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Chronic low back pain (CLBP) is a prevalent condition significantly reducing quality of life. Lumbar 
steroid injections are a widely used conservative treatment option, but their effectiveness varies 
among patients. This study aimed to develop a predictive framework that integrates clinical variables 
and patient demographics to evaluate post-treatment pain satisfaction in CLBP patients undergoing 
lumbar injection therapy. We performed a retrospective analysis of 212 CLBP patients to evaluate 
the treatment satisfaction and pain intensity changes using the Numerical Rating Scale (NRS). A 
Random Forest model, validated through nested cross-validation, achieved an average precision of 
0.865 in predicting treatment satisfaction. SHapley Additive exPlanations (SHAP) analysis revealed 
pain self-efficacy features, particularly coping mechanisms and household activities, as key outcome 
predictors of post-treatment pain satisfaction. Clinically significant pain reduction thresholds were 
identified at an absolute change of 2.09 and a relative change of 30 % on the NRS. Our findings reveal 
the biological and social factors influencing post-treatment pain in CLBP patients. The identified 
pain reduction thresholds and predictors may help clinicians to develop individualized management 
strategies, optimizing treatment outcomes and improving patient care. Future research should 
refine the predictive model by incorporating additional multimodal variables to better capture CLBP 
heterogeneity.

Low back pain (LBP) is a highly prevalent condition that affects more than 600 million people worldwide1, with a 
lifetime prevalence of up to 80%2–4. Approximately 10% of the cases persist for over 3 months, meeting the criteria 
for chronic low back pain (CLBP). The rising prevalence of CLBP5 poses significant challenges for individuals and 
public health systems6, as it remains the leading cause of years lived with disability worldwide1,7. Low back pain, 
defined as discomfort between the costal margins and the inferior gluteal folds, is often accompanied by leg pain 
and may present with additional symptoms such as stiffness, reduced range of motion, muscle spasms, localized 
tenderness, paresis, numbness, or tingling8. It can result from various causes, including nerve injury, spinal cord 
compression, muscle or ligament damage, inflammation, or infection8,9. The location and characteristics of pain 
can provide clues to its etiology, but identifying the precise source and determining the optimal treatment in 
clinical practice often requires considerable trial and error. This process is further complicated by the fact that 
the etiology of CLBP is frequently linked to psychosocial factors, with patients commonly reporting symptoms 
such as poor concentration, disrupted sleep, memory difficulties, and irritability10. The biopsychosocial model 
of pain11 describes the complex interplay among biological, psychological, and social factors contributing to 
the pathophysiological heterogeneity of CLBP. This complexity likely underlies and explains the considerable 
variability in treatment effectiveness12.

Lumbar injection, which involve administering local anesthetics and steroids to structures of the lumbar 
spine13, is a therapeutic option for patients with CLBP who do not respond to first-line analgesics and physical 
therapy. Despite its widespread use, evidence regarding the effectiveness of infiltration therapy for CLBP remains 
inconsistent, with studies reporting mixed outcomes across patients14,15. While some patients experience 
significant symptom relief, others gain little or no benefit, possibly due to differences in pain perception, 
psychological factors, and comorbidities16,17. Recognizing this variability, previous research emphasizes the need 
to understand the mechanisms driving treatment outcomes and develop individualized treatment strategies17–19.
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Personalized care approaches, using prognostic profiling and clinical prediction models, have demonstrated 
potential to improve treatment outcomes20,21. Although predictive tools show potential in identifying patients 
who could benefit from infiltration therapy22, their clinical implementation and utility remain very limited23. A 
significant barrier to progress is the absence of a well-defined outcome measure tailored specifically to assess the 
success of lumbar injection therapy24.

Currently, the severity of CLBP and its associated disability are commonly assessed using patient-reported 
outcome measures (PROMs)22,25,26, such as the numerical rating scale (NRS)27 and visual analog scale (VAS)27 
for pain intensity. Establishing a threshold that represents the smallest change in PROM scores perceived 
as beneficial by patients is essential to determine the clinical significance of a therapy28,29. While previous 
studies have explored such thresholds in surgical contexts30–33, there is a lack of studies addressing this need 
for lumbar steroid injection therapy. To bridge this gap, we leveraged data-driven methodologies to develop 
a comprehensive predictive framework for lumbar injection therapy in patients with CLBP by integrating 
clinical data and patient-specific demographics. First, we developed a predictive model to identify key factors 
influencing the effectiveness of lumbar steroid injection therapy, enabling the identification of patients most 
likely to experience improvements in pain perception. Treatment success was evaluated based on self-reported 
pain satisfaction following therapy. Next, we aimed to establish clinically relevant thresholds for pain reduction 
specific to infiltration therapy, focusing on the minimal reduction in pain scores required for patients to perceive 
treatment outcomes as satisfactory.

Methods
Study design and participants
A retrospective secondary analysis was performed using data from the Treatment Expectation and their Influence 
on Infiltration outcome (TREXI) study16. The TREXI study was a prospective observational longitudinal 
investigation carried out between February 2019 and December 2020 at the Department of Neurology, 
Schulthess Clinic in Zurich, Switzerland. The original cohort included 306 adult patients, aged 18 to 93 years, 
diagnosed with CLBP. For this secondary analysis, a subset of 212 patients who provided informed consent 
for the additional use of their data in research was included (Fig. 1a). The study was approved by the Cantonal 
Ethics Committee of Zurich (BASEC-NR 2023-02210) and complied with the ethical principles outlined in the 
Declaration of Helsinki.

