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Tomato leaf disease detection is critical in precision agriculture for safeguarding crop health and 
optimizing yields. This study compares the latest YOLO architectures, including YOLOv8, YOLOv9, 
YOLOv10, YOLOv11, and YOLOv12, using the Tomato-Village dataset, which contains 14,368 images 
across six disease classes. All models are trained under identical settings to ensure a fair evaluation 
based on precision, recall, mean Average Precision, training time, and inference speed. Results show 
that YOLOv11 consistently outperforms the other architectures, achieving the highest accuracy with 
competitive training times and acceptable latency. YOLOv10, YOLOv8, and YOLOv12 also deliver 
strong results, with YOLOv12n emerging as the most effective lightweight model for resource-
constrained environments. In contrast, YOLOv9 demonstrates the weakest performance, requiring 
more training time and exhibiting higher latency. Overall, YOLOv11 is positioned as the most effective 
solution for tomato leaf disease detection, providing a strong benchmark for future advancements in 
agricultural technology.
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Tomato (Solanum lycopersicum) is one of the most widely cultivated and consumed fruits globally1. Its regular 
consumption has been linked to reduced risks of various health conditions due to its nutritional benefits2, 
including high levels of vitamin C, potassium, and antioxidants such as lycopene3. In addition, tomato plays 
an essential economic role by supporting millions of smallholder farmers and contributing significantly to 
global agricultural economies4. However, its cultivation is vulnerable to a wide range of plant diseases caused 
by bacteria, fungi, and viruses5, which can reduce yields, deform fruit quality, and increase production costs6–8. 
These challenges can ultimately disrupt supply chains and affect consumer prices.

In tomato plants, diseases typically manifest through visible symptoms on the leaves, such as discoloration, 
spots, or deformities9,10. Traditionally, farmers have relied on manual inspection to monitor these diseases7, a 
method that is time-consuming, labor-intensive, and prone to human error7,11. Manual inspection often fails 
to adequately cover large agricultural areas, leading to delayed detection and reduced treatment effectiveness8. 
To address these limitations, recent advances in Artificial Intelligence (AI) and Computer Vision (CV) have 
introduced automated approaches for crop monitoring2,4. By leveraging machine learning algorithms and image 
processing, CV systems enable rapid, accurate identification of disease symptoms12, improving efficiency and 
enabling timely disease management at scale5,12.

Within CV, object detection has emerged as a key technique for leaf disease detection. It enables the 
identification and localization of multiple objects within an image13, allowing for the rapid processing of large 
datasets and providing real-time insights for disease management14,15. Among object detection frameworks, You 
Only Look Once (YOLO) stands out for its high speed and accuracy16,17. Unlike multi-stage approaches such 
as Mask R-CNN, YOLO processes the entire image in a single pass18, making it ideal for real-time agricultural 
applications. Over successive versions, YOLO has consistently improved in precision, robustness, and efficiency, 
solidifying its position as one of the leading object detection frameworks.

Based on the previous discussion, this work conducts a comprehensive comparison of the latest YOLO 
architectures, YOLOv8, YOLOv9, YOLOv10, YOLOv11, and YOLOv12, for tomato leaf disease detection. 
These architectures represent the most recent official releases and reflect state-of-the-art advancements in object 
detection. Our analysis focuses on evaluating their effectiveness, efficiency, and practicality in agricultural 
scenarios, aiming to identify the best-performing model and provide actionable insights for real-world 
deployment. To the best of our knowledge, this is the first comprehensive study to benchmark these five YOLO 
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versions in the context of tomato leaf disease detection, offering a timely contribution for both agricultural 
practitioners and AI researchers. The contributions of this work are summarized as follows:

•	 Providing a technical overview of the latest YOLO architectures: YOLOv8, YOLOv9, YOLOv10, YOLOv11, 
and YOLOv12 highlighting their advancements and key features in the field of object detection.

•	 Conducting a comprehensive performance analysis to evaluate the effectiveness, efficiency, and accuracy of 
these architectures in the context of tomato leaf disease detection.

•	 Establishing a benchmark for future research to support the development of improved object detection mod-
els and architectures tailored for agricultural applications.

•	 Offering practical insights for agriculture by demonstrating the applicability of advanced computer vision 
techniques and their potential for integration into AI-driven crop health monitoring systems.

