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Identifying governing equations in physical and biological systems from datasets remains a long-
standing challenge across various scientific disciplines. Common methods like sparse identification of 
nonlinear dynamics (SINDy) often rely on precise derivative approximations, making them sensitive to 
data scarcity and noise. This study presents a novel data-driven framework by integrating high order 
implicit Runge-Kutta methods (IRKs) with the sparse identification, termed IRK-SINDy. The framework 
exhibits remarkable robustness to data scarcity and noise by relying on the A-stability of IRKs and 
consequently their fewer limitations on stepsize. Two methods for incorporating IRKs into sparse 
regression are introduced: one employs iterative schemes for numerically solving nonlinear algebraic 
system of equations, while the other utilizes deep neural networks to predict stage values of IRKs. 
The performance of IRK-SINDy is demonstrated through numerical experiments on synthetic data in 
benchmark problems with varied dynamical behaviors, including linear and nonlinear oscillators, the 
Lorenz system, and biologically relevant models like predator-prey dynamics, logistic growth, and 
the FitzHugh-Nagumo model. Results indicate that IRK-SINDy outperforms conventional SINDy and 
the RK4-SINDy framework, particularly under conditions of extreme data scarcity and noise, yielding 
interpretable and generalizable models.
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Discovering differential equations holds significant importance for understanding and predicting complex systems 
in science and engineering1–4. In traditional modeling approaches, early research efforts were fundamentally 
based on deriving equations analytically from first principles, such as conservation laws. Numerous modeling 
frameworks have been developed to address diverse problems, including the characterization of interaction 
networks among cells and proteins5, metabolic networks6, dynamics of tumor growth7, complex tumor-
immune interactions8, population dynamics9–11, the propagation of diseases12–14, as well as pharmacokinetic-
pharmacodynamic models15,16. However, It is clear that this approach faced substantial limitations due to its 
requirement for complete physical knowledge of the system. As an illustrative example, governing equations 
of a dynamical system from observed data, for oscillatory and chaotic dynamics17, is challenging across diverse 
scientific disciplines. For instance, predator-prey dynamics18,19 and competition models20,21 are fundamental 
in systems biology of cancer22, yet creating realistic models (accurately describing the interactions) from 
empirical data is challenging. Even in scenarios where there exists a partial knowledge of the phenomenon under 
investigation, it is impractical to rely exclusively on first principles23.

In recent years, the remarkable advancements in machine learning for regression and classification24–27 have 
led to effective data-driven frameworks, particularly in systems biology28,29 to capture underlying structures in 
biological systems28,30,31. However, due to the black-box nature of e.g. neural networks and their substantial data 
requirements, these algorithms suffer from interpretability limitations32–35. On the other hand, while many data-
driven techniques such as eigensystem realization algorithms36 (ERA) and autoregressive models37 (ARX) lead to 
black-box models in system identification, recently, machine learning frameworks have gained special attention 
for addressing parsimonious white-box modeling with lowest complexity, constituting a burgeoning field of 
research. Towards developing interpretable models, based on classical system identification techniques while 
utilizing neural networks, some techniques aim to fit datasets to predefined model structures. Frameworks like 
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physics-informed machine learning38–41, and universal differential equations42, employ physical and biological 
knowledge (i.e. first principles) into model training, focusing less on knowledge discovery.

In fact, these methods leverage existing physical knowledge. However, due to intrinsic needs, we pursue 
methodologies to uncover the physical knowledge underlying the data. In this context, for linear systems, there 
exists a well-established set of highly efficient techniques accompanied by a relatively complete theoretical 
framework such as autoregressive moving average (ARMA) and autoregressive moving average with exogenous 
input (ARMAX)43,44. In contrast, nonlinear systems face numerous challenges and fundamental limitations. 
Symbolic regression techniques utilize evolutionary computation methods- most notably genetic programming-
to discover governing equations of dynamical systems. From a computational perspective, these algorithms are 
prohibitively expensive, while their inductive bias makes them particularly vulnerable to overfitting. Subsequent 
attempts to combine symbolic regression with deep neural networks45,46 improved its performance slightly, but 
its main disadvantages remained. Thus, sparsity emerges as a critical consideration, driving the development of 
modeling frameworks centered on this principle. This methodology gains further significance as physical system 
dynamics are fundamentally characterized by a set of few nonlinear terms, thereby facilitating the development 
of highly interpretable models.

Differently, Brunton et al47. proposed sparse identification of nonlinear dynamics, SINDy, employing sparse 
regression48,49 that leverages the principle of parsimony50, resulting in interpretable and generalizable models1. 
SINDy has predominantly been developed along two main directions. Derivative-based SINDy techniques, 
depend on the direct computation of derivatives from observed data. Following that, and based on the type of 
optimization used, certain methods were proposed. Sequentially thresholded least-squares (STLSQ) method is 
employed in47 to obtain parsimonious models of differential equations by considering it as a linear combination 
of nonlinear candidate functions. Other similar approaches, such as least absolute shrinkage and selection 
operator51, LASSO, and elastic net52, have been employed in SINDy through ℓp − regularization49 techniques. 
Along these lines, further SINDy extensions have been proposed to handle challenges in physics53, chemistry54, 
biology50, and engineering55. Although SINDy initially designed for ordinary differential equations47 (ODEs) 
and its performance was evaluated on different benchmark problems, it has been subsequently adapted for 
partial differential equations56 (PDEs). SINDYc57,58was developed to account for control input. Prokop et al17. 
provide a comprehensive categorization of employing SINDy on biological systems and its challenges. While 
the effectiveness of SINDy variants has been validated with synthetic datasets, empirical cases have also been 
explored18,19,59,60. Implicit-SINDy50 was presented to handle dynamical systems with rational functions but 
exhibited noise sensitivity. Modifications to the optimization problem formulation and its transformation into 
a convex problem led to SINDy-PI61, improved the performance of the method against noise, but its robustness 
to noise is on a low scale. Most of these extensions are implemented in the open-source module PySINDy62.

These SINDy variants require accurate derivative approximations, which impose significant limitations on 
the sampling time steps. In addition to the fact that data scarcity yields inaccuracy in computations of derivatives, 
the presence of noise also adds to their severity63. Schaeffer and McCalla64 introduced integral formulation of 
SINDy to overcome numerical instability in derivative approximations. Messenger and Bortz65,66 by proposing 
Weak SINDy (WSINDy) extended this integral (or weak) formulation to provide better robustness to noise. 
Goyal and Benner67, by conceptualizing the integration of sparse identification with the classical fourth-order 
Runge-Kutta method68-termed RK4-SINDy-have reduced the requirement for derivative approximation. Similar 
study conducted on linear multistep methods by Chen69.

However, beyond the aforementioned classification of SINDy variants into derivative-approximation-based 
and integral-form approaches, other generalized extensions of SINDy also exist. As representative examples, Fasel 
et al70. addressed data scarcity utilizing bootstrap aggregating techniques and proposed Ensemble-SINDy. Their 
approach improves robustness to noise and allows for uncertainty quantification and probabilistic predictions, 
however, it does not address the challenge of derivative approximations. The fundamental limitation of SINDy 
and its prior variants lies in their reliance on numerical methods with bounded stability regions, rendering them 
unusable for e.g. stiff problems71 that can arise in the optimization process. Consequently, A-stable methods 
(methods whose stability region includes the entire left half-plane of coordinates) are necessary for effectively 
addressing many nonlinear problems, encompassing oscillators and stiff systems71,72. Implicit Gauss methods 
constitute the A-stable class of fully implicit Runge-Kutta methods exhibiting the highest accuracy72,73, thus 
establishing them as an ideal choice for addressing stiff problems.