Our study focused on patient-specific clinical and demographic characteristics as potential predictors 
of treatment response, excluding measures of patient expectations that were the main focus of the original 
analysis16. The experimental protocol comprised questionnaires administered in German at three time points: 
on the day receiving the lumbar steroid injection, immediately prior to treatment, immediately after receiving 
the lumbar steroid injection and two weeks after the treatment.

To align with the study’s objective of evaluating predictors of treatment response, data collected immediately 
after the treatment were excluded. This exclusion was implemented to ensure a clear separation between the 
baseline data and the post-treatment data. The baseline was redefined as T0, representing the period prior to 
injection therapy, and the post-treatment period was labeled as T1, corresponding to two weeks after injection.

Measures
Data collection encompassed a comprehensive set of questionnaire items addressing patients’ demographics, 
pain characteristics, and self-reported health status (Figure 1b).

Demographics: Demographic information including age, sex, and education level, as well as categories of 
professional status — categorized as self-employed, student, homemaker, retired, incapacitated, or unemployed—
was collected through questionnaires.

Pain characteristics: The duration of back complaints was recorded into intervals, namely less than 4 weeks, 
4 to 8 weeks, 8 to 12 weeks, and more than 12 weeks. Current back pain was assessed using numerical rating 
scales (NRS)27 which involve individuals rating their pain intensity on a scale from 0 (no pain) to 10 (worst 
pain imaginable). For participants who had previously undergone lumbar steroid injections, additional data 
were collected, including whether they experienced improvement after the last injection, the time elapsed since 
the previous treatment—categorized as less than 1 year, 1 to 2 years, or more than 2 years—and whether the 
procedure was performed by the same doctor or clinic. Motivation for treatment was assessed through sources 
of influence, including friends, family, the doctor performing the infiltration, general practitioner, internet, 
personal experience, and the importance of others’ opinions.

Self-reported health status: A comprehensive set of validated PROMs covering medication beliefs, expectations, 
empathy in care, and self-efficacy were collected when infiltration therapy was administered (T0) to gain a 
multidimensional understanding of the patient’s pain experience and its impact. The items were extracted from 
widely used questionnaires in clinical research26 and consisted of the following: The Perceived Sensitivity to 
Medicine (PSM) scale was utilized to evaluate patients’ perceived responsiveness to medication in general34. This 
questionnaire includes items assessing perceived susceptibility to medications, beliefs about experiencing strong 
reactions, perceptions of having stronger reactions than others, and concerns about side effects from regular 
medication use. Responses were recorded on a 5-point Likert scale, ranging from “strongly disagree” to “strongly 
agree.” Furthermore, the Consultation and Relational Empathy (CARE) measure was employed to record their 
evaluation of the overall care experience35. This questionnaire assesses various aspects of the patient-provider 
interaction, such as the provider’s ability to make the patient feel at ease, allow them to tell their story, feeling 
understood by the healthcare provider, be interested in them as a whole person, fully understand their concerns, 
show care and compassion, and explain things clearly. Responses are given on a 5-point Likert scale ranging 
from “poor” to “excellent”. For multidimensional assessment of pain and disability, the Core Outcome Measures 
Index (COMI) back score was used36,37. The COMI questionnaire is a concise 7-item questionnaire which 
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assesses the LBP disability, quality of life and pain perception including questions on back and leg pain intensity 
(0–10 NRS scale), function, symptom-specific well-being, general quality of life, and disability at work and 
social situations (5-point Likert scale)36,38. The COMI has been extensively validated39–42 against well established 
longer questionnaires such as the Roland Morris Disability Questionnaire37,43 and 36-item short-form health 
survey (SF-36)44,45. The Pain Self-Efficacy Questionnaire (PSEQ) was used to evaluate patients’ beliefs in their 
ability to cope with and manage pain despite its presence46. This questionnaire includes 10 items assessing the 
patient’s confidence in performing various activities despite pain, such as enjoying things, doing household 
chores, socializing, coping with pain without medication, achieving goals, engaging in leisure activities, coping 
with pain in general, accomplishing work tasks, leaving a normal lifestyle, and becoming more active. Responses 
are provided on a 7-point scale ranging from 0 (“not at all confident”) to 6 (“completely confident”).

Outcomes
The primary focus of this study was to assess the effectiveness of lumbar steroid injections by evaluating both 
patient satisfaction and clinically meaningful improvements in pain intensity levels two weeks after treatment 
(T1). Accordingly, the main outcome was pain level satisfaction. A dichotomized variable was created based 

