Table 8 Comparative evaluation of GraphFedAI with recent DDoS detection approaches (2023–2025).

From: GraphFedAI framework for DDoS attack detection in IoT systems using federated learning and graph based artificial intelligence

Model

Reference

Year

Learning method

Accuracy (%)

F1-score (%)

Scalability

Privacy preservation

PortMap detection (CICDDoS2019)

20

2024

Machine Learning (RF, SVM)

91.2

90.8

Medium

No

KNN-neural network hybrid

24

2024

KNN + Neural Network

93.5

93.0

Low

No

RF-PCA-ANN hybrid

25

2024

Random Forest + PCA + ANN

94.8

94.2

Medium

No

Ensemble detection (IEEE ISCS)

26

2024

Ensemble Learning

95.3

94.8

Medium

No

Hybrid DL for DoS in SDN

27

2023

Hybrid Deep Learning (CNN + RNN)

96.0

95.7

High (SDN-specific)

No

Hybrid SAE + Checkpoint DL

29

2023

Stacked Autoencoder + Checkpoint Net

95.4

94.9

Medium

No

P3GNN (APT detection in SDN)

30

2024

Graph Neural Network

96.8

96.2

High

Partial

Federated learning against poisoning

31

2024

Robust Privacy-Preserving FL

97.3

96.9

High

Yes

AP2FL (Healthcare)

32

2023

Auditable Privacy-Preserving FL

95.9

95.1

Medium

Yes

FL-IDPP

33

2025

Federated Learning + DNN

94.1

93.5

Medium

Yes

PCA-CNN

34

2024

PCA + CNN

91.6

91.0

Low

No

GraphFedAI (Proposed)

Proposed

–-

Federated Learning + GNN + Interpolation

98.7

98.4

High (non-IID capable)

Yes