In this paper, we aim to discover data-driven models by combining the SINDy technique with A-stable 
Runge-Kutta methods. Given the implicit nature of these methods, we introduce and evaluate two potential 
approaches to facilitate data-driven discovery of governing differential equations. The first approach is based on 
computation of stage values of IRKs by solving the nonlinear system of algebraic equations. The second approach 
is founded on the prediction of stage values of IRKs by leveraging the universal approximation capabilities 
of deep neural networks. The aforementioned advantages of IRKs, combined with the sparsity-promoting 
properties of SINDy, render our derivative-free proposed algorithms remarkably robust against both data 
scarcity and measurement noise. This is convincingly demonstrated across a range of benchmark problems and 
comprehensive comparisons with conventional SINDy and RK4-SINDy.

The subsequent sections of the paper are organized as follows: Methods section provides two approaches based 
on IRKs for the purpose of learning governing equations through sparse regression techniques. Additionally, 
Results section evaluates the performance of the proposed frameworks utilizing synthetic datasets through a 
series of numerical experiments, while also comparing the results with existing approaches. Finally, conclusions 
and discussion are presented in last section, accompanied by a brief summary of prospective research directions.
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Methods
Problem statement and background
In this work, we consider data-driven discovery for nonlinear dynamical systems governed by ODEs of the form

	

{
ẋ(t) = f(x(t)),
x(t0) = x0, � (1)

where the vector x(t) = [x1(t) . . . xd(t)]T  indicates the state variables and f : Rd → Rd represents 
the unknown vector field. The goal is to determine the function f(x(t)) from measurement data. The SINDy 
algorithm47 addresses this problem using sparse regression, relying on the fact that many systems can be 
described by relatively few active terms in the eq. (1). The essential step in SINDy involves the generation of a 
large library of candidate nonlinear features, denoted as Φ = [ϕ1(x), ϕ2(x), · · · , ϕN (x)], which encompasses 
potential nonlinear functions that can play a role in the right hand side of the governing equations. It is assumed 
that the function f(.) can be expressed as a linear combination of a few selected terms derived from the library47. 
Illustratively, one could opt for a collection of polynomials, exponential functions, as well as trigonometric 
functions within the library. Upon considering the vector x = [x1, . . . , xd]T , a library may be given as:

	 Φ(x) := [1, x, xP2 , . . . , xPd , . . . , sin(x), cos(x), . . . , exp(−x), exp(−2x), . . . ],� (2)

where xPi  represents polynomials of the degree i. To exemplify, in the scenario where d = 2, xP2  is given as 
follows:

	 xP2 = [x2
1(t), x1(t)x2(t), x2

2(t)].

Each element within the Φ library stands as a suitable candidate for representing f. Moreover, depending on the 
specific context, a collection of meaningful features can be systematically or empirically devised for inclusion 
within the library. To determine the governing ODE with fewest terms in function f, it is assumed that state 
variables x are known and the data {x(tk)}m

k=0 can be sampled at times {t0, t1, . . . , tm} with stepsizes 
hk = tk+1 − tk . We can represent data in measurement matrix X = [x(t0)x(t1) · · · x(tm)]T ∈ R(m+1)×d 
and library matrix Φ(X) = [ϕ1(X), ϕ2(X), · · · , ϕN (X)]T ∈ R(m+1)×N  that allow us to form the sparse 
regression problem (3) to select a limited number of candidate functions from the library:

	
ξ = arg min

ξ̂

{∥Ẋ − Φ(X)ξ̂∥2 + λ∥ξ̂∥0},� (3)

where ξ = [ξ1ξ2 · · · ξd] represents the sparse coefficient matrix to select active terms in resulting model. λ is 
called thresholding parameter that controls the amount of sparsity promotion through penalizing the number 
of nonzeros term by ℓ0-regularization.

Despite the possession of an extensive library, numerous choices for candidates will inevitably arise. The 
primary objective, however, revolves around identifying the minimal feasible candidate subset for the nonlinear 
representation of the function f47,67. Since ℓ0-regularization is recognized as an NP-hard problem74, alternative 
regularized optimization problems such as ℓp-regularization are formulated:

	
ξ = arg min

ξ̂

{∥Ẋ − Φ(X)ξ̂∥2 + R(ξ, λ)},� (4)

In practice, derivatives in matrix Ẋ = [ẋ(t1)ẋ(t2) · · · ẋ(tm)]T  are not typically available. These quantities can 
be approximated from the measurement matrix X. For example, finite difference methods such as

	
ẋ(tk) ≈ x(tk) − x(tk−1)

tk − tk−1
,

are used for this purpose in conventional SINDy47. After determinig the sparse matrix ξ through 
solving the optimization problem  (4), kth component in the righthand side of discovered model must be 
fk(x) ≈

∑N

j
Φj(x)ξj,k = Φ(x)ξk . Alternatively, in a more comprehensive manner:

	 ẋ = f(x) ≈ Φ(x)ξ,� (5)

The main disadvantage of standard methods is that to accurately calculate the derivative matrix Ẋ , the distance 
between the measurement data (hK) must be small, which may require a very large number of measurements 
to discover the governing equations. Another disadvantage of this method is that finite difference methods 
approximate the derivative with low order and thus sensitive to noise.

Implicit Runge-Kutta methods
Runge-Kutta methods are extensively utilized to solve initial value problems due to the capability to construct 
them from any specified order71,72,75. Implicit Runge-Kutta methods exhibit A-stability properties and are widely 
recognized as a highly suitable candidate for addressing issues associated with stiffness71,72. Higher order IRKs 
impose fewer limitations on the stepsize, can therefore play a crucial role in the sparse identification of dynamical 
systems with constrained data availability.
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Inspired by recent development in combining numerical integration schemes with sparse identifcation 
techniques67,69, our approach compares the observed data x(tk+1) with its predicted value obtained by applying 
an IRK method to the data at time tk . Hence, let us utilize the general form of Runge-Kutta methods with s 
stages72 to approximate the solution of eq. (1): 

	
x(tk+1) ≈ x(tk) + hk

s∑
j=1

bjf(χf
j (tk)), � (6a)

	
χf

i (tk) = x(tk) + hk

s∑
j=1

aijf(χf
j (tk)), i = 1, . . . , s, � (6b)

 where χf
i (tk) ≈ x(tk + cihk) denotes the stage values. This system can also be rewritten in vectorized form 

using following notations: 

	

χ =




χf
1
...

χf
s


 , F (χ) =




f(χf
1 )

...
f(χf

d)


 , � (7a)

	

[
χ(tk)

x(tk+1)

]
≈

[
A ⊗ Id 1s ⊗ Id

bT ⊗ Id 1

] [
hkF (χ(tk))

x(tk)

]
, � (7b)

 where Id denotes d × d identity matrix, 1s is s-element unit vector, and ⊗ represents Kronecker product. 
Depending on the structure of the matrix A, this formulation yields either implicit or explicit time-stepping 
schemes. If A is a strictly lower triangular matrix, then the method is called the explicit Runge-Kutta method. 
Otherwise, the method is called the implicit Runge-Kutta method. Gauss IRK methods, which we employ in 
this work, are implicit schemes that can achieve up to order 2s with s stages71,72,75. The key idea is to reconstruct 
future data from stage values and minimize the discrepancy with observed data. This discrepancy is encoded in 
a loss function, which guides the optimization process during training. Through this framework, we refine the 
identified vector field without relying on explicit derivative estimation.

