed information 
on each event’s location, initiation time, type, triggering factors, and associated property damage. To improve 
the accuracy of rainfall threshold estimation, 17 events that occurred on days without recorded rainfall and with 
no observed seismic or meteorological triggers were excluded, as they were likely caused by human activities. 
The spatial distribution of the remaining 227 natural rainfall-induced landslides is illustrated in Fig. 1a. These 
events were divided into two subsets using an 8:2 ratio: 181 landslides for threshold model construction and 
46 for validation. The landslides occurred primarily between June and September, coinciding with the regional 
rainy season, which indicates a strong association between landslide occurrence and rainfall patterns (Fig. 1b). 
These events are predominantly shallow failures characterized by relatively simple internal structures and sliding 
surfaces that are mostly parallel to the ground surface. The slope angles range from 3° to 53°, with most cases 
concentrated between 10° and 20° (Fig. 1c), which aligns with the typical slope-foot range (7° to 32°) of shallow 
soil layers in red-bed regions43,44.

Rainfall data
Rainfall data were collected from Colorful Clouds Technology Co., Ltd. (caiyunapp.com/). These data are 
generated through a deep learning-based fusion process that integrates radar echo images with rain gauge 
measurements during model training, resulting in radar-derived rainfall data. Figure 2 illustrates this process, 
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which involves the following key steps. First, a radar noise reduction dataset was constructed using knowledge 
of radar signals and noise to effectively differentiate rainfall echoes from noise. Three time-continuous radar 
echo images (from t-2 to t) were fused into a 3-channel RGB image as input. The denoised radar echo image at 
time t (manually corrected) served as output. Then, cross-entropy was employed as the loss function to train 
the modified U-Net network classification method on the basis of these input and output data. The modified 
network, known as SE-ResUNet, combines U-Net, ResNet, and squeeze-and-excitation networks37. After 
denoising, every 10 consecutive radar echo images were stacked into one input tensor, representing the rainfall 

Fig. 2.  Schematic diagram of the process of obtaining radar-derived rainfall data.

 

Fig. 1.  (a) Distribution of rainfall-induced landslides, rain gauges, and radar station. The map was created 
using the software ArcGis 10.8 (URL: https://desktop.arcgis.com). (b) Average monthly rainfall and ​r​a​i​n​f​a​l​l​-​i​n​
d​u​c​e​d landslides from 2018 to 2021. (c) Slope angle distribution of rainfall-induced landslides. Both plots (b) 
and (c) were generated using Origin 2021 (URL: https://www.originlab.com).
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history of the past hour. Finally, the SE-ResUNet model corrects radar-derived rainfall data by aligning each rain 
gauge’s location with its corresponding position in the radar echo image. The model uses 1-h radar echo images 
as inputs and 1-h rain gauge measurements as outputs for this correction process.

The rainfall data used for threshold analysis were obtained from the Nanchong radar station (Fig. 1a) and 
processed via the integrated approach. These continuous radar-derived rainfall data, combining radar’s spatial 
resolution with gauge accuracy, provide specific rainfall information for each landslide location, facilitating the 
study of rainfall thresholds that trigger landslides.

Comparison of radar-derived rainfall data with independent rain gauges
The purpose of this section is to independently evaluate the accuracy of the radar-derived rainfall data (processed 
via deep learning as described in Section “Rainfall data”) by comparing it with independent ground-based rain 
gauge measurements that were not used in model training. Radar-derived rainfall data are typically subject to 
uncertainties from beam blockage and topography36, while rain gauge measurements serve as ground truth for 
calibration38. Here, we assume rain gauge measurements are error-free (despite potential incompleteness due 
to installation time or power issues). A total of 175 gauges from DNRSP (installed post-2018) were used. The 
radar-derived rainfall data at rain gauge coordinates were evaluated using four statistical parameters: correlation 
coefficient (CC), root mean square error (RMSE), bias (B), and relative bias (RB)45.