Fig. 1.  Study design for predicting patient satisfaction with lumbar steroid injection therapy. (a) Retrospective 
cohort selection: the flowchart illustrates the inclusion procedure of participants for the retrospective cohort 
analysis. (b) Data collection timeline for evaluating lumbar steroid injection outcomes in chronic low back 
pain patients, including baseline assessments (T0) and two-week post-treatment follow-up (T1). (c) Statistical 
analysis framework comprising demographic variable analysis and machine learning baseline predictive 
modeling, classifier optimization incorporating feature selection, model hyperparameter tuning and feature 
importance (SHAP) analysis, and ROC curve analyses for clinical significance of minimal change in reported 
pain metrics. (d) Predictive model development: the process starts with nested cross validation, splitting data 
for model evaluation and hyperparameter tuning. Data preprocessing includes managing missing values, 
encoding categorical variables, and scaling features. Feature engineering includes feature normalization and 
selection, where the most informative ones are chosen based on statistical tests. Model tuning in the inner 
loop optimizes the best baseline classifier hyperparameters. The model’s performance is assessed with metrics 
such as AUC, F1-score, and Average Precision. Finally, SHAP analysis interprets predictions and identifies key 
features influencing patient satisfaction.
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on the question: “Are you satisfied with the current pain level?” (“Sind Sie mit dem aktuellen Schmerzniveau 
zufrieden?”). Patients rated their satisfaction on a scale from 0 to 10, where 0 indicated complete satisfaction 
and 10 indicated no satisfaction at all. To align with clinical success criteria, a cut-off point of 6 was established. 
Patients scoring between 0 and 6 were classified as satisfied, reflecting a successful treatment outcome, while 
those scoring between 7 and 10 were classified as dissatisfied. Secondary outcomes focused on changes in pain 
intensity to objectively assess improvements in maximum pain levels. The baseline pain (NRST0 ) level was 
computed as the maximum pain reported in the first two questions of the COMI questionnaire referring to back 
and leg pain evaluated using 0-10 NRS. The absolute change in pain (∆Pain) was calculated as the difference 
between baseline pain (NRST0 ) and pain two weeks after treatment (NRST1 ), computed as the maximum 
between back and leg pain reported at T1. To account for individual variability in baseline pain levels, a relative 
change in pain (∆rPain) was calculated by normalizing the absolute change to the baseline value, as follows:

	
∆rPain = NRST0 − NRST1

NRST0

Statistical analysis
Figure 1c illustrates the comprehensive statistical analysis workflow, from initial data preprocessing through 
descriptive statistics to feature analysis of predictive models. Descriptive statistics were used to summarize the 
general characteristics of the participants across the two groups created according to the “pain level satisfaction” 
variable.

Continuous variables were reported as mean ± standard deviation. Categorical variables were presented 
as frequencies and percentages. For groups comparison, Student’s t-test (or Wilcoxon signed-rank tests when 
appropriate) and chi-square test were used for continuous and categorical variables, respectively. To control 
for multiple comparisons and maintain a false discovery rate of 5%, all statistical comparisons were adjusted 
using the Benjamini-Hochberg correction method. All statistical analysis were performed using the statsmodels 
library in Python version 3.10.

Baseline predictive models of treatment satisfaction
A data-driven predictive model was developed to classify treatment outcomes based on the dichotomized 
pain level satisfaction variable, distinguishing between “satisfied” and “dissatisfied” patients. This section 
outlines the methodological approach used to design and benchmark predictive models. The development and 
implementation of the predictive models, were performed using Python version 3.10, with the scikit-learn and 
PyCaret47.

Outer cross-validation data split
To mitigate the potential risk of overfitting associated with the limited sample size, a stratified nested cross-
validation (CV) methodology was employed48. Nested CV involves two iteration loops over the data. In the first 
iteration, the outer loop applied a 10-fold stratified CV scheme to divide the dataset into training and testing sets, 
ensuring class balance (i.e., satisfied and dissatisfied) across folds and providing unbiased estimates of model 
generalization performance on completely unseen data.

Feature engineering and data preprocessing
Prior to predictive model training, several preprocessing steps were performed to ensure the quality and 
relevance of the features. Features with missing values exceeding 15% were removed, given the limited dataset 
size, to prevent bias and ensure reliable analysis. The remaining missing data were imputed using an iterative 
approach: Random Forest (RF) was used for numeric features, and K-Nearest Neighbors (KNN) for categorical 
features, iterating five times for optimal imputation. Importantly, data imputation was completed prior to the 
outer cross-validation split to avoid any information leakage. Features were encoded based on their data type 
to ensure effective model training: numeric features were standardized using z-scores for consistent scaling, 
categorical variables were one-hot encoded to convert them into a numerical format, and ordinal features were 
label encoded to preserve their inherent order. To address potential multicollinearity and improve classification 
performance, features with a variance less than 0.01, as well as those with a correlation coefficient greater than 
0.7, were removed.

Baseline models training
During each outer loop cycle, the training data was further split using a 10-fold stratified inner CV to train 
the classifier. This step ensured the selection of optimal model configurations without introducing information 
leakage from the test set. This nested approach kept model training and hyperparameter tuning separate from 
the final performance evaluation, thereby improving the reliability of the generalization assessments.49.

Multiple baseline classifiers were trained on all the features and benchmarked using various classification 
algorithms: Logistic Regression50 (LR) , KNN51, Support Vector Machines (SVM)52 with linear kernel52, Ridge 
Classifier53 (RC), Naive Bayes54 (NB), Linear (LDA) and Quadratic Discriminant Analysis55 (QDA) , Decision 
Trees56 (DT), and ensemble methods including Extra Trees57 (ET), RF58, AdaBoost59, Gradient Boosting 
Machine60 (GBM), XGBoost61, and LightGBM62. These baseline comparison provided a reference point for 
subsequent optimization.