Discovering nonlinear differential equations with IRKs
The finite difference method for approximating derivative is equivalent to the Euler method for numerically 
solving the initial value problem (1). The stability region of the Euler method is limited–a unit disk in the complex 
plane–which makes it unsuitable for stiff systems68. To address this limitation, Goyal et al67. introduced RK4-
SINDy, which integrates the well-known fourth-order Runge-Kutta scheme (RK4) with sparse identification. 
Due to its higher accuracy (O(h4

k)) and larger stability region compared to Euler’s method, RK4-SINDy showed 
greater robustness to data scarcity and noise. However, similar to the Euler method, RK4 still suffers from a 
bounded stability region and performs poorly on stiff systems. In contrast, IRKs (such as Gauss methods) are 
A-stable and have unbounded stability region that contains the entire left half of the complex plane. This property 
allows for greater flexibility in the stepsize without compromising numerical stability72. Here, we generalize the 
use of Runge-Kutta methods, particularly IRKs, to enhance the accuracy and stability of the sparse identification.

The s-stage Gauss IRK method achieves local error of order O(h2s
k )72. For sufficiently small stepsizes, hk , 

this leads to high-accurate approximations of x(tk+1) from x(tk). Let us denote by Firk  the right hand side of 
eq. (6a) as a function of f, x(tk) and hk :

	
Firk(f, x(tk), hk) := x(tk) + hk

s∑
j=1

bjf(χf
j (tk)),� (8)

where, it is possible to predict both x(tk+1) and x(tk−1) values with high accuracy using IRKs based on x(tk) 
by the fact that the correctness of x(tk+1) ≈ Firk(f, x(tk), hk) follows directly. o formulate the IRK-SINDy 
framework, we aim to identify the most parsimonious representation of the vector field f(x(t)) by leveraging the 
time series data of x(t) at the time instances {t0, . . . , tm} that was previously assumed. For this purpose, we 
consider the data matrices in the following manner:

	

XL :=




xT (t0)
xT (t1)

...
xT (tm−1)


 , XR :=




xT (t1)
xT (t2)

...
xT (tm)


 ,� (9)

and the corresponding predicted values:
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XR
F (f) =




Firk(f, x(t0), h0)
Firk(f, x(t1), h1)

...
Firk(f, x(tm−1), hm−1)


 , XL

F (f) =




Firk(f, x(t0), −h0)
Firk(f, x(t1), −h1)

...
Firk(f, x(tm−1), −hm−1)


 .� (10)

where the kth row of the matrix XR
F  is a prediction of the value of x(tk) given the information x(tk−1) using 

IRKs. Similarly, the kth row of the XL
F  matrix is a prediction of the value of x(tk−1) given the information x(tk) 

and with a negative stepsize. This idea is similar to the work used in RK4-SINDy67. Consequently, appropriately 
selecting candidate functions from the library determines the governing equations. Special attention must be 
given to eq. (11) while formulating the appropriate optimization problem:

	 Xi = Xi
F (f), where f(x) ≈ Φ(x)ξ,� (11)

for i = L, R. Now, independently of calculating the derivative matrix Ẋ , according to eqns. (5) and (11), we can 
define the loss function (12) as a function of the coefficient matrix ξ for training:

	 L (ξ) = α∥XL − XL
F (Φ(.)ξ)∥2

2 + (1 − α)∥XR − XR
F (Φ(.)ξ)∥2

2,� (12)

with trade-off parameter 0 ≤ α ≤ 1. To encourage sparsity of resulting coefficient matrix, similar to67,69, the 
corresponding regularized optimization problem (13) can be formulated as:

	
ξ = arg min

ξ̂

{L (ξ̂) + R(ξ̂, λ)},� (13)

where, R(ξ̂, λ) represents the regularization term with thresholding parameter 0 ≤ λ ≤ 1. A choice is the 
utilization of ℓ1-regularization51,52, defined as R(ξ̂, λ) = λ∥ξ̂∥1.

To implement the algorithm, it is crucial to acquire the stage values, χi(tk), i = 1, . . . , s, within the context 
of IRKs. In the classical implementation of IRKs, these values are computed by solving the nonlinear system 
of algebraic equations (6b) employing iterative schemes such as fixed-point iteration and Newton’s method72. 
We note that, in our implementation based on Newton’s method, automatic differentiation tool76 exploited to 
calculate required Jacobean matrix. In light of this foundational framework, as illustrated in Figure 1, we propose 
a novel sparse identification process of differential equations inspired by IRKs. Within this approach, we perform 
predictive analyses of the quantities XL and XR to address the optimization problem in (13), which is achieved 
by obtaining the sd stage values through the aforementioned iterative techniques and subsequently substituting 
them into eq. (6a). It is crucial to emphasize that in the context of fixed point methods, the convergence condition 
for calculating the solution of the system represented by iteration map Ψ(x) = 0 is depended on Lipschitz 
constant associated to Ψ. Conversely, for an initial guess in proximity to the stage values, Newton’s method 
exhibits a rapid convergence to the solution of the system71,72. Therefore, given the limitations of fixed-point 
methods in solving nonlinear and stiff problems73,75, they are inefficient for the sparse identification of nonlinear 
dynamical systems.

Despite the efficiency of this approach, the necessity of solving the system of nonlinear equations at each 
epoch significantly slows down the overall optimization process77. Moreover, to enhance the accuracy of the 
predictions, it is essential to employ higher-order IRKs, and therefore an increased number of stage values. 
As sincreases, the corresponding computational cost increases exponentially associated with these calculations. 
Inspired by Raissi et al39., we address this computational challenge using an auxiliary deep neural network 
to approximate stage values efficiently. This leads to a linear computational cost scaling with respect to s, 
dramatically accelerating training.

Discovering nonlinear differential equations through combining DNNs and IRKs
Here we make use of an auxiliary DNN that is parameterized as a nonlinear mapping from time tk , along with 
the corresponding state variable x evaluated at tk , i.e. x(tk), to the stage values of IRKs in the approximation of 
x(tk+1) with stepsize hk . Therefore, we denote this neural network by χθ = [χθ

1, . . . , χθ
s], wherein θ represents 

the trainable parameters of the DNN. As elucidated in Figure 2, the DNN is trained to approximate the true IRK 
stage values χf  governed by the underlying dynamical system, aiming to satisfy:

	 χθ
i (tk) ≈ χf

i (tk), i = 1, . . . , s, k = 0, 1, . . . , m − 1.

To effectively integrate the auxiliary DNN and IRKs within the framework of the optimization process, it 
becomes imperative to reformulate eq. (8). Thus, by subtracting eq. (6a) from eq. (6b), we obtain: 

	
F̂ L

irk(f, x(tk), hk, i) := χi(tk) − hk

s∑
j=1

aijf(χj(tk)), i = 1, . . . , s, � (14a)

	
F̂ R

irk(f, x(tk), hk, i) := χi(tk) + hk

s∑
j=1

(bj − aij)f(χj(tk)), i = 1, . . . , s, � (14b)

Scientific Reports |        (2025) 15:32286 5| https://doi.org/10.1038/s41598-025-10526-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


 It subsequently becomes evident that: 

	 x(tk) ≈ F̂ L
irk(f, x(tk), hk, i), i = 1, . . . , s, � (15a)

	 x(tk+1) = x(tk + hk) ≈ F̂ R
irk(f, x(tk), hk, i), i = 1, . . . , s. � (15b)

In a manner similar to eqns. (9) and (10), the IRK network can be systematically defined as eq. (16):

Fig. 1.  Overview of the IRK-SINDy framework: (a) For each benchmark problem, we perform measurements 
that incorporate noise and, thereafter form a dataset. Our objective is to construct a model that is 
parsimonious, interpretable, and possesses generalizability, capable of accurately forecasting reference 
dynamics. (b) Given an appropriate initial guess (e.g., X(tk)), the stage values of the IRKs are approximated 
by solving the system of nonlinear equations (6b) through iterative schemes. In this context, we employ two 
iterative approaches: (i) fixed point iteration and (ii) Newton’s method. (c) With the stage values established 
the subsequent step values are computed according to eq. (8). This computational process is depicted as the 
systematic IRK network. (d) Within this structured representation of IRK-SINDy, the dataset is classified into 
two categories: forward and backward, followed by the formation of a symbolic features library comprising 
candidate nonlinear functions. To solve a nonlinear sparse regression problem using the forward and backward 
predictions illustrated in (b) and (c), an IRK step is applied, and the loss function is minimized by choosing a 
suitable optimizer. Following a certain number of epochs, a sparsity-promoting algorithm is employed. Finally, 
every non-zero element in the coefficient matrix ξ∗ signifies an active term within the feature library, thereby 
representing the resultant discovered model.
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X̂i
F̂ (f) =




F̂ i
irk(f, x(t0), h0, 0) . . . F̂ i

irk(f, x(t0), h0, s)
F̂ i

irk(f, x(t1), h1, 0) . . . F̂ i
irk(f, x(t1), h1, s)

...
...