Figure 3 illustrates the results of the correlation analysis between the radar-derived rainfall data and the rain 
gauge measurements, which include both daily and monthly rainfall data. The correlation between the radar-
derived rainfall and rain gauge measurements for the daily rainfall at all the stations is notably strong, with a 
mean CC of 0.822 and an RMSE of 2.97 mm. Similarly, the correlation is even greater for monthly rainfall, with 
a mean CC of 0.905 and an RMSE of 24.64 mm. Compared with the rain gauge measurements in the study 
area, the CC for the daily values of radar-derived rainfall (0.822) is greater than that of the Integrated Multi-
satellite Retrievals for Global Precipitation Measurement Mission (IMERG) rainfall data (0.65), as reported 
by Yang46. The radar-derived rainfall data can reasonably approximate ground-level rainfall patterns. Notably, 
radar-derived rainfall data generally underestimate both daily and monthly rainfall, with an average relative 
bias of -10.79%, which is likely attributed to the radar’s difficulty in capturing the full spectrum of rainfall 
types47. However, the data do not affect the performance of rainfall thresholds constructed based on radar-
derived rainfall data in predicting rainfall-induced landslides. This is because the same underestimated rainfall 
products, with consistent temporal and spatial resolutions, are used in both phases of the rainfall threshold and 
landslide forecasting. The phenomenon of underestimating observed rainfall data is also common in satellite 
rainfall products28,48. Consequently, radar-derived rainfall data show promise for establishing reliable rainfall 
thresholds.

Methods
Rainfall events and antecedent rainfall
Rainfall thresholds in LEWSs are subject to various uncertainties49. One specific approach for addressing this 
issue is to establish clear criteria for delineating rainfall events34. However, there has been a lack of consistency 
in the criteria employed in the literature50. To enhance consistency in our study, we adopted a commonly utilized 
criterion for defining rainfall events in some regions with similar climatic conditions and rainfall patterns to 
those in our study area51,52. Specifically, this criterion delineates the separation between two rainfall events as a 
period of at least 24 consecutive hours without rainfall, allowing for the clear determination of the start and end 
of each rainfall event (Fig. 4). By incorporating the times of landslide initiation, rainfall events can be further 

Fig. 3.  Correlation parameters between radar-derived rainfall and rain gauge measurements. (a) Root mean 
square error, RMSE. (b) Correlation coefficient, CC. (c) Relative bias, RB. (d) Bias, B.

 

Scientific Reports |        (2025) 15:26308 4| https://doi.org/10.1038/s41598-025-10464-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


classified into those that trigger landslides (T-LEs) and those that do not (NT-LEs). In the cases of T-LEs, if 
a landslide occurs before the end of the rainfall event, the end time of the rainfall event (Te) is considered 
to coincide with the time of landslide initiation. Otherwise, the Te of the rainfall event remains unchanged 
and independent of landslide initiation. Additionally, the criterion for dividing the daily rainfall data based on 
landslide initiation and the antecedent rainfall prior to the landslide is defined (Fig. 4). The rainfall parameters 
of these events, including duration D (h), mean intensity I (mm/h), and cumulative effective antecedent rainfall 
(CER), are then determined.

The amount and duration of rainfall occurring prior to a landslide, which control the soil water content and 
pore water pressure of the slope, are crucial factors influencing both the initiation and triggering of landslides53. 
However, not all rainfall has a significant effect on landslide initiation. When assessing the impact of rainfall 
on landslide risk, it is essential to consider the effects of runoff and evaporation during rainfall40, as well as the 
combined effects of other relevant factors such as terrain, soil type, and vegetation cover. To more intuitively 
reflect the impact of antecedent rainfall on landslide initiation, we employ the concept of cumulative effective 
antecedent rainfall as proposed by Crozier54, which is defined as follows:

	
CER =

n∑
i=1

Ri(K)i� (1)

The cumulative effective antecedent rainfall for n days before landslide initiation is denoted as the CER. For 
example, the cumulative effective rainfall for 3 days prior to the landslide is expressed as CER-3. Ri represents 
the daily rainfall for the i-th day (1 ≤ i ≤ n) before landslide initiation. K is a dimensionless coefficient ranging 
from 0.7 to 0.9. This coefficient depends on various factors specific to the study area, including the soil porosity, 
depth, evaporation rates, and drainage rates55–57. Previous studies have typically assumed that landslide 
initiation is predominantly influenced by rainfall occurring in the 10 days leading up to an event, resulting in 
the establishment of an attenuation coefficient K = 0.8458. However, the specific duration of antecedent rainfall 
that significantly impacts landslide initiation in the study area remains uncertain. Therefore, in this study, the 
impact of cumulative effective antecedent rainfall over varying periods (ranging from 3 to 20 days) on landslide 
initiation is explored. Furthermore, considering that the prevailing K values in the literature are within the 
0.8–0.9 range51,59–61, we specifically investigate the effects of incremental changes in K on cumulative effective 
antecedent rainfall within this range at intervals of 0.01.