Classification model performance evaluation
Predictions from all outer loop iterations were concatenated to calculate the final performance metrics, 
providing a robust estimate of the model’s generalization ability while maintaining strict train-test separation. 
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Model performance was primary assessed based on F1-score, average precision (AP), and Matthews correlation 
coefficient (MCC), which are classification metrics particularly useful for imbalanced datasets. The F1-score 
represents the harmonic mean of precision and recall calculated as:

	
F 1 = 2 × Precision × Recall

Precision + Recall
= T P

T P + 0.5 × (F P + F N)

where TP, FP, and FN denote true positives, false positives, and false negatives, respectively. The F1 score ranges 
from 0 to 1, with 1 indicating perfect precision and recall, and 0.5 indicating random guessing. The AP for a 
given class is calculated as the area under the precision recall curve:

	
AP =

N∑
n=1

P (n)∆R(n)

where P(n) denotes precision at the n-th recall level, while ∆R(n) measures changes between consecutive recall 
levels. AP ranges from 0 to 1, with 1 indicating optimal precision and recall and 0 indicating performance 
equivalent to random guessing. MCC is a robust summary metric computed as the correlation coefficient 
between observed and predicted binary classifications63:

	
MCC = T P × T N − F P × F N√

(T P + F P )(T P + F N)(T N + F P )(T N + F N)

MCC values range from -1 to +1, where +1 represents a perfect prediction, 0 indicates that the prediction is not 
better than a random prediction, and -1 represents total disagreement between prediction and observation. In 
addition, standard classification metrics including precision, recall, accuracy, Cohen’s Kappa coefficients, and 
Area under the Receiver Operating curve (AUC) were used for a comprehensive evaluation.

Optimized predictive models of treatment satisfaction
Building on the baseline comparison, the best-performing model from the cross-validation splits was further 
tuned (Fig. 1d) with the objective of identifying the most informative clinical and demographic characteristics 
through statistical techniques. The data encoding procedures, i.e., encoding and standardization of variables, 
remained consistent with the approach used in the baseline classifiers, ensuring methodological uniformity.

Feature selection and oversampling
Next, feature selection was performed according to an XGBoost estimator based importance ranking, retaining 
the top 70% (35 features). To address the class imbalance in the dataset, random oversampling was applied 
during model training. This technique involved duplicating samples from the minority class to balance the class 
distribution.

Optimized model training and hyperparameter optimization
We optimized hyperparameters for the best-performing baseline model, RF, using Bayesian and random grid 
search. This optimization aimed to identify the most informative clinical and demographic characteristics through 
systematic exploration of the model’s parameter space while minimizing overfitting. The hyperparameters were 
tuned through 5-fold stratified cross-validation (inner folds) for each outer fold, with predefined hyperparameter 
space ranges.

The RF model was configured with 10 to 1000 trees, with a higher number of trees that potentially improve 
performance, but increase computational time. The tree depth ranged from 1 to 32, allowing the model to 
capture more complex patterns, although deeper trees carry a higher risk of overfitting. The risk of overfitting 
was mitigated by adjusting split node samples (2 to 20) and leaf samples (1 to 20). The feature fractions for 
splitting were varied between 0.1 and 1.0, with smaller values introducing randomness to reduce overfitting.

Interpretability
Feature importance was assessed using SHapley Additive exPlanations (SHAP), which identified the principal 
predictors for the best-performing classifier. SHAP values provide a quantitative measure of the influence of 
individual features, representing the average marginal contribution of each feature to the model’s prediction 
for a given instance64. These values are computed by comparing the model’s predictions with and without each 
feature, considering all possible feature combinations64. Larger absolute SHAP values indicate stronger effects, 
while the sign of the value shows whether a feature with a positive SHAP value increases or decreases the 
prediction outcome.

Clinical important absolute and relative change in patient-reported pain intensity
ROC analysis (Fig. 2) was performed to identify meaningful thresholds for both absolute (∆Pain) and 
relative (∆rPain) changes in patient-reported pain scores reduction after lumbar infiltration, using ’pain level 
satisfaction’ as a reference variable. The ideal point on an ROC curve65, would be in the upper left corner (0, 1), 
representing the best trade-off between specificity (Sp) and sensitivity (Se) for a diagnostic test (Sp 100%, Se 
100%)66. In our analysis, the optimal cut-off points on these curves would represent the smallest change in pain 
score, absolute and relative, that best distinguishes between satisfied and unsatisfied patients. The optimal cut-off 
point can be determined using several approaches67.
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•	 The Euclidean distance method: Finds the ROC point closest to the ideal cut-off (0,1) by minimizing the 
Euclidean distance67.

•	 Youden method: The Youden Index68 measures diagnostic performance by summing sensitivity (Se) and 
specificity (Sp): J = Se + Sp − 1 = Se − (1 − Sp). The optimal cut-off is at the maximum Youden Index, 
with higher values indicating greater effectiveness by maximizing the vertical distance from the random ROC 
(diagonal line).

•	 Farrar method: The Farrar method determines the threshold at which sensitivity and specificity are equal67, 
to equally identify satisfied (Se) and unsatisfied patients (Sp).

Predictor of treatment success based on change in patient-reported pain intensity
To further assess the robustness of our classification approach under a clinically meaningful definition of success, 
we conducted an additional evaluation using the smallest relative change in baseline pain scores (∆rPain) as a 
threshold. Specifically, based on the optimal cut-off identified in our ROC analysis, we stratified participants into 
“satisfied” or “dissatisfied” groups according to whether their relative reduction in self-reported pain exceeded 
this threshold at T1. This aims to reflect a more clinically relevant perspective of improvement, since percentage-
based reductions in pain often better capture individual differences than absolute changes alone.