F̂ i
irk(f, x(tm−1), hm−1, 0) . . . F̂ i

irk(f, x(tm−1), hm−1, s)


 , i = L, R.� (16)

Now, to select the most active terms among the nonlinear features of the Φ library, the loss function is formulated 
in eq. (17) through the integration of three ingredients, including sparse identification, IRKs, and the auxiliary 
DNN, with the aim of simultaneously determining the parameters associated with the neural network as well as 
the coefficient matrix:

	 L̂ (ξ) = α∥XL − X̂L
F̂ (Φ(.)ξ)∥2

2 + (1 − α)∥XR − X̂R
F̂ (Φ(.)ξ)∥2

2,� (17)

where 0 ≤ α ≤ 1 controls the trade-off between forward and backward prediction accuracy. Similar to 
problem (13), in accordance with eq. (17) the corresponding regularized optimization problem can be formulated 
in the following manner67,69 to obtain the sparse coefficient matrix ξ alongside the DNN parameters θ:

	
ξ = arg min

ξ̂,θ

{L̂ (ξ̂, θ) + R(ξ̂, λ)},� (18)

This integrated framework, referred to as deep IRK-SINDy, enables data-driven discovery of governing 
differential equations without requiring explicit derivative computations. Notably, it demonstrates strong 
robustness against noise and performs effectively even with limited data availability (data scarcity)65,66,70.

Fig. 2.  Overview of the deep IRK-SINDy framework: (a) The dataset is prepared for the purpose of training 
the neural network. (b) The inputs to the neural network are assigned into two distinct variables: time and 
state variables. The neurons located in the output layer of the network are partitioned into s segments, each 
containing d neurons. The i’th segment predicts the d stage values corresponding to the χi. (c) Through the 
process of forward propagation within the DNN, the stage values are predicted, and these predictions are 
subsequently employed in the IRK steps, i.e. eq. (8), facilitating both forward and backward predictions. 
(d) By comparing the predictions against the data, the loss is computed, followed by the optimization step. 
Upon reaching a specified number of epochs, at which point the loss is sufficiently minimized, the sparsity-
promotion algorithm is exclusively applied to the coefficient matrix ξ. Finally, the non-zero coefficients of the ξ 
denote the active terms in the nonlinear feature library.
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Sparsity-promoting procedure
When the nonlinear optimization problems delineated in eqns.  (13) and  (18) are rigorously formulated, the 
goal is to seek an approximate sparse solution denoted as ξ67. Although several sparse regression techniques–
such as LASSO48 or elastic net52– (which modify the loss function by sparsity-promoting penalties of the form 
loss + λ1∥ξ∥1 + λ2∥ξ∥2 and continuously drive coefficients toward zero) are frequently employed to promote 
the sparsity in the resultant solution, it is crucial to note that a significant number of these algorithms are 
predominantly tailored for linear and convex optimization problems78,79. While ℓp-regularization with p ∈ N 
can approximate the ideal but non-convex ℓ0 penalty49, in practice, thresholding methods offer a more tractable 
alternative for model discovery47,67,80. In order to select the active terms in governing equations within the 
frameworks of eqns. (13) and (18), we adopt a gradient-based sequential thresholding procedure, inspired by the 
sequential thresholding least squares algorithm utilized in conventional SINDy47, and adapted for non-convex 
scenarios67. Unlike prevalent sparse regression methods48,52,81, the sequential thresholding approach directly 
enforces sparsity by hard-thresholding coefficients. This procedure is schematically outlined in Figures 1 and 2.

During each iteration of the procedure, the loss function articulated in eq. (12) (for IRK-SINDy) or eq. (17) 
(for deep IRK-SINDy) is first minimized through the application of a gradient-descent method during the 
training phase82. This optimization is conducted with respect to the coefficient matrix ξ and also, in the case of 
deep IRK-SINDy, the neural network parameters θ. Our proposed procedure initiates with the establishment 
of an initial guess for ξ coupled with setting a threshold value λ. Following a certain number of epochs in each 
iteration, sparsity-promoting modifications are applied to obtain a sparse ξ: all coefficients in ξ with absolute 
value smaller than λ are set to zero. This procedure is iterated until convergence. In practice, when reasonable 
values of λ are employed, the sequential thresholding surprisingly requires a few number of iterations to 
achieve convergence, ultimately leading to the derivation of the optimal coefficient matrix ξ. The pseudocode 
in Algorithm 1 provides a technical exposition of this sparsity-promoting optimization process within the IRK-
SINDy framework. For deep IRK-SINDy, the same steps are applied, with the addition of optimizing θ alongside 
ξ during gradient descent.

Algorithm 1.  Psudocode for sequential thresholding procedure in IRK-SINDy

It is imperative to underscore the point that when we set λ to zero, every term within the nonlinear feature 
library is recognized as an active term; this scenario is particularly pronounced in instances characterized by 
measurement errors and numerical round-off effects, which can be deemed non-physical in nature. Furthermore, 
by specifying λ = 1, the regularization term effectively overcomes the loss function, compelling ξ to approach 
zero and, consequently, the model to ẋ = 0. Therefore, the reasonable determination of the sparsity-promoting 
parameter λ through concepts such as cross-validation83 and the analysis of the Pareto front84, which aims to 
balance the trade-off between loss minimization and model complexity, play a pivotal role in correctly identifying 
the reference dynamics. In this context, our objective is to impose a penalty on the number of terms within the 
model, while simultaneously striving to minimize the loss function, thereby yielding the most parsimonious 
model. To achieve this end, we can utilize the information criterion for model selection delineated in84–86, a 
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process that has been successfully applied across various sparse identification problems, with each case resulting 
in the correct identification of the reference model.

Results
In this section, the efficacy of the proposed methodologies for the data-driven discovery of governing differential 
equations is demonstrated and examined through a series of numerical experiments on benchmark problems 
exhibiting varying classified complexity, from linear and nonlinear oscillators to noisy measurement of predator-
prey dynamics. The robustness to noise and data scarcity is illustrated in comparison with conventional 
SINDy47 (referred to as Conv-SINDy) and RK4-SINDy67 without access to derivative information. The two 
proposed methodologies have implemented in the PyTorch deep-learning module87 utilizing a gradient descent 
optimization method alongside Gauss methods up to 500 stages39, as IRKs with the highest accuracy, to address 
the optimization problems delineated in eqns (13) and (18). In this implementation, the Adam optimizer88 has 
employed to iteratively update the coefficient matrix ξ and the parameters of the neural network θ. All models 
have trained using an Core i5-7400 CPU with 8 GB memory. Synthetic data are generated by forward-solving 
the system of differential equations utilizing numerical methods, specifically the fourth-order Runge-Kutta 
method and Backward Differentiation Formulas (BDF)68,71,72, as implemented in the solve ivp function of 
SciPy module, followed by introducing various levels of noise into the dataset. Finally, after the model discovery 
process, the identified model is subjected to a comparative analysis against a reference model in each numerical 
experiment by evaluating the solutions corresponding to distinct initial conditions.