Rainfall threshold analysis
The I–D rainfall threshold is widely used worldwide. Therefore, we combined the rainfall conditions associated 
with each rainfall event and constructed an I–D rainfall threshold using frequency theory and Bayesian 
probability analysis method.

Frequency theory
The I–D rainfall threshold is determined using the frequency theory proposed by Brunetti9, which defines a 
power function relating the average rainfall intensity (I) to the rainfall duration (D), as expressed in Eq. (2):

	 I = (α ± ∆α) D−(β±∆β)� (2)

Fig. 4.  Definitions of rainfall events and antecedent rainfall.
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where α and β are constants and the latter is the shape parameter that determines the slope of the power curve. 
∆α and ∆β are the standard deviations of α and β, respectively, representing the uncertainties of α and β.

A frequency analysis of T-LEs is carried out to determine the I-D thresholds corresponding to various 
exceedance probabilities, utilizing the frequency theory outlined in Brunetti9. The process involves transforming 
I and D into logarithmic forms, fitting the best-fit line (T50) (Fig. 5a), calculating the difference (δ) between the 
fitting result and actual parameters for each event, using a kernel density function to establish the probability 
density function (PDF), and fitting it with a Gaussian distribution curve (Fig. 5b). Rainfall thresholds for various 
exceedance probabilities are then identified on the basis of this Gaussian model. Specifically, the α value for the 
exceedance probability (T5) rainfall threshold is obtained by subtracting the α value of the T50 threshold from 
δ5, while β remains the same. This allows for the construction of the T5 rainfall threshold curve. Assuming the 
completeness and representativeness of the rainfall data in the study, the likelihood of landslide initiation is 
minimal when the rainfall intensity is below the T5 threshold.

Bayesian probability analysis
Bayesian probability analysis is a statistical method used to determine the posterior probability of an event 
occurring under known conditions. The method can be used to effectively calculate the conditional probability 
of rainfall-induced landslides12,62,63. This method combines data from NT-LEs, enhancing the dataset of rainfall 
events. In this research, the probability of landslide initiation is based on two factors: rainfall intensity (I) and 
duration (D). The relationship is expressed as follows:

	
P (L|I, D) = P (I, D|L) ∗ P (A)

P (I, D) � (3)

	
P (L) ≈ NL

NR
� (4)

	
P (I, D) ≈ NI,D

NR
� (5)

	
P (I, D|L) ≈

N(I,D|L)

NL
� (6)

where L represents the event of landslide; I represents the rainfall intensity of the event; D represents the duration 
of rainfall; P(L) represents the prior probability of a landslide occurring; P(I, D) refers to the marginal probability 
of specific I and D rainfall conditions occurring, which is independent of whether a landslide occurs or not; P(I, 
D|L) is the likelihood probability of a landslide occurring, which is the probability of specific I and D rainfall 
conditions occurring given that a landslide has occurred; and P(L|I, D) represents the posterior probability of a 
landslide occurring under specific I and D rainfall conditions.

Method for evaluating the rainfall threshold
The evaluation of rainfall thresholds is typically performed using a contingency table, skill scores, and receiver 
operating characteristic (ROC) analysis60,64,65. A contingency table (Fig.  6a) functions as a binary classifier 
model with four potential outcomes: true positive (TP), false positive (FP), true negative (TN), and false negative 

Fig. 5.  Schematic diagram of the frequency theory. (a) The 181 T-LEs within the study area from 2018 to 2021, 
with known values of rainfall duration D and the mean rainfall intensity I. The black line is the best fit (least 
squares method) of the empirical rainfall conditions (D, I). (b) Kernel density estimation of the differences δ 
(blue dotted line) fitted with a Gaussian function (black) for the distribution of the empirical data points (D, I); 
the red line represents the threshold corresponding to the 5% exceedance probability (T5).
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(FN). From these outcomes, two skill scores are derived: the probability of detection (POD) and the probability 
of false detection (POFD).

	
P OD = T P

T P + F N
� (7)

	
P OF D = F P

T N + F P
� (8)

Both the POD and POFD values are within the range of 0 to 1, with the POD indicating the proportion of 
actual positives correctly identified and the POFD indicating the proportion of negatives incorrectly identified 
as positives.

ROC analysis was employed to assess the predictive ability of rainfall thresholds for different exceedance 
probabilities (Fig.  6b). The ROC curve consists of points representing different prediction performances of 
rainfall thresholds, with each triangle indicating a specific threshold. The area under the curve (AUC) measures 
the accuracy of the I-D threshold, where a higher AUC value signifies greater accuracy. The black point on the 
ROC curve represents a perfect classification point, where the POD is 1 and the POFD is 0.