Related work
The task of leaf disease detection has been widely studied in recent years due to its importance in precision 
agriculture and crop management. YOLO-based architectures have gained significant attention due to their 
balance between accuracy and inference speed, making them well-suited for real-time agricultural applications. 
Several studies have explored the use of YOLO models for detecting leaf diseases, demonstrating their effectiveness 
in identifying different pathological conditions in crops. Given the impact of early disease detection on yield 
optimization and resource management, research in this area remains highly relevant, driving continuous efforts 
to refine and evaluate detection models.

To begin, the study in19 evaluates YOLOv5, YOLOX, Scaled YOLOv4, and SSD using a dataset of 3154 images 
from corn, potato, and tomato plants, covering eight disease classes. Results show that YOLOv5 outperforms 
the others in training speed and mAP. Similarly,20 compares YOLOv5 and YOLOv6 on the PlantDoc dataset, 
which contains 2569 images across 13 plant species and 17 diseases. YOLOv5 achieves a higher mAP@50, while 
YOLOv6 surpasses it in mAP@50:95, with YOLOv5 being 2.96 times faster in training.

The study in21 compares YOLOv5, YOLOv7, and YOLOv8 for citrus leaf disease detection using a dataset 
of 2684 images across three disease classes: Anthracnose, Melanose, and Brown Spot. YOLOv8 achieves the 
highest performance, reaching 91.6% mAP@50:95 and significantly outperforming YOLOv5 and YOLOv7. 
Similarly,22 evaluates YOLOv7, YOLOv8, and Faster R-CNN on custom datasets for mango (1522 images, three 
classes) and guava (647 images, four classes). YOLOv8 again surpasses the other models in F1-score and mAP, 
demonstrating strong adaptability to small datasets.

Expanding YOLO evaluations,23 analyzes YOLOv5, YOLOv8, and YOLOv9 for leaf disease detection using 
a dataset of 8,858 images, including healthy and diseased leaves from apples, cucumbers, tomatoes, and grapes. 
YOLOv9 achieved the best performance, with precision, recall, and F1-scores exceeding 90%. Similarly,24 uses 
the PlantDoc dataset to compare YOLOv5, YOLOv6, YOLOv8, and YOLOv9, where YOLOv9 again led in 
precision, recall, and mAP, while YOLOv5 attained the highest F1-score, demonstrating strong competitiveness 
against newer models.

Further expanding the evaluations,25 analyzes YOLOv8, YOLOv9, and YOLOv10 for detecting Fusarium 
disease in banana leaves using a binary-class dataset of 450 images. YOLOv9 achieved the best mAP@50:95, 
highlighting its localization capability. Similarly,26 evaluates YOLOv5, YOLOv8, YOLOv9, and YOLOv10 for 
melon leaf disease detection using a dataset of 600 images across five disease classes, where YOLOv9 again 
outperformed all models, achieving the highest mAP, precision, and recall, while YOLOv5 showed the lowest 
effectiveness.

As seen in the reviewed studies and summarized in Table 1, the comparative evaluation of YOLO architectures 
for leaf disease detection has attracted considerable attention. While multiple works have demonstrated 
the effectiveness of YOLO models, they differ widely in scope, datasets, and target crops. A common trend 
is the predominance of evaluations involving earlier YOLO versions, with limited studies addressing newer 
architectures such as YOLOv9, YOLOv10, and beyond. Thus, despite progress, a comprehensive assessment of 
the latest models remains lacking.

Another notable gap in the reviewed studies is the limited focus on tomato crops, despite their global 
agricultural and economic significance. Many works combine multiple plant species with small sample sizes 
per species, raising concerns about evaluation comprehensiveness. Additionally, the small overall dataset sizes 
question the robustness of performance assessments, as limited samples may not reflect real-world variability. 

Models Plant species Number of diseases Number of images References

YOLOv5, YOLOvX, YOLOv4, SSD Corn, potato, tomato 8 3154 19

YOLOv5, YOLOv6 13 species 17 2569 20

YOLOv5, YOLOv7, YOLOv8 Citrus 3 2684 21

YOLOv7, YOLOv8, Faster R-CNN Guava, mango 4 (guava), 3 (mango) 1522 22

YOLOv5, YOLOv8, YOLOv9 Apples, cucumbers, tomatoes, and grapes 1 (infected and healthy) 8,858 23

YOLOv5, YOLOv6, YOLOv8, YOLOv9 13 species 17 2569 24

YOLOv8, YOLOv9, YOLOv10 Banana 1 (infected and healthy) 450 25

YOLOv5, YOLOv8, YOLOv9, YOLOv10 Melon 5 600 26

Table 1.  Summary of related work on leaf disease detection using YOLO architectures.
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These gaps highlight the need for a systematic comparison of the latest YOLO versions using a dedicated, high-
quality tomato leaf disease dataset.