Linear damped oscillator
As a first illustrative example, we consider discovering the governing equations of a two-dimensional linear 
damped oscillatory system using data with different levels of noise and data availability. The reference dynamics 
is given by (): 

	 ẋ1(t) = −0.1x1(t) + 2.0x2(t),� (19a)

	 ẋ2(t) = −2.0x1(t) − 0.1x2(t).� (19b)

To initiate the data collection process, we establish the initial condition as [x1(0) x2(0)]T = [2.0 0.0]T , and 
uniformly sample a total of m + 1 data points utilizing a fixed stepsize 20/m, within the time interval t ∈ [0, 20]. 
In the first scenario, we use a variety of values for m, with the objective of rigorously assessing the robustness of 
the proposed methodologies to data scarcity, without adding noise to measurements. It is noteworthy to mention 
that the algorithm is also flexible for data with variable stepsize, however, for the sake of simplicity and clarity in 
our analytical framework, we have opted to utilize a constant stepsize in the current analysis. The data from the 
sampling process are plotted in Figure 3a.

We systematically explore the desired model in the model space of possible descriptions of the dynamical 
system under investigation, which, in the specific case of this particular example, is restricted to the space of 
polynomials up to degree 3. Upon the careful selection of the nonlinear feature library, we proceed to set the 
threshold value across all approaches to constant value λ = 0.05. Within the frameworks of the IRK-SINDy 
and RK4-SINDy approaches, we use a learning rate of lr = 0.01 for updating coefficient matrix ξ and regularly 
conduct sequential thresholding every 1000 epochs. It is crucial to point out that in the context of the deep IRK-
SINDy approach, the first approximation of stage values may require potentially more epochs initially to facilitate 
effective sequential thresholding. This requirement arises due to the need of the DNN to undergo adequate 
training in order to accurately predict the stage values corresponding to IRKs, which subsequently allows for the 
prediction of both next and preceding step values via eq. (). Thus, it follows that the more rapidly the network 
acquires proficiency in learning the χθ  values, the fewer epochs will be necessitated by the algorithm for the 
procedure of sequential thresholding. It is imperative to emphasize again that within the framework of the deep 
IRK-SINDy approach, the Adam optimizer updates ξ and θ simultaneously, while, the endeavor to learn the 
stage values imposes a limit on the permissible learning rate. For this reason, in the deep IRK-SINDy framework, 
we set two different learning rates of 10−3 and 0.01 for the DNN parameters and the coefficient matrix ξ, 
respectively. In the first iteration, 15, 000 epochs and in subsequent iterations, 1, 000 epochs are employed to 
train the network. In this configuration, we use 4 hidden layers, each comprising 32 neurons, utilizing the tanh 
activation function within the architecture of the fully connected DNN. At the end of each iteration, the learning 
rate values are updated by multiplying them by a number between 0 and 1. We use 4 fixed-point iterations and 
3 Newton’s iterations, respectively.

Figure 3 depicts a qualitative evaluation of the accuracy associated with the discovered dynamical systems 
by providing a comparative analysis between the reference trajectories and the predicted trajectories, alongside 
the resultant phase portrait. It reveals that all approaches, including the two versions of IRK-SINDy, are able 
to capture the dynamical evolution of the system given sufficient and clean data. As delineated in Table 1 and 
Table 2, the equations derived from these approaches demonstrate a remarkable consistency with the reference 
dynamics. Furthermore, Figure  3 confirms that for a limited amount of data, the two innovative proposed 
approaches exhibit superior performance relative to the previously mentioned approaches. For instance, in 
the scenario where m = 31, both the IRK-SINDy and deep IRK-SINDy approaches successfully capture the 
governing equations, outperforming the other approaches. Additionally, as anticipated, Figure 3 and Table 2 show 
that applying IRK-SINDy with Newton’s itiration yields superior results when compared to its utilization with 
fixed-point iteration. Table 1 indicates that the two approaches Conv-SINDy and RK4-SINDy have encountered 
challenges in identifying correct and sparse models, particularly under conditions of significant data scarcity.
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In the second scenario, m is kept constant and equal to 551, while various levels of noise are introduced to 
the measurements in order to examine the robustness of the proposed methodologies to noise. Herein, we utilize 
σ ∈ {0.01, 0.04, 0.08, 0.16} to produce Gaussian noise N (µ, σ2) with a zero mean µ = 0 and variance σ2, 
whereby the noise level is controlled by the standard deviation sigma. We employ 3 thresholding iterations with 
2, 000 epochs per iteration, using a thresholding parameter of λ = 0.06. For deep IRK-SINDy, 20, 000 epochs 
are allocated in the first iteration and, 2, 000 epochs in the subsequent iterations, employing the identical DNN 
architecture. Before the training process, we employ the Savitzky-Golay89 filter for data preprocessing to obtain 
denoised data67,90. This preprocessing phase is employed by default in the PySINDy module62. For unbiased 

Fig. 3.  Linear damped oscillator: Comparing identified models under various levels of data scarcity with 
reference model. (a) Data, (b) sample size m = 801, (c) sample size m = 201, (d) sample size m = 51, (e) 
sample size m = 31.
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comparative analysis, we apply the finite difference derivative approximation in the Conv-SINDy simulation 
step.

Our simulations demonstrate that our methodology is robust to noise. As illustrated in Figure 4 and Table 3, 
our approach is more robust to noise than previous approaches. Table 4 distinctly indicates that the application 
of Newton’s iterative method in the implementation of IRK-SINDy surpasses fixed point methods concerning 
noise. Despite the efficiency of the IRK-SINDy framework against noise, taking into account the capabilities of 
DNNs, appropriate architectures may be developed to enhance the network’s noise resistance, which can be the 
subject of future studies.

Cubic damped oscillator
Now, let us consider the two-dimensional damped harmonic oscillator characterized by cubic dynamics given 
in eq. (): 

	 ẋ1(t) = −0.1x3
1(t) + 2.0x3

2(t),� (20a)

	 ẋ2(t) = −2.0x3
1(t) − 0.1x3

2(t).� (20b)

 In this experiment, we employ the initial condition [x1(0) x2(0)]T = [2.0 0.0]]T  to collect data across the 
temporal interval t ∈ [0, 20] for the cases where m is assumed the values of 801, 401, 101, and 51. The objective 
is to successfully recover the governing equations that dictate nonlinear behavior of the system, utilizing both a 
sufficient and scarce data. The architecture of DNN comprises a total of four hidden layers, each incorporating 
32 neurons. Furthermore, we establish a thresholding value of λ = 0.05, alongside a learning rate lr = 10−3 for 
the parameters associated with the DNN, while concurrently applying a learning rate of 10−2 for the coefficient 
matrix ξ. Throughout this simulation, we incorporate a total of three thresholding iterations, each consisting 
of 1, 000 epochs conducted within the polynomial space up to degree 3. 15, 000 epochs are used for the first 
iteration in the deep IRK-SINDy training process.