Results
Rainfall threshold
Frequency rainfall thresholds
Various exceedance probabilities for rainfall thresholds were determined using frequency theory based on 
the database of threshold construction comprising 181  T-LEs. Figure  7a illustrates the double logarithmic 

Fig. 7.  (a) I–D empirical rainfall thresholds with various exceedance probabilities. (b) Logarithmic two-
dimensional Bayesian probability plot of rainfall intensity versus duration. The T5, T25, T50, and T75 thresholds 
were calculated via the frequency approach.

 

Fig. 6.  (a) Contingency tables. (b) ROC space, with hypothetical model results.
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coordinate distributions of the combination of I and D for these T-LEs, shown as red dots. Kernel-smoothed 
density distribution curves for I and D are also plotted separately to better characterize their distributions. 
Among these events, D values range from 3.17 to 473.5 h, and I values range from 0.42 to 49.21 mm/h. On 
the basis of frequency theory, rainfall thresholds with various exceedance probabilities (5%, 25%, 50%, and 
75%) are plotted in the graphs and labeled T5, T25, T50, and T75, respectively. The 5% threshold, T5, can be 
expressed as I = (28.07 ± 1.01)D-(0.77±0.05); the T25 threshold can be expressed as I = (48.71 ± 1.07)D- (0.77±0.05); 
the T50 threshold can be expressed as I = (71.46 ± 1.16)D- (0.77±0.05); and the T75 threshold can be expressed as 
I = (104.83 ± 1.29)D- (0.77±0.05). These thresholds indicate the probability of landslide initiation under different 
rainfall conditions. Notably, 6 out of 181  T-LEs are below the T5 threshold, which is consistent with the 
methodological assumption proposed by Brunetti9.

Table 1 presents the parameters and relative uncertainties of different types of rainfall thresholds. The relative 
uncertainties of the rainfall thresholds clearly decrease as the exceedance probability increases. The relative 
uncertainties of the rainfall thresholds defined in this study are significantly smaller than those thresholds 
proposed by Zhao48 and Jiang63. This improvement is attributed to the use of more accurate radar-derived 
rainfall data, which reduces the uncertainty in obtaining T-LEs, leading to a more uniform distribution of 
empirical data66,67.

Bayesian probability
The dataset for constructing the rainfall threshold comprises a total of 1112 rainfall events (NR = 1112), of which 
181 resulted in landslides (NL = 181). This yields an a priori probability of landslide initiation of P(L) = 0.16. Using 
Bayesian probability analysis, we calculated the posterior probability of landslides for different combinations of 
I and D under specific rainfall conditions. This probability was then mapped onto graphs with 100 × 100 grids, 
generating probability curves representing landslide initiation probabilities of 0.05, 0.25, 0.50, and 0.75 (Fig. 7b).

The cluster of probability distribution curves reveals that the likelihood of inducing landslides increases 
with increasing intensity and duration of rainfall events. Additionally, the T5, T25, T50, and T75 thresholds were 
superimposed on the I-D probability curves, showing alignment with the probability curves for certain durations 
within the studied range (outside the purple polygonal region). Bayesian probability curves theoretically better 
match the actual rainfall thresholds because they provide more detailed information about rainfall events. 
However, overfitting may occur because of sparse T-LE sample points in certain regions, causing some probability 
curves to deviate from the actual situation. For instance, when the duration exceeds 2.5 (316 h), the probability 
of landslide initiation on the probability distribution graph surpasses 0.75, and the impact of rainfall intensity 
on landslide probability diminishes.

Verification of the rainfall threshold
The proposed rainfall thresholds were evaluated using validation data to assess the reliability of the warning 
model. The validation dataset comprises 46  T-LEs and 241 corresponding NT-LEs preceding landslides. 
Figure 8a illustrates the rainfall events, along with various rainfall threshold curves and the kernel-smoothed 
density distribution curves of I and D of the NT-LEs. The durations are concentrated in the 10–100 h range, 
with rainfall intensities focused within 0.2–5 mm/h. Figure 8b depicts the performance of the rainfall thresholds 
through the ROC curves, where each point represents a specific threshold. These findings indicate that a higher 
probability threshold for landslide initiation can reduce the false alarm rate, but it may also decrease the hit 
rate of the threshold. In comparing the frequency threshold with the Bayesian probability threshold, our study 
revealed that the frequency threshold exhibits relatively better predictive performance in this study area, as 
evidenced by its higher AUC value (0.939) than the AUC value of the Bayesian probability threshold (0.724). 
This discrepancy is attributed to the limited sample points in certain areas, resulting in the Bayesian probability 
curve not accurately reflecting the real-world scenario. Therefore, the frequency threshold appears more suitable 
for early warning models in this study area.