In this simplified analysis, we applied the same preprocessing and cross-validation schemes but focused 
exclusively on the set of baseline classifiers without hyperparameter optimization (see previous section). By 
benchmarking these models, we obtained a clear view of how different algorithms perform when using a 
clinically significant cut-off for pain relief, rather than the original dichotomous satisfaction variable.

Results
Demographics and baseline pain characteristics
Table 1 presents the sociodemographic characteristics of 212 patients stratified by pain level satisfaction, with 
158 patients (75%) in the satisfied group and 54 patients (25%) in the dissatisfied group, with the mean age being 
67.8 years (SD = 2.7), or gender distribution, with 53% of the patients being female. The analysis did not reveal 
statistically significant differences in age and gender distribution for the 2 groups. Educational backgrounds were 
comparable between groups, with vocational apprenticeships being the most common qualification, followed 
by higher vocational education. Professional status was similarly distributed across groups, with nearly half of 

Fig. 2.  The receiver operating characteristic (ROC) curve provides an assessment of the predictor’s efficacy 
by plotting true positive rate or sensitivity (Se) against false positive rate, or 1-specificity across multiple 
binarization thresholds. The ideal ROC curve (dashed green), indicative the ideal classification, and the 
diagonal (dotted gray) representing random prediction are included for comparative purposes. The highlighted 
(gray) area under the curve (AUC) serves as a summary statistic for overall classifier performance. The 
methods employed for determining a threshold that optimally equilibrates sensitivity and specificity comprise: 
the Euclidean Distance approach (blue), involving the minimization of distance (d) to the ideal threshold at left 
corner (0, 1); Youden’s Index, which focuses on maximizing the disparity between the Se + Sp − 1, finding 
the point furthest from the diagonal ROC; the Farrar Method (bronze), where the Sp equals Se, representing a 
balance between false positives and the complementary of false negatives.

 

Scientific Reports |        (2025) 15:27734 6| https://doi.org/10.1038/s41598-025-10907-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


the participants in both groups being retired. No statistically significant differences were observed between the 
groups in terms of education or employment status.

The majority of patients reported significant baseline pain, with a mean pain level of 5.8 ± 2.3 on the NRS 
(0-10), indicating substantial discomfort before treatment. Notably, 75% of patients had baseline pain levels 
of 5 or higher. After treatment, patients experienced a reduction in pain, with the mean pain level decreasing 
to 3.9 ± 2.6, reflecting an average pain reduction of 2.7 ± 2.5 points on the NRS. At baseline (T0), dissatisfied 
patients reported maximum higher back or leg pain levels compared to satisfied patients, 6.4 ± 2.1 vs. 
7.3 ± 2.4 (p = 4.865e − 03). After treatment (T1), this difference became more pronounced, with satisfied 
patients showing lower pain scores of 3.1 ± 2.2 while dissatisfied patients maintained high pain levels 
(6.2 ± 1.9, p = 5.685e − 17)

 Baseline predictive models of treatment satisfaction
We evaluated baseline classifiers with stratified cross-validation and quantified performance using per-fold mean 
AP, AUC, accuracy, F1-score, Cohen’s Kappa, and MCC without hyperparameter optimization, summarized in 
Fig. 3.

The RF demonstrated superior performance in terms of discriminative ability, achieving the highest AP of 
0.856 on the full cross-validated test set. In terms of overall metrics, the model showed an accuracy of 70.3%, a 
precision of 78.1%, and a recall of 83.5%, resulting in an F1-score of 0.807. The MCC and Cohen’s Kappa scores 
were 0.163 and 0.161, respectively, suggesting a weak correlation and fair agreement between predicted and 
actual classes. The ROC AUC was 0.731, indicating fair discriminative ability.

Optimized classifier performance
Although the optimal hyperparameters for the RF classifier exhibited slight variations across different folds, 
certain consistent trends were discernible. The number of estimators demonstrated a wide range, ranging from 21 
to 109 trees. Tree depth varied, with some folds using shallow trees (depths of 4–6) and others can grow without 
a predetermined limit. Feature sampling consistently targeted 70–90% of features. Conservative parameters for 
leaf nodes and node splitting required minimal samples (2–5 for leaves, 6–10 for nodes).

The tuned RF classifier demonstrated moderate predictive performance across multiple evaluation metrics, 
as visualized in Fig. 4a. The model achieved a ROC AUC of 0.688, indicating fair discriminative ability. The 
Precision-Recall curve (right of Fig. 4a) revealed an AP score of 0.846, showcasing a good precision-recall trade-
off. The confusion matrix (Fig. 4a) shows the model correctly identified 131 satisfied and 27 dissatisfied patients, 

Satisfied (n=158) Dissatisfied (n=54) p-valuefh

Demographics

 Age, mean (SD) 67.8 (±12.7) 63.0 (±16.4) 0.39

 Sex—female, N (%) 83 (52.5) 33 (61.6) 0.72

Worktime

 Unknown, N (%) 116 (73.4) 33 (61.1) 0.43

 Full time, N (%) 25 (15.8) 13 (24.1) 0.59

 Part time, N (%) 17 (10.8) 8 (14.8) 1.00

Education

 Unknown, N (%) 7 (4.4) 2 (3.7) 1.00

 No school, N (%) 0 (0.0) 1 (1.9) 1.00

 Secondary school, N (%) 9 (5.7) 2 (3.7) 1.00

 Vocational apprenticeship, N (%) 58 (36.7) 22 (40.7) 1.00

 Vocational-professional baccalaureate, N (%) 9 (5.7) 3 (5.6) 1.00

 Academic baccalaureate, N (%) 6 (3.8) 1 (1.9) 1.00

 Higher vocational education, N (%) 32 (20.3) 11 (20.4) 1.00

 University degree, N (%) 27 (17.1) 9 (16.7) 1.00

 Doctorate, N (%) 10 (6.3) 3 (5.6) 1.00

Profession (not exclusive)