In the subsequent analysis presented in Figure 5, we provide a comprehensive comparison between IRK-
SINDy, RK4-SINDy, and Conv-SINDy. It becomes readily apparent that the IRK-SINDy aaproach accurately 
identify the dynamics of system (), whereas the Conv-SINDy approach exhibits considerable difficulties when 

Sample-size Newton’s iterations Fixed point iterations

m = 801
ẋ1(t) = −0.100x1(t) + 2.000x2(t)
ẋ2(t) = −2.001x1(t) − 0.100x2(t)

ẋ1(t) = −0.100x1(t) + 2.000x2(t)
ẋ2(t) = −2.001x1(t) − 0.100x2(t)

m = 201
ẋ1(t) = −0.100x1(t) + 2.000x2(t)
ẋ2(t) = −2.001x1(t) − 0.100x2(t)

ẋ1(t) = −0.100x1(t) + 2.000x2(t)
ẋ2(t) = −2.001x1(t) − 0.100x2(t)

m = 41
ẋ1(t) = −0.101x1(t) + 2.003x2(t)
ẋ2(t) = −2.003x1(t) − 0.101x2(t)

ẋ1(t) = −0.101x1(t) + 2.004x2(t)
ẋ2(t) = −2.004x1(t) − 0.101x2(t)

m = 31
ẋ1(t) = −0.102x1(t) + 2.009x2(t)
ẋ2(t) = −2.008x1(t) − 0.103x2(t)

ẋ1(t) = −0.100x1(t) + 2.015x2(t)
ẋ2(t) = −2.014x1(t) − 0.100x2(t)

Table 2.  Linear damped oscillator: the discovered governing equations using IRK-SINDy in the approach of 
Newton’s iterations and fixed point iterations for various sample-size m.

 

Sample-size Deep IRK-SINDy RK4-SINDy Conv-SINDy

m = 801
ẋ1(t) = −0.100x1(t) + 2.000x2(t)
ẋ2(t) = −2.001x1(t) − 0.100x2(t)

ẋ1(t) = −0.100x1(t) + 2.000x2(t)
ẋ2(t) = −2.001x1(t) − 0.100x2(t)

ẋ1(t) = −0.100x1(t) + 2.000x2(t)
ẋ2(t) = −2.000x1(t) − 0.100x2(t)

m = 201
ẋ1(t) = −0.100x1(t) + 2.000x2(t)
ẋ2(t) = −2.001x1(t) − 0.100x2(t)

ẋ1(t) = −0.100x1(t) + 2.001x2(t)
ẋ2(t) = −2.001x1(t) − 0.100x2(t)

ẋ1(t) = −0.099x1(t) + 1.987x2(t)
ẋ2(t) = −1.989x1(t) − 0.098x2(t)

m = 41
ẋ1(t) = −0.101x1(t) + 2.003x2(t)
ẋ2(t) = −2.003x1(t) − 0.101x2(t)

ẋ1(t) = −0.103x1(t) + 2.011x2(t)
ẋ2(t) = −2.011x1(t) − 0.103x2(t)

ẋ1(t) = −0.066x2
1(t) − 0.083x3

1(t)
+1.680x2(t)

ẋ2(t) = −1.545x1(t) − 0.080x2
1(t)

−0.140x3
1(t) + 0.063x2

1(t)x2(t)
−0.096x2(t)

m = 31
ẋ1(t) = −0.102x1(t) + 2.009x2(t)
ẋ2(t) = −2.008x1(t) − 0.103x2(t)

ẋ1(t) = −0.107x1(t) + 2.017x2(t)
ẋ2(t) = −2.016x1(t) − 0.106x2(t)

ẋ1(t) = −0.158x1(t) − 0.099x2
1(t)

−0.225x3
1(t) − 0.125x1(t)x2(t)

+0.103x1(t)x2
2(t) + 1.424x2(t)

+0.050x3
2(t)

ẋ2(t) = −1.309x1(t) − 0.098x2
1(t)

−0.213x3
1(t) − 0.126x1(t)x2(t)

+0.121x1(t)x2
2(t) − 0.084x2(t)

+0.062x3
2(t)

Table 1.  Linear damped oscillator: the discovered governing equations using deep IRK-SINDy, RK4-SINDy, 
and Conv-SINDy for various sample-size m.
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confronted with smaller values of m. Moreover, it is noteworthy that IRK-SINDy demonstrates a superior 
capability in discovering interpretable equations in comparison to RK4-SINDy, particularly in scenarios 
characterized by scarce data availability. This capability can be attributed to the A-stability properties in Gauss 
methods71,72, which ensures that the stability region of these methods contains the entire left half-plane of the 
coordinate system, in contrast to the finite stability region associated with explicit methods such as RK4. It is 
pertinent to mention that, for the purposes of this comparative analysis, we employ an IRK method of the same 
order as the RK4 algorithm.

Fig. 4.  Linear damped oscillator: Comparing the response of identified models under various noise levels in 
measurements with reference model. (a) Noisy data, (b) noise level σ = 0.01, (c) nise level σ = 0.04, (d) noise 
level σ = 0.08, (e) noise level σ = 0.16.
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FitzHugh-Nagumo
The subsequent benchmark problem pertains to a relatively simple (in its formulation) yet important model 
in the field of mathematical neuroscience that characterizes the oscillatory and nonlinear dynamics in the 
electrical activity of neurons, known as the FitzHugh-Nagumo model91, commonly abbreviated as FHN model. 
In spite of its simplicity, this mathematical model is utilized in various neuroscience applications, particularly 

Fig. 5.  Cubic damped oscillator: Comparing identified models under various levels of data scarcity with 
reference model. (a) Phase portraits, (b) coefficient matrices for m ∈ {801, 401, 101, 51}. IRK-SINDy 
provides a more parsimonious and generalizable model compared to RK4-SINDy and Conv-SINDy.

 

Noise Newton’s iterations Fixed point iterations

σ = 0.01
ẋ1(t) = −0.102x1(t) + 2.000x2(t)
ẋ2(t) = −2.001x1(t) − 0.099x2(t)

ẋ1(t) = −0.102x1(t) + 2.000x2(t)
ẋ2(t) = −2.001x1(t) − 0.099x2(t)

σ = 0.04
ẋ1(t) = −0.105x1(t) + 1.995x2(t)
ẋ2(t) = −2.009x1(t) − 0.097x2(t)

ẋ1(t) = −0.105x1(t) + 1.995x2(t)
ẋ2(t) = −2.008x1(t) − 0.097x2(t)

σ = 0.08
ẋ1(t) = −0.117x1(t) + 2.013x2(t)
ẋ2(t) = −1.972x1(t) − 0.105x2(t)

ẋ1(t) = −0.117x1(t) + 2.013x2(t)
ẋ2(t) = −1.972x1(t) − 0.105x2(t)

σ = 0.16
ẋ1(t) = −0.147x1(t) + 1.991x2(t)
ẋ2(t) = −2.006x1(t) − 0.086x2(t)

ẋ1(t) = −0.148x1(t) + 1.991x2(t)
ẋ2(t) = −2.006x1(t) − 0.088x2(t)

Table 4.  Linear damped oscillator: the discovered governing equations using IRK-SINDy in the approach of 
Newton’s iterations and fixed point iterations for various noise levels σ.