Effect of antecedent rainfall on landslide initiation
Figure 9 illustrates the proportion (RD>CER-i) of the daily rainfall associated with landslide initiation that exceeds 
the CER, across various antecedent periods and different reduction coefficient K values. This reveals a consistent 
trend: this proportion progressively decreases as the antecedent rainfall period increases, stabilizing at 15 and 
20 days. Notably, this trend is independent of the K value.

Label Area Probabilities (%) α ∆α ∆α/α (%) β ∆β ∆β/β (%) Type

T75

Study area

75 104.83 1.29 1.23 0.77 0.05 6.49 I–D

T50 50 71.46 1.16 1.62 0.77 0.05 6.49 I–D

T25 25 48.71 1.07 2.20 0.77 0.05 6.49 I–D

T5 5 28.07 1.01 3.60 0.77 0.05 6.49 I–D

T50 Bailong River Basin63
50 15.14 1.15 7.59 0.64 0.09 14.06 E–D

T5 5 5.01 0.06 1.19 0.64 0.09 14.06 E–D

T50 Emilia-Romagna68
50 31.28 3.9 12.47 0.42 0.041 9.76 E–D

T5 5 9.97 1.5 15.05 0.42 0.041 9.76 E–D

Table 1.  Parameters of the rainfall thresholds and relative uncertainties.
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To visually compare the relationship between daily rainfall associated with landslide initiation and CER over 
different periods, we employed a reduction coefficient K = 0.9, which is a well-researched and validated constant 
for calculating antecedent rainfall up to 20 days51,69. Our analysis encompassed all 227 T-LEs to examine daily 
rainfall and CER over various periods (3, 5, 7, 10, 15, and 20 days), as depicted in Figs. 10a–f. The diagonal line 
in the graph separates it into two halves, distinguishing the influence of daily rainfall (y-axis) versus CER (x-axis) 
for landslide initiation. Notably, most of the points plot below the line, indicating the prevailing influence of 
antecedent rainfall. Specifically, in Fig. 10a, 18.1% of the landslide events (i.e., 41 landslides) are biased toward 
daily rainfall, whereas the remaining 81.9% (i.e., 186 landslides) are biased toward CER-3. Similarly, Figs. 10b–f 
illustrate that more landslide events are biased toward CER, ranging from 91.9% to 96.9%, as the period of 
calculation of antecedent rainfall increases. The largest bias of 96.9% is observed for a period of calculation of 
15 days before landslide initiation, which remains consistent at 20 days. Consequently, selecting the cumulative 
effective rainfall for 15 days prior to a landslide in the study area as another threshold is well founded. This 
conclusion aligns with the findings of Zhang4, who examined landslides in geological and lithological settings 
similar to those in this study and emphasized that 15-day antecedent rainfall has a significant influence on 
landslide stability. Importantly, applying the same reduction coefficient K = 0.9 for threshold construction and 
landslide prediction requires at least 133 mm and does not affect the early warning results.

Fig. 9.  Proportion (RD>CER-i) of the daily rainfall associated with landslide initiation exceeding the CER for 
different periods preceding failure across various K values.

 

Fig. 8.  Evaluation of rainfall thresholds with various probabilities using different approaches on the basis of 
the validation datasets. (a) The dashed and solid lines represent the rainfall thresholds of various exceedance 
probabilities calculated via frequency theory and Bayesian probability analysis, respectively. (b) The red and 
blue lines represent the ROC curves calculated via the frequency theory and Bayesian probability methods, 
respectively.
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Discussion
Comparison of different rainfall thresholds
Previous studies have established different rainfall thresholds at global, national, and regional scales, as shown 
in Fig. 11 and Table 2. While these thresholds were determined using different approaches, they generally reflect 
the lowest critical rainfall conditions that induced landslides, allowing for direct comparisons. Figure 11 shows 
that the T5 threshold identified in this study is higher than most other global and national rainfall thresholds. 
However, the T5 threshold is lower than the global threshold proposed by Caine19 and the national threshold 
for China proposed by Li20. Moreover, the T5 threshold is lower than the regional-scale rainfall threshold in 
coastal areas of China (Fig. 11, orange and blue lines). These differences can be explained by several factors: (i) 
data size: the size of the disaster database influences rainfall thresholds. Compared with smaller datasets, large 
datasets tend to produce smaller thresholds. For example, the global threshold based on a smaller set of 97 
landslide events19 is greater than the threshold based on a larger set of 2626 events40. (ii) Methodology: different 
methods for rainfall threshold analysis lead to variations. For example, the rainfall threshold proposed by Li20 
(solid line 6) was obtained via visual empirical methods. Brunetti9 also reported differences between thresholds 
obtained through Bayesian and frequency methods. (iii) Rainfall sources: for example, the rainfall thresholds 