 Self-employed, N (%) 28 (17.7) 4 (7.4) 0.42

 Student, N (%) 2 (1.3) 1 (1.9) 1.00

 Housework, N (%) 32 (20.3) 3 (5.6) 0.33

 Retired, N (%) 80 (50.6) 21 (38.9) 0.51

 Incapacity, N (%) 9 (5.7) 8 (14.8) 0.39

 Unemployed, N (%) 1 (0.6) 0 (0.0) 1.00

 Profession: other, N (%) 2 (1.3) 1 (1.9) 1.00

Table 1.  Descriptive statistics of sociodemographic variables stratified by reported pain level satisfaction. 
Data are presented as mean (± standard deviation) for continuous variables and frequency (percentage) for 
categorical variables. Statistical comparisons p-values are corrected via Benjamini-Hochberg method.
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Fig. 3.  The boxplots illustrate the distribution of each metric across cross-validation folds for each classifier 
model, facilitating a performance comparison of baseline classifiers utilizing various metrics: Area Under the 
ROC Curve (AUC), F1-score, Matthews Correlation Coefficient (MCC), Average Precision (AP), Accuracy, 
and Cohen’s Kappa. The classifiers included K-Nearest Neighbors (KNN), Random Forest (RF), Extra Trees 
(ET), Gradient Boosting Classifier (GBC), XGBoost, Ridge Classifier (RC), Linear Discriminant Analysis 
(LDA), LightGBM, Logistic Regression (LR), Decision Tree (DT), Support Vector Machine (SVM), AdaBoost, 
Naive Bayes (NB), and Quadratic Discriminant Analysis (QDA). RF achieved the highest mean Average 
Precision (AP) of 0.879 ± 0.012 and an Area Under the Curve (AUC) of 0.702 ± 0.020. RF also exhibited 
strong classification accuracy, with a mean of 0.729 ± 0.022 and an F1-score of 0.827 ± 0.014. In contrast, 
K-Nearest Neighbors (KNN) achieved the highest Cohen’s Kappa value of 0.228 ± 0.065 and the highest 
Matthews Correlation Coefficient (MCC) value of 0.239 ± 0.068.

 

Scientific Reports |        (2025) 15:27734 8| https://doi.org/10.1038/s41598-025-10907-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


while misclassifying 29 as satisfied and 25 as dissatisfied out of 212 patients. This distribution highlights a slight 
class imbalance, with the model demonstrating higher sensitivity for satisfied patients.

The F1 score of 0.824 reflected balanced performance between precision (0.819) and recall (0.829). Further 
evaluation of performance metrics provided additional insights: the MCC and Cohen’s Kappa values of 0.296 
indicated weak correlation and fair agreement between predicted and actual classes. The balanced accuracy of 
64.6% further underscored the model’s moderate classification capabilities, with an overall accuracy of 73.6%.

Feature importance analysis of optimized classifier
The SHAP analysis of the common features selected across all folds revealed that pain self-efficacy features were 
the most significant predictors of post-treatment pain level satisfaction, as illustrated in the bar plot in Fig. 4b.

The strongest predictor was patients’ perceived ability to stay active despite pain (pain_self_efficacy_activity), 
followed by patient age and days of activity limitation due to back pain(comi6_socialdisability_T0). The duration 
of severe back symptoms (duration_back_complaints) and baseline leg pain intensity (comi2_legpain_T0) showed 

Fig. 4.  (a) Classification results of the optimized random forest (RF) model for patient reported pain level 
satisfaction two weeks after lumbar steroid injection treatment (left) the confusion matrix shows the true and 
false positives and negatives classification (middle) receiver operating curve (ROC) curve (right) precision-
recall curve illustrating he relationship between precision and recall across classification thresholds.  (b) shap 
feature importance analysis plots: bar plot (left) illustrate the average relative significance and dot plots (right) 
reveals how each feature affects outcomes, where red dots indicate higher values and blue dots show lower 
values. The bar plot underscores the influence of pain self-efficacy activity, age and disability as well as pain 
temporal variables in the model outcome.
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moderate predictive influence. Medication sensitivity factors including history of side effects (medi_side_effects), 
self-reported susceptibility (medi_susceptible), and reaction to low doses (medi_week_dose_upset_body) 
exhibited weaker but statistically meaningful associations. Work disability days (comi7_workdisability_T0) and 
baseline functional impairment (comi3_function_T0) completed the predictor incluence ranking.

Clinical important change in patient-reported pain intensity and outcomes
The results in Fig. 5 present optimal thresholds for absolute and relative changes in pain scores from ROC curve 
analysis to distinguish between satisfied and dissatisfied patients after steroid injection therapy.

The ∆Pain threshold achieved an AUC of 0.77, while the ∆rPain cut-off point had an AUC of 0.81, 
indicating a strong potential to discriminate between satisfied and dissatisfied patients.