Materials and methods
Dataset description
The dataset used for this work is the Tomato-Village dataset4. This dataset comprises a collection of images of 
tomato leaf diseases for three tasks: multiclass classification, multilabel classification, and object detection. The 
images were manually captured in three districts of Rajasthan, India. For the object detection variant, the images 
were taken directly in the fields, as shown in Fig. 1, where a single image can contain multiple leaves with different 
diseases. Moreover, the images include leaves from plants of varying ages, different timings, and under diverse 
lighting conditions. Additionally, data augmentation techniques were applied to increase the variability of the 
dataset; specifically, the techniques used included: RandomRotate90, RandomBrightnessContrast, RGBShift, 
Rotate up to 90 degrees, RandomCrop with 30% pixel reductions, HorizontalFlip, and VerticalFlip. All images 
were manually annotated, resulting in a total of 14,368 images and 161,223 annotations.

The dataset, specifically the object detection variant, includes six tomato leaf diseases: late blight, leaf miner, 
magnesium deficiency, nitrogen deficiency, potassium deficiency, and spotted wilt virus. The ‘healthy’ leaf class 
was not included in this division as it is implied that any leaf not detected with a disease is healthy. However, it is 
important to mention that this class is available for the other dataset variants. Table 2 provides information about 
the diseases contained in this dataset, and Fig. 2 shows graphical examples of them. The dataset is available for 
free use on GitHub, and it is prepared in both XML Pascal VOC and YOLO formats. Additionally, the dataset is 
divided into training and validation subsets. For this work, we performed our own split to include a validation 
subset. This division was done in an 80-10-10 proportion, resulting in 11,494, 1,437, and 1,437 images for 
training, validation, and evaluation, respectively. Furthermore, we modified the class names to standardize their 
capitalization. This process ensures consistency across all annotations, facilitating more accurate and efficient 
data processing.

Disease Description
Annotated 
instances

Late blight It is caused by the fungus Phytophthora infestans. It manifests as water-soaked spots on leaves, which rapidly expand and turn dark brown or black1. 3939

Leaf miner It refers to the larvae of various insects that burrow into the leaf tissue, creating sinuous tunnels or spotted mines, which can produce leaf necrosis and 
early defoliation27. 107,199.

Magnesium 
deficiency

It typically appears as interveinal chlorosis, where the tissue between the leaf veins turns yellow while the veins remain green28. This deficiency can lead 
to reduced plant vigor and yield if not corrected with appropriate fertilization. 15,870

Nitrogen 
deficiency

It is characterized by a general yellowing of the leaves, starting with the older leaves at the base of the plant. The affected plants exhibit stunted growth 
and reduced leaf size, leading to lower yields29. 1693

Potassium 
deficiency

It is indicated by yellowing and browning at the leaf edges and tips, along with interveinal chlorosis30. This deficiency can cause poor root development, 
reduced disease resistance, and lower fruit quality and yield. 1126

Spotted wilt 
virus

It is a viral disease in which infected plants show symptoms such as bronzing and wilting of the leaves, along with small, dark spots31. The virus can 
cause severe stunting and deformation of fruits, leading to significant crop loss. 31,397

Table 2.  Tomato leaf diseases and their descriptions contained in the used dataset.

 

Fig. 1.  Sample images from used dataset.
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Overview of architectures under study
YOLOv8
YOLOv8 was released by Ultralytics in 2023, the same developers as YOLOv5. This architecture follows the 
same structural paradigm as its predecessors, consisting of a backbone, neck, and head, as shown in Fig. 3. 
YOLOv8 shares some characteristics with its predecessor YOLOv5. These include the use of CSPDarknet53 for 
the backbone, the incorporation of Spatial Pyramid Pooling Fast (SPPF) to handle features at different scales, 
and the use of Path Aggregation Network (PANet)32 to improve the flow of information through the network. 
However, it includes some key modifications that enhance its capabilities.