Fig. 11.  Comparison between the I–D thresholds from this study (red line) and those of previous studies.

 

Fig. 10.  Daily rainfall during landslide initiation compared with the various periods of antecedent rainfall 
prior to landslide initiation: (a) 3 days, (b) 5 days, (c) 7 days, (d) 10 days, (e) 15 days, and (f) 20 days.
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obtained from satellite rainfall products are mostly lower than those obtained from rain gauges27. (iv) Climate 
and terrain conditions: for example, coastal regions of China often experience typhoons and heavy rainstorms, 
resulting in higher average annual rainfall and, consequently, higher rainfall thresholds (Fig. 11, orange and blue 
lines). (v) Criteria for defining rainfall events: for example, Fig. 11 shows four different purple threshold curves 
obtained using the same data and analytical methods but with varying rain-free intervals (6 h, 12 h, 18 h, 24 h) 
that represent rainfall events. Owing to these factors, fully explaining the differences in I-D thresholds between 
different regions is challenging.

To evaluate the effectiveness of the rainfall threshold calculated with radar-derived rainfall data, we extracted 
107 independent rainfall-induced landslide events that occurred in or near the study area (Qin-Ba Mountain, 
Fig. 1a) on the basis of the results of Wang70. These events are not included in the original dataset of this study. 
The methodology for determining threshold 13 aligns with the procedures detailed in our research. However, 
rainfall data were derived from ERA5-Land data from the European Centre for Medium-Range Weather 
Forecasts (ECMWF), with a spatial resolution of 9 kms. This finding reveals that threshold 13 is greater than the 
T5 threshold proposed in this study because of the coarse spatial resolution of the ECMWF data and its limited 
representation of rainfall patterns. Consequently, the use of threshold 13 as an early warning model may lead 
to false negatives in landslide prediction. For instance, among the 107 events, the use of threshold 13 led to 96 
predicted landslides, indicating a greater chance of missed events. In contrast, threshold T5 did not produce any 
false negatives, indicating a significantly higher level of predictive accuracy. Furthermore, as noted by Guzzetti71 
the values of the β curve of rainfall thresholds defined for midlatitude climates range between -0.70 and -0.81. 
The thresholds proposed for the study area, which is also located in a midlatitude region, are similarly within 
this range. These two aspects suggest the rationality of extracting rainfall thresholds via radar-derived rainfall 
data obtained through deep learning.

Uncertainties
While improvements have been made in establishing reliable rainfall thresholds on the basis of radar rainfall 
data, uncertainties still persist in our research. The identified T-LEs may overestimate the actual rainfall events 
that trigger landslides. This overestimation is primarily due to the inability to accurately determine the onset 
time of the landslide event73. This study highlights the significant impact of CER-15 on landslide initiation in the 
study area, with a significant threshold of at least 133 mm. However, it does not precisely reflect the soil moisture 
content before the landslide, and this threshold value depends on the size of K and requires further analysis in 
conjunction with detailed hydrological and evapotranspiration conditions specific to the study area. Furthermore, 
to evaluate the performance of landslide prediction for various rainfall thresholds, we utilized contingency table 
analysis and ROC curves, both of which rely on the assumption of a comprehensive and accurate landslide 
inventory. However, in practice, ensuring the completeness of landslide inventories can be challenging. For 
example, as depicted in Fig. 7b, data scarcity leads to overfitting in the Bayesian two-dimensional plane. This 
overfitting may result in TNs being misclassified as FNs and FPs being erroneously counted as TPs. Therefore, 
future efforts should strive to increase the completeness of landslide inventories to the greatest extent possible. 
Moreover, the variability of rainfall thresholds is influenced not only by uncertainties in rainfall estimation 
but also by the diverse characteristics of landslides, including their scale and geo-mechanical properties44. For 
instance, larger-scale landslides scale generally require more extreme rainfall conditions to trigger a critical 
failure. Additionally, different material compositions affect rainfall thresholds: argillaceous clastic landslides 
tend to have higher thresholds compared to shale landslides of similar volume due to differences in permeability 
and shear strength74. While our dataset lacks systematic volumetric and geotechnical measurements to quantify 