For the absolute change in pain ∆Pain, the Euclidean distance method identified an optimal threshold of 
2.09 (sensitivity: 0.64, specificity: 0.81), while the Youden index yielded a higher threshold of 2.94 with identical 
sensitivity (0.64) and specificity (0.81). The Farrar method suggested a lower threshold of 1.12, achieving higher 
sensitivity (0.76) but lower specificity (0.63).

For the absolute change in pain (∆Pain), the Euclidean distance method determined a threshold of 2.09, 
characterized by a sensitivity of 0.64 and a specificity of 0.81. Meanwhile, the Youden method identified a 
threshold of 2.94 accompanied by a sensitivity of 0.64 and a specificity of 0.81. The Farrar method yielded a 
threshold of 1.12, with a sensitivity of 0.76 and a specificity of 0.63. Considering the relative change in pain 
(∆rpain), both the Euclidean distance and Youden methods determined an optimal cut-off point of 0.30, with 
a sensitivity of 0.75 and a specificity of 0.85. The Farrar method identified a threshold of 0.27, with a sensitivity 
of 0.76 and a specificity of 0.73.

Taking into account the consistency between methods and the balance between sensitivity and specificity, 
a ∆Pain of 2.09 and a ∆rPain of 0.30 were identified as the best thresholds indicating the minimal clinically 
relevant enhancement in pain relief after steroid injection therapy.

Baseline classifiers for treatment success based on change in patient-reported pain intensity
A re-assessment of the baseline classifiers was conducted to predict patient satisfaction based on the previously 
established clinically meaningful threshold of 30% relative pain reduction (∆rPain = 0.30). RF demonstrated 
superior performance in terms of discriminative ability, achieving the highest mean AP of 0.757 ± 0.020 and 
AUC of 0.651 ± 0.020. Extra Trees (ET) exhibited strong performance with a mean AUC of 0.628 ± 0.024 
and accuracy of 0.579 ± 0.020 for relative pain reduction. MCC values were consistently low across all models, 
ranging from 0.003 for QDA to 0.196 for RF indicating weak correlation between predicted and actual classes. 
Similarly, Cohen’s Kappa values were also modest, with the highest value being 0.190 for RF, followed by 0.172 
for AdaBoost.

Discussion
Our findings underscore the complex and multifaceted nature of CLBP and highlight the potential of data-driven 
predictive modeling to refine therapeutic strategies for lumbar steroid injection therapy. The results demonstrate 

Fig. 5.  ROC curve analysis for absolute pain level (∆P ain) and relative (∆rP ain) change in reported 
maximum pain between baseline and 2-weeks after treatment. The figure illustrates the best thresholds of both 
changes in pain scores that can be used in distinguishing between satisfied and dissatisfied patients following 
lumbar steroid injection therapy.
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that baseline characteristics, particularly psychosocial factors such as pain self-efficacy, play a crucial role in 
determining patient satisfaction after treatment. Previous research showed the importance of expectation on 
treatment outcome16. These insights provide a strong foundation for the development of personalized treatment 
plans aimed at optimizing outcomes in CLBP patients.

The predictive model developed in this study represents a meaningful advance in understanding and 
addressing the heterogeneity of treatment responses. By highlighting individualized predictors like pain self-
efficacy, it enables personalized treatment strategies and better resource allocation. Additionally, the model’s use 
of outcome-driven metrics, such as clinically meaningful pain reduction thresholds, provides actionable insights 
for standardizing evaluations and optimizing patient-centered care in CLBP. Although our model achieved high 
average precision (AP: 0.846), the moderate Area Under the Curve (AUC: 0.688) and relatively low Matthews 
Correlation Coefficient (MCC: 0.296) warrant careful interpretation within the clinical context. This metric 
pattern reflects the well-documented behavior of evaluation measures in imbalanced datasets rather than 
fundamental model limitations69. The MCC’s conservative nature in imbalanced scenarios often produces low 
values even when overall model performance remains clinically meaningful70. From a clinical decision-making 
perspective, our model’s high AP is particularly valuable, as correctly identifying patients likely to benefit from 
treatment often takes precedence over achieving perfect metric balance. The moderate AUC values still represent 
fair to good discriminative ability, with values above 0.7 generally considered clinically useful for decision 
support. Importantly, our decision to preserve the natural class distribution (75% satisfied patients) maintains 
clinical relevance, as recent evidence suggests that class imbalance corrections can harm model calibration and 
lead to systematic risk overestimation in clinical prediction models71.

The prominence of pain self-efficacy measures as key predictors suggests that our model captures clinically 
meaningful patterns rather than simply exploiting class imbalance. However, future clinical implementation 
will require careful attention to model calibration to ensure that predicted probabilities accurately reflect true 
outcome risks for individualized patient stratification.

The feature importance analysis underscores the multidimensional nature of CLBP outcomes, with 
psychosocial factors emerging as the most significant predictors of patient satisfaction. Specifically, SHAP 
analysis revealed that pain self-efficacy activity—the ability to stay active despite pain—was the strongest 
contributor to post-treatment satisfaction. This finding highlights the critical role of psychological resilience in 
shaping patient outcomes, aligning with prior research emphasizing the importance of self-efficacy in chronic 
pain management72. Demographic and functional variables emerged as significant contributors to treatment 
outcomes in CLBP. Patient age and days of activity limitation due to back pain (comi6_socialdisability_T0) ranked 
as the second and third most influential predictors, respectively. These findings suggest that older patients and 
those with greater activity limitations may experience worse treatment outcomes, consistent with prior research 
highlighting the impact of age and functional capacity on recovery trajectories in CLBP73.