The first significant modification in YOLOv8 is the incorporation of an anchor-free paradigm, which allows 
the model to predict the centers of objects more directly. This reduces the number of bounding box predictions, 
speeding up convergence34. Another relevant modification is the replacement of the C3 module from YOLOv5 
with a new C2F module35. C2F is inspired by the Efficient Layer Aggregation Network (ELAN)36 module and 
allows the concatenation of outputs from all bottleneck modules to expand the receptive field; this, in turn, 
enables the model to learn features more effectively.

Additionally, the training of YOLOv8 incorporates techniques to improve the model’s performance and 
generalization. This includes mosaic image augmentation, which randomly selects four images from the training 
dataset and combines them into a composite image37. This is achieved through cropping, concatenation, and 
scaling to fit the required input dimensions. This technique increases the dataset’s variability automatically, 
resulting in a trained model with enhanced adaptability. The head of YOLOv8 remains consistent, integrating 

Fig. 3.  YOLOv8 architecture33.

 

Fig. 2.  Sample images of the tomato leaf diseases contained in the used dataset.
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decoupled heads to process detection and classification independently. YOLOv8 comes in five versions (n, s, m, 
l, and x) to meet different demands and computational resources, with details provided in Table 3.

YOLOv9
YOLOv938 is one of the latest versions released in the YOLO family. Although the features of YOLOv9 have not yet 
been explored in depth, it is known to include three key additions: reversible functions, Programmable Gradient 
Information (PGI), and a Generalized Efficient Layer Aggregation Network (GELAN). These modifications are 
designed to mitigate the issues of information loss in deep networks, where data is significantly compressed 
in bottlenecks, risking the loss of important information that consequently are not transmitted to subsequent 
layers.

To address the mentioned problem, YOLOv9 first implements reversible functions. These functions have the 
unique property that their inverse does not result in information loss. By integrating these functions into the 
architecture, it ensures the retention of the maximum amount of input information and enables its transmission 
to all layers. This allows the network to update gradients more accurately, thereby improving the model’s 
capability.

To enhance the capabilities of reversible functions, PGI is incorporated to support both deep and lightweight 
networks. As illustrated in Fig. 4, PGI features a main branch for efficient inference with minimal computational 
overhead, and an auxiliary branch based on reversible concepts for precise gradient generation and parameter 
updates. Additionally, a multi-level auxiliary information module enables effective gradient information 
sharing across layers. These enhancements collectively improve the model’s learning, inference, and localization 
capabilities.

GELAN is incorporated to complement the capabilities of the reversible functions and PGI. This component, 
shown in Fig. 5, is designed based on ELAN and Cross Stage Partial Network (CSPNet)39, and it operates by 
combining the gradient path planning of CSPNet with the speed of ELAN during the inference process. This 
allows YOLOv9 to achieve fast inference without negatively impacting its accuracy. Moreover, the structure of 
GELAN allows for stacking multiple blocks, enabling YOLOv9 to handle a variety of scenarios and complexities 
effectively. Table 4 shows the five variants of YOLOv9.

YOLOv10
A few weeks after YOLOv9, YOLOv1040 was introduced to address a major limitation in YOLO architectures: the 
reliance on Non-Maximum Suppression (NMS) for post-processing. NMS, used to remove duplicate detections41, 
slows inference speed and hampers true end-to-end performance due to increased latency. Additionally, 
YOLOv10 includes design improvements and optimizations of components that had been previously overlooked.

Fig. 4.  Comparison of PGI, implemented in YOLOv9, and related methods.

 

Model Size (pixels) Params (M) FLOPs (B)

YOLOv8n 640 3.2 8.7

YOLOv8s 640 11.2 28.6

YOLOv8m 640 25.9 78.9

YOLOv8l 640 43.7 165.2

YOLOv8x 640 68.2 257.8

Table 3.  Details of the YOLOv8 variants.
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Firstly, YOLOv10 adopts an NMS-free design to reduce latency42. During training, YOLO traditionally 
assigns multiple positives per instance, enhancing performance but requiring NMS for post-processing. In 
contrast, one-to-one assignment removes the need for NMS but decreases accuracy and convergence speed. 
To leverage both approaches, YOLOv10 introduces consistent dual assignments by adding a one-to-one head 
alongside the standard YOLO head, as shown in Fig. 6. Both heads are optimized during training, benefiting 
from one-to-many learning, but during inference, only the one-to-one head is used for faster predictions. A 
consistent matching metric ensures alignment between both heads, selecting the best positive sample for each.