Extent Area Equation Range (h) Disaster database Rainfall source Reference #

G World

I = 2.28D−0.2 0.1 < D < 48

2626 Rain gauges Guzzetti71

1

I = 0.48D−0.11 48 ≤ D < 1000 2

I = 2.20D−0.44 0.1 < D < 1000 3

I = 14.82D−0.39 0.167 < D < 240 73 Rain gauges Caine19 4

N China I = 85.72D−1.15 0.5 < D < 45 60 Rain gauges Li20 5

N Japan I = 2.18D−0.26 3 < D < 537 1174 Rain gauges Saito52 6

N Italy I = 12.17D−0.64 0.2 < D < 1400 753 Rain gauges Brunetti9

7
L Study area I = 28.07D−0.77 3 < D < 473.5 181 Radar This study

L Zhejiang I = 52.86D−0.45 1 < D < 24 1569 Rain gauges Ma61 8

L South Taiwan I = 66.44D−0.77 3 < D < 90 38 Rain gauges Chang72 9

L Qin-Ba Mountain

I = 30.6655D−0.3473

\ 1850 Satellite Wang70

10

I = 28.9726D−0.3484 11

I = 25.5927D−0.3389 12

I = 36.5047D−0.3911 13

Table 2.  Different scales of I–D rainfall thresholds. Extent, global threshold; N, national threshold; L, local 
threshold; Area, the area where the index is defined; Disaster size, the number of disasters used to define the 
threshold.
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these effects. Nevertheless, the inherent variability in landslide types and scales likely contributes to the observed 
dispersion in rainfall thresholds.

Potential application of the rainfall threshold for slope-scale landslide early warning systems
This section presents the integration of the proposed rainfall thresholds into an existing LEWS and explores 
their application at the slope scale. The I-D rainfall threshold is established as a pivotal criterion for identifying 
rainfall-induced landslides, with the probability of initiation increasing significantly when this threshold 
is exceeded. However, as shown in Fig.  8 (blue dots), not all rainfall events above the threshold resulted in 
landslides, highlighting the potential for false alarms if rainfall thresholds are used in isolation. Additionally, 
factors such as micro geomorphic and hydrogeological conditions significantly impact landslide initiation 
alongside rainfall. Improving the reliability of LEWSs requires the integration of other monitoring parameters 
such as groundwater level, soil moisture, and pore water pressure. In the study area, GNSS units and crack gauges 
have been extensively deployed in susceptible zones to detect deformation prior to failure. Nonetheless, exclusive 
reliance on deformation monitoring can lead to false alarms or missed events due to sensor malfunctions or 
environmental interference75. A multilevel early warning model is therefore developed by integrating the 
proposed rainfall thresholds with a deformation-based alert system76–78. In this model, the rainfall threshold 
forms the first level, reflecting its role as the primary trigger for changes in pore pressure and soil strength. The 
first-level warning model involves real-time assessments of rainfall intensity (It) and the CER-15. If the threshold 
is exceeded, the model incorporates deformation data to refine the warning level. This integrated approach 
enhances the reliability of warnings and reduces false alarms associated with single-parameter systems. Figure 12 
shows a schematic diagram of the multilevel early warning model and the corresponding early warning matrix.

The continuously monitored Houjia landslide (Fig. 1a, Houjia) was selected to validate the reliability of the 
proposed multilevel early warning model. It is classified as a muddy landslide, with a typical sliding surface 
developed along the interface between Quaternary slope wash deposits and the underlying Jurassic bedrock. 
Monitoring equipment, including a crack gauge and a rain gauge, was installed at the crest and toe of the slope, 
respectively (Fig. 13a), to capture deformation and hydrological triggers. According to the longitudinal profile 
(Fig.  13b), the sliding mass is composed of silty clay from the slope wash layer, underlain by interbedded 
brownish-red sandstone and mudstone.