Clinical factors, including the duration of severe back symptoms (duration_back_complaints) and baseline 
leg pain intensity (comi2_legpain_T0), also demonstrated moderate influence. These variables reflect the 
complex interplay between symptom severity and treatment response, as supported by studies identifying 
symptom duration and baseline pain intensity as important prognostic factors for pain reduction and disability 
improvement in multidisciplinary treatment programs for LBP74,75.

The ROC analysis revealed the minimum score for pain reduction that patients perceive as beneficial after 
steroid injection therapy. The relative change in pain intensity demonstrated superior discriminative capabilities 
based on the ROC-AUC analysis (Fig. 5). The AUC for the relative change threshold was slightly higher (0.81 
vs 0.78) than that for the absolute change threshold, suggesting that considering the percentage reduction in 
pain might be more accurate in predicting patient satisfaction than the absolute change. This superiority can be 
explained by the percentage reduction’s ability to account for baseline variability in pain intensity. Patients with 
higher baseline pain levels may require larger absolute reductions to perceive meaningful relief, while those with 
lower baseline levels may find smaller absolute reductions sufficient. By normalizing pain reduction relative 
to the initial intensity, percentage change offers a more individualized and context-sensitive measure, better 
capturing patient satisfaction across a diverse population. The identified pain reduction thresholds, consisting of 
an absolute change of 2.0 NRS points and a relative reduction of 30%, are consistent with the range of reductions 
previously documented in patients with acute pain28. These thresholds provide objective measures for assessing 
treatment outcomes, managing patient expectations, and standardizing CLBP steroid injection evaluations in 
clinical settings.

Limitations
Despite its strengths, our study has several limitations. One limitation stems from the secondary analysis design, 
which constrained our access to comprehensive diagnostic documentation. The original cohort was collected 
to investigate treatment expectations rather than injection decision-making protocols, resulting in limited 
systematic diagnostic information typically required for prospective injection studies. Specifically, we lacked 
detailed records of the diagnostic criteria used to identify facet joint pain, imaging findings (MRI, CT) informing 
injection site selection, and comprehensive clinical histories guiding level-specific targeting decisions. While the 
dataset included information on previous lumbar infiltrations, medication use, and pain characteristics, these 
variables provide only partial insight into the patient’s clinical background. Having said this, for all patients 
included in our study, the injection site was chosen based on a thorough clinical examination and imaging (MRI 
and/or CT), following a standard clinical procedure at Schulthess Clinic.

Methodological limitations further affect our findings. The relatively small sample size (n=212) may have 
limited the ability of the model to generalize to broader populations. Furthermore, the use of PROM as the 
primary endpoint, while clinically relevant, is subjective in nature and may be influenced by recall bias or 
patient expectations. Furthermore, the dichotomization of the satisfaction outcome variable may oversimplify 
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the complexity of pain level satisfaction. Although this binary classification is necessary for analysis, it can 
potentially lead to a loss of granularity with respect to degrees of satisfaction and their contributing predictors. 
Future models should employ ordinal or continuous outcomes for deeper insights into patient satisfaction and 
treatment response. Exploring the integration of longitudinal data, including repeated assessments of pain and 
function, may also provide a more dynamic understanding of treatment responses.

Future research should address these limitations. Prospective studies should validate these findings in larger 
and more diverse cohorts and incorporate objective measures, such as functional imaging or biomarker analysis, 
to complement self-reported data. Future work should also aim to enhance the data-driven predictive model 
by incorporating additional relevant factors, with a focus on multimodal variables (e.g. imaging findings) that 
better capture the heterogeneity of CLBP. The integration of multimodal variables, including comprehensive 
imaging data and psychosocial assessments, could significantly improve the model’s predictive accuracy and 
clinical applicability. Finally, examining the utility of identified pain reduction thresholds across distinct CLBP 
phenotypes may offer valuable insights for optimizing conservative treatment strategies.

Conclusion
In summary, this study underscores the intricate nature of CLBP and the potential of predictive modeling to 
inform more personalized treatment approaches. Psychosocial factors, particularly pain self-efficacy, emerged 
as significant contributors to patient satisfaction, reinforcing the need to address psychological dimensions 
alongside physical interventions. The identified thresholds for pain reduction provide practical benchmarks for 
evaluating treatment outcomes and standardizing clinical practices. Despite promising predictive performance, 
the model’s limitations highlight the necessity for further refinement and validation with larger, more diverse 
populations. Future efforts should prioritize integrating multimodal data, such as imaging and comprehensive 
psychosocial assessments, to enhance the predictive power and clinical utility of these models.

Data availibility
Anonymized data used in this study will be made available upon reasonable request to zina-mary.manjaly@kws.
ch and in compliance with the General Data Protection Regulation (EU GDPR). We publish all code required to 
reproduce the presented results in our GitLab repository: ​h​t​t​p​s​:​​​/​​/​g​i​t​l​a​​b​.​e​t​h​​z​.​​c​h​​/​B​M​D​S​l​​​a​b​/​p​u​​b​l​i​c​a​t​​i​​o​n​s​/​​​l​o​w​-​​b​​a​c​
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