Transitioning to component modifications, YOLOv10 introduces both efficiency- and accuracy-driven 
changes. A lightweight classification head was developed using two depth-wise separable convolutions and a 1×
1 convolution to reduce computation. For downsampling, Spatial-channel Decoupled Downsampling separates 
spatial and channel transformations: point-wise convolution handles channel modulation while depth-wise 
convolution manages spatial resolution, minimizing cost and preserving information. Additionally, intrinsic 
rank analysis identified redundancies in deeper stages, leading to a Compact Inverted Block (CIB) design, 
shown in Fig. 7a, combining depth-wise and point-wise convolutions for greater efficiency without sacrificing 
performance43.

In the second set of modifications, YOLOv10 integrates large-kernel depth-wise convolutions to expand 
the receptive field and enhance model capability. However, to avoid performance degradation in small object 
detection and increased computational cost, these convolutions are applied selectively to deeper stages of smaller 

Fig. 6.  Consistent dual assignment process for NMS-free training incorporated in YOLOv10.

 

Model Size (pixels) Params (M) FLOPs (G)

YOLOv9-T 640 2.0 7.7

YOLOv9-S 640 7.1 26.4

YOLOv9-M 640 20.0 76.3

YOLOv9-C 640 25.3 102.1

YOLOv9-E 640 57.3 189.0

Table 4.  Details of the YOLOv9 variants.

 

Fig. 5.  GELAN module structure, used in YOLOv9.
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model scales. Additionally, Partial Self-Attention (PSA), shown in Fig. 7b, is introduced to improve global 
modeling with low computational overhead. PSA divides feature channels and applies multi-head self-attention 
only to a subset, enhancing global feature representation without significantly increasing complexity.

All these modifications enable YOLOv10 to achieve performance on par with the best available architectures 
for object detection, with the added advantage of lower latency. This makes it a highly effective option for end-to-
end deployment in applications where speed and accuracy are crucial, such as surveillance, autonomous driving, 
and real-time analysis. YOLOv10 is available in six versions (n, s, m, b, l, and x), with details provided in Table 5.

YOLOv11
YOLOv11 (YOLO11) is a recent advancement in the YOLO series, developed by Ultralytics, the creators of 
YOLOv5 and YOLOv8. Positioned as the direct successor to YOLOv8, it builds upon and enhances its 
foundational architecture. There is no official article describing in depth the characteristics of the architecture. 
However, some key details and innovations have already been disclosed. The design adheres to the traditional 
YOLO framework, which is composed of three key components: the backbone, the neck, and the head, as 
illustrated in Fig. 8.

The backbone is composed of alternating convolutional blocks and C3k2 blocks. Convolutional blocks 
combine 2D convolutions, batch normalization, and the Sigmoid Linear Unit (SiLU) activation function. The 
C3k2 blocks, shown in Fig. 9, evolve from the CSP bottleneck, enhancing feature extraction and information 
flow by splitting feature maps and applying efficient 3 × 3 convolutions. Inside each C3k2 block, the C3K 
module, similar to the C2F structure but without splitting, is designed to balance accuracy and speed during 
feature extraction.

In the neck, YOLOv11 retains the YOLOv8 base structure, including the SPPF, while incorporating C3k2 and 
C2PSA blocks. The C3k2 block was previously described. C2PSA, specifically designed for the neck, integrates 
Partial Spatial Attention (PSA) to enhance focus on critical image regions, aiding detection of small or occluded 
objects. PSA modules apply an attention layer, concatenate input and attention features, and process the result 
through feed-forward networks and convolutions, followed by a final concatenation, as shown in Fig. 10. Finally, 
the head remains consistent with those used in previous versions, featuring a multi-scale design to detect objects 
at three different levels of detail. YOLOv11 is available in five variants, whose characteristics are detailed in Table 
6.

YOLOv12
At the time of this work, YOLOv1244 represents the latest YOLO release, focusing on balancing inference speed 
and detection accuracy. Unlike previous CNN-centric versions, YOLOv12 introduces an attention-centric 
design, leveraging the superior modeling capabilities of attention mechanisms traditionally avoided due to 

Model Size (pixels) Params (M) FLOPs (