The long-term displacement and rainfall data of the Houjia landslide from April to August 2021 are shown 
in Fig. 14a. The critical rainfall event began on August 21, 2021, at 14:00. The evolution of real-time rainfall 
intensity during this event is illustrated in Fig. 14b. At 6:00 on August 22, the rainfall intensity exceeded the 
T75 threshold, and the 15-day cumulative effective rainfall (CER-15) reached 155.8  mm. Consequently, the 
LEWS issued a red warning message to field personnel to enhance site inspection. At 11:45 on the same day, 

Fig. 12.  Schematic diagram of a multilevel early warning model for rainfall-induced landslides.
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the crack gauge triggered red-level (alarm) warnings (Fig. 14c), while the rainfall threshold remained at the red 
warning level at that moment. The actual slope failure occurred 11 h later, at 21:41 on August 22, validating the 
effectiveness of the integrated early warning approach.

Furthermore, the rainfall conditions prior to the Houjia landslide were systematically analyzed, and 
32 distinct rainfall events were identified according to the criteria described in Section “Rainfall events and 
antecedent rainfall”. A detailed overview of each event—including duration, total precipitation, and peak hourly 
intensity—is provided in the supplementary material (Section “Introduction”, Table S1). Had a single-rainfall 

Fig. 14.  Monitoring data and warning levels of the Houjia landslide. (a) Cumulative displacement and 
rainfall over time. (b) Real-time rainfall intensity in the I–D space with warning thresholds. (c) Crack gauge 
displacement and associated warning levels.

 

Fig. 13.  (a) Layout of monitoring equipment in Houjia. (b) Longitudinal profile taken along line 1–1′.
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threshold model been used, the LEWSs would have issued four false alarms (Section “Introduction”, Figure S1). 
Similarly, if only displacement monitoring data had been relied upon, a false alarm would have been triggered 
on July 26, even though no actual slope failure occurred. Relevant displacement records and warning outputs 
are shown in the supplementary material (Section “Study area and data”, Figure S2). These results highlight the 
benefits of the proposed multilevel warning model. By integrating cumulative antecedent rainfall with intensity–
duration (I–D) rainfall thresholds, the system improves the identification of non-triggering rainfall events. It 
also helps reduce false alarms caused by short-term fluctuations or sensor noise. Overall, the model enhances 
the reliability of LEWSs and offers valuable support for landslide risk mitigation.

Nevertheless, there is still room for improvement. Future work should explore integrating real-time radar-
based rainfall forecasting with machine learning models to improve the timeliness and accuracy of warnings. For 
example, Yan Zhao73 employed TSfresh and machine learning techniques to extract rainfall features from time-
series data, demonstrating improved accuracy in early warning models. Additionally, resulting in more accurate 
early warning performance. Additionally, developing adaptive rainfall thresholds that account for seasonal 
variation and soil moisture dynamics remains an important direction. These advancements will support the 
long-term goal of creating intelligent, scalable, and location-specific early warning systems for rainfall-induced 
landslides.

Conclusions
In this study, a landslide database was developed containing over 227 rainfall-induced landslides during 2018–
2021 in the Sichuan Basin. Based on this database, the study integrates radar-derived rainfall data, frequency 
theory, Bayesian probability analysis, and ROC curve validation to establish reliable I-D thresholds for LEWSs. A 
key advantage of this study is the use of 1 km resolution radar-derived rainfall data processed by deep learning, 
which objectively facilitates the determination and comparison of I-D thresholds.

The results demonstrate a high degree of consistency between the radar-derived rainfall data and rain gauge 
measurements, with mean correlation coefficients of 0.822 and 0.905 for daily and monthly rainfall, respectively. 
Importantly, based on the radar-derived rainfall data, the relative uncertainties associated with the rainfall 
thresholds derived from frequency theory are substantially lower than those of existing thresholds48,63. Moreover, 
the frequency rainfall thresholds exhibit superior predictive performance, as validated by ROC curve analysis 
(AUC = 0.939), outperforming Bayesian probability-based rainfall thresholds (AUC = 0.724). Furthermore, the 
study delved into the influence of CER on landslide initiation, particularly the high correlation (exceeding 96.9%) 
between CER-15 and landslide initiation, providing crucial insights for selecting antecedent rainfall thresholds 
in landslide warning systems. Recognizing the diverse hydrological factors influencing landslide initiation, we 
have innovatively developed a multilevel early warning model that seamlessly integrates rainfall thresholds 
with a ‘deformation monitoring’ model of the landslide body, thereby significantly enhancing the reliability and 
timeliness of warnings. This study offers important insights into improving the accuracy and reliability of rainfall 
thresholds for LEWSs in mountainous regions with sparse rain gauge networks.

Data availability
The data that support the findings of this study are available from the corresponding author, Qiang Xu, upon 
reasonable request.
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