 

Noise Deep IRK-SINDy RK4-SINDy Conv-SINDy

σ = 0.01
ẋ1(t) = −0.103x1(t) + 2.000x2(t)
ẋ2(t) = −2.001x1(t) − 0.099x2(t)

ẋ1(t) = −0.102x1(t) + 2.000x2(t)
ẋ2(t) = −2.001x1(t) − 0.099x2(t)

ẋ1(t) = −0.102x1(t) + 1.999x2(t)
ẋ2(t) = −1.999x1(t) − 0.099x2(t)

σ = 0.04
ẋ1(t) = −0.105x1(t) + 1.995x2(t)
ẋ2(t) = −2.009x1(t) − 0.097x2(t)

ẋ1(t) = −0.104x1(t) + 1.995x2(t)
ẋ2(t) = −2.008x1(t) − 0.097x2(t) g ẋ1(t) = −0.104x1(t) + 1.993x2(t)

ẋ2(t) = −2.008x1(t) − 0.097x2(t)

σ = 0.08
ẋ1(t) = −0.117x1(t) + 2.013x2(t)
ẋ2(t) = −1.972x1(t) − 0.105x2(t)

ẋ1(t) = −0.115x1(t) + 2.013x2(t)
ẋ2(t) = −1.972x1(t) − 0.103x2(t)

ẋ1(t) = −0.120x1(t) + 2.011x2(t)
ẋ2(t) = −1.964x1(t) − 0.102x2(t)

σ = 0.16
ẋ1(t) = −0.147x1(t) + 1.991x2(t)
ẋ2(t) = −2.006x1(t) − 0.086x2(t)

ẋ1(t) = −0.139x1(t) + 1.991x2(t)
ẋ2(t) = −2.002x1(t)

ẋ1(t) = −0.144x1(t) + 1.988x2(t)
ẋ2(t) = −1.999x1(t)

Table 3.  Linear damped oscillator: the discovered governing equations using deep IRK-SINDy, RK4-SINDy, 
and Conv-SINDy for various noise level σ.
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in illustrating how neurons are capable of generating action potentials in response to stimuli. FHN can simulate 
the periodic oscillatory behavior observed in neuronal activity, such as brain rhythms, and the propagation of 
electrical waves in a network of neurons. FHN serves as a foundational framework, establishing a basis for the 
subsequent development of more sophisticated models that seek to capture the complexities associated with 
neuronal activity. The system of differential equations that encapsulates the underlying dynamics of this model 
is expressed in eq. (): 

	
v̇(t) = v(t) − w(t) − 1

3v3(t) + 0.5,� (21a)

	 ẇ(t) = 0.04v(t) − 0.028w(t) + 0.032.� (21b)

 By employing the initial condition [v(0) w(0)]T [0.0 0.0]T , we generate time-series data on the interval 
t ∈ [0, 200]. We use deep IRK-SINDy with a fully connected neural network architecture characterized by 
a periodic activation function, SIREN92, consisting of 3 hidden layers each containing 32 neurons, thereby 
providing a robust framework for capturing the periodic dynamics of the system on the long time intervals. 
We establish the thresholding value to be λ = 0.01 and proceed to learn the governing equations in the space 
of polynomials up to degree 3, employing a total of 8 sequential thresholding iterations with 20, 000 epochs 
allocated for the first iteration, followed by 5, 000 epochs for each subsequent iteration, with a learning rate of 
10−4 and 10−3 (Except for the case m = 101 that we utilize 5 × 10−4) for the DNN and the coefficient matrix 
ξ in the first iteration, respectively.

In Figure 6, we present a comparative analysis of our proposed methodology against the performance of Conv-
SINDy and RK4-SINDy, for various values of m. The incorporation of a periodic activation function within the 
DNN architecture significantly enhances the model’s capability to effectively learn from periodic data93, which is 
of paramount importance for accurately predicting the stage values associated with the IRKs. Consequently, as 
illustrated in Figure 6, it becomes evident that deep IRK-SINDy demonstrates a markedly reduced dependence 
on the quantity of data points compared to the two alternative methodologies, thus revealing its superior efficacy 
in reconstructing the dynamics of the FHN model.

Lorenz attractor
Here, to explore the efficacy of deep IRK-SINDy in identifying chaotic dynamics, we examine the nonlinear 3D 
Lorenz system94 as the next illustrative example. A distinctive characteristic of this system is its sensitivity to 
initial conditions, which makes it a prominent candidate within the field of data-driven discovery of dynamical 
systems. The governing equations of this system are given as eq. (): 

	 ẋ(t) = 10(y(t) − x(t)),� (22a)

	 ẏ(t) = x(t)(28 − z(t)) − y(t),� (22b)

Fig. 6.  Fitz-Hugh Nagumo model: a comparison of the reference model and recovered models using data 
collected at constant time stepsize. (a) Phase portraits, (b) coefficient matrices for m ∈ {2001, 401, 201, 101}. 
IRK-SINDy results a parsimonious and generalizable model for biologically motivated models such as FHN 
even in data scarcity.
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ż(t) = x(t)y(t) − 8

3z(t).� (22c)

 Utilizing the initial condition[x(0) y(0) z(0)]T = [−8 7 27]T , we conduct measurements on the time 
interval t ∈ [0, 10] with different sample sizes m. We employ a DNN comprising one hidden layer with 256 
neurons to represent the nonlinear dynamics at the stage values of IRKs with the periodic activation function 
SIREN. For the sequential thresholding procedure, we use 10 thresholding iterations, commencing with 20, 000 
epochs in the first iteration and 2, 000 epochs in the subsequent iterations, with a thresholding parameter set at 
λ = 0.5. During the training phase, we adopt a learning rate of 10−3 for the DNN parameters and a learning 
rate of 10−2 for the coefficient matrix while searching for active terms in the space of polynomials up to degree 
2. Moreover, at the end of each iteration, both learning rates are diminished by specific scales. It is important to 
note that due to the very large standard deviation of the state variables (significantly exceeding 1), the library 
of polynomials may become ill-conditioned, thereby disrupting the optimization process. Therefore, prior to 
initiating the learning process, it is necessary to preprocess the data through scaling or normalization. This 
procedure is conducted such that the transformed data exhibits a mean of 0 and a variance of 167. It is crucial 
that the scaling of the data does not influence the interaction among the state variables, thus, the sparsity of the 
identified dynamics remains consistent with that of the reference dynamics. Under the same configuration, we 
repeat this numerical experiment for the scenario where 1% noise is added to the data.

All three approaches IRK-SINDy, RK4-SINDy and Conv-SINDy are able to correctly identify the active 
nonlinear features, while the coefficient matrix obtained from IRK-SINDy is closer to the coefficients of the 
reference model. However, the Lorenz system has a positive Lyapunov exponent and small differences between 
the reference and discovered models cause exponential growth in the forecasted differences. As evidenced in 
Figure 7, although small deviations in the dynamic coefficients significantly affect the dynamics due to the highly 
chaotic behavior of the system, the bi-stable structure of the attractor is well captured even in presence of noise. 
While Figure 7 shows that IRK-SINDy discovers more robust and parsimonious models against noise.

Lotka-Volterra predator-prey model
Next, we examine the Lotka-Volterra equations, which describe the predator-prey dynamics, and have recently 
been employed extensively as a significant biologically motivated benchmark problem in the data-driven 
discovery of the governing equations in biological systems19,23,95. This is crucial due to the fact that the predator-
prey dynamics serve as the cornerstone for numerous mathematical models within the investigation of biological 
systems, particularly in the field of systems biology of cancer (where cancer cells are conceptualized as prey and 
the immune system as the predator)21,22. In this context, we demonstrate the usefulness of proposed approach 
in identifying the Lotka-Volterra equations given by eqns. () that describe the interaction between two species, 
denoted as u for prey and v for predator: 

Fig. 7.  Lorenz attractor model: a comparison of the reference model and recovered models using data 
collected at constant time stepsize in the cases (a) noise free, (b) 1 percent noise σ = 0.01,.
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	 u̇(t) = αu(t) − βu(t)v(t),� (23a)

	 v̇(t) = −γv(t) + δu(t)v(t),� (23b)

 The time-series data are generated through solving the reference differential equation by parameters 
{α = 2

3 , β = 4
3 , γ = δ = 1} on the time interval t ∈ [0, 10] with the initial condition [u(0), v(0)]T = [1.8, 1.8]T . 

By setting the thresholding value λ = 0.1, we employ deep IRK-SINDy using the SIREN periodic activation 
function alongside an architecture comprising 2 hidden layers, each containing 64 neurons, to discover the 
governing differential equations across different data quantities m. This approach, incorporating learning 
rates of 10−3 and 10−4 during the first iteration for ξ and θ, respectively, through sequential thresholding 
with 3 iterations that is employed 6, 000 epochs in each iteration (except 25, 000 epochs for the first iteration), 
successfully captures the correct active terms within the nonlinear feature library, which in this illustrative 
example is selected as a polynomial space of up to degree 2. In Figure 8, the obtained models are tested on the 
time interval t ∈ [0, 20] and the efficacy of deep IRK-SINDy under data scarcity is depicted.

Logistic growth model
In the last numerical experiment, we study the discovery of the governing equations for tumor growth. Despite the 
extensive advancement of various effective mathematical models within the realm of mathematical oncology, in 
this context, we exclude the high dimensionality and the consideration of complex tumor-immune interactions, 
directing our attention exclusively towards the well-established logistic growth model. This nonlinear model 
is a modified exponential growth model by taking into account the carrying capacity of the system, which is 
particularly crucial for accurately modeling the mechanisms underlying tumor growth96. The general form of 
this nonlinear dynamical system is given by eq. (24):

	
Ṫ (t) = rT (t)(1 − T (t)

K
) = aT (t) − bT 2(t),� (24)

where T(t) signifies the temporal evolution of tumor concentration, while r and K represent the growth rate and 
carrying capacity, respectively. To generate data, we assign tumor-specific parameters of r = 0.31 and K = 2, 
conducting measurements under the initial condition T (0) = 0.1 over the time interval t ∈ [0, 50]. We set the 
thresholding value to λ = 0.025 and consider the polynomial space of up to order 5 to serve as our nonlinear 
feature library. Throughout four successive thresholding iterations, with 20, 000 epochs allocated to the first 
iteration and 5, 000 epochs to each of the subsequent iterations, we simultaneously identify the active terms 
in the library while training the neural network. The DNN employed in this experiment comprises 3 hidden 
layers, each containing 32 neurons, utilizing the tanh activation function. We use a learning rate of 10−3 in 
learning ξ and a learning rate of 10−4 in learning θ to discover the governing equations with varying values 
of m. Figure 9 depicts the superior efficacy of deep IRK-SINDy in comparison to the RK4-SINDy and Conv-

Fig. 8.  Lotka-Volterra model: a comparison of the reference model and recovered models using data collected 
at constant time stepsize. (a) Phase portraits, (b) coefficient matrices for m ∈ {801, 101, 51, 31}. Compared 
to Conv-SINDy and RK4-SINDy, IRK-SINDy produces a sufficiently sparse, interpretable and generalizable 
model.
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SINDy methodologies. All hyperparameters and neural network architectures in these six illustrative examples 
are detailed in Table 5.

Conclusion
We have proposed an implicit Runge-Kutta based sparse identification of nonlinear dynamics, representing 
a new class of data-driven methods for discovering the governing equations of nonlinear dynamical systems 
from sparse and noisy datasets. Our innovative methodology, by integrating Gauss methods as a subclass of 
A-stable IRK methods by the highest accuracy with sparse regression, has demonstrated an impressive capability 
to directly encode the physical laws and biological mechanisms governing a specified dataset into a system 
of differential equations. In this work, we develop data-driven algorithms that are independent of derivative 
information and exhibit high robustness to data scarcity. The major challenge of these algorithms pertains to 
the computation of the stage values of IRKs, which has led to two general approaches: (a) iterative schemes 
for solving systems of nonlinear algebraic equations, including fixed-point and Newton’s iterations, and (b) 
deep neural networks. The resultant algorithms have evidenced promising outcomes across a diverse family 
of benchmark problems in the field of data-driven discovery of differential equations, particularly those with 
biological motivation. This framework opens a new path for applying the integration of three pivotal techniques-
numerical methods for solving differential equations, sparse regression, and deep learning-to directly model 
physical and biological phenomena from datasets.

Models Initial conditions Library order Iterations #hidden layers, #neurons and activation functions Learning Rates λ

Linear damped
oscillator [2.0 0.0]T 3 [15000] + 2 × [1000] 4 × [32], Tanh (0.01, 0.001) 0.05

Linear damped
oscillator with noise [2.0 0.0]T 3 [20000] + 2 × [2000] 4 × [32], Tanh (0.005, 0.0001) 0.06

Cubic damped
oscillator [2.0 0.0]T 3 [15000] + 2 × [1000] 4 × [32], Tanh (0.01, 0.001) 0.05

FitzHugh-Nagumo [0.0 0.0]T 3 [20000] + 7 × [1000] 4 × [32], Tanh (0.001, 0.0001) 0.01

Lorenz attractor [−8 7 27]T 3 [20000] + 2 × [2000] 1 × [256], SIREN (0.5, 0.0001) 0.5

Lorenz attractor
with noise [−8 7 27]T 3 [20000] + 2 × [2000] 1 × [256], SIREN (0.1, 0.0001) 0.5

Lotka-Volterra [1.8 1.8]T 2 [25000] + 2 × [6000] 2 × [64], SIREN (0.001, 0.0001) 0.1

Logistic growth 0.1 2 [20000] + 2 × [5000] 3 × [32], Tanh (0.001, 0.0001) 0.025

Table 5.  Summary of hyperparameters and neural network configurations for all numerical experiments.

 

Fig. 9.  Logistic growth model: a comparison of the reference model and recovered models using data collected 
at constant time stepsize. (a) Phase portraits, (b) coefficient matrices.
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Nevertheless, it is essential to acknowledge that the application of these algorithms to benchmark problems 
has revealed impracticality of approach (a) due to the computational complexity and the execution time of the 
algorithm. This is why approach (b) was designed and has successfully demonstrated its efficacy through the 
appropriate selection of neural network architecture. Deep IRK-SINDy, when applied to benchmark problems 
such as the two-dimensional damped harmonic oscillatory systems, FitzHugh-Nagumo model, Lorenz attractor, 
predator-prey dynamics, and logistic growth, has outperformed RK4-SINDy, which was similarly introduced 
by integrating the fourth-order Runge-Kutta method with sparse regression, as well as the conventional SINDy 
in the case of data scarcity. Throughout this study, it was revealed that these algorithms are resistant to noise. 
In this work, the Savitzky-Golay filter was employed to reduce noise and enhance the fidelity of the discovered 
equations.

Although this work has produced highly promising results, it is likely that the reader would concur that 
the number of questions engendered by this investigation significantly exceeds the answers it provides. Which 
neural network architecture is optimally suited for a particular dataset? How can parametric dynamical systems, 
dynamical systems incorporating control terms, and equations including rational terms be effectively identified 
using the IRK-SINDy framework? How can this method be used to discover the governing equations for systems 
involving partial derivatives? Is the mean-squared error the most appropriate choice for the loss function? How 
can we develop algorithms that maintain robustness in the face of high noise levels within scenarios characterized 
by data scarcity, particularly considering the recent advancements in neural network architectures?

Certainly, in light of the numerous challenges present, further research is needed to establish a robust 
foundation in this field. Finally, the principal factor contributing to the robustness of IRK-SINDy n the context 
of data scarcity is related to the reduced stepsize constraints in A-stable methods and the high accuracy of 
IRK methods. In the future, we would like to extend the proposed framework through employing alternative 
high-order implicit methods that possess lower computational cost and data-independent implementations, 
thereby facilitating integration with sparse identification in such a way that approach (a) becomes practical and 
approach (b) more efficacious. Furthermore, data-driven discovery of governing PDEs using IRK-SINDy could 
be a possible research direction in e.g. pattern formation.

Data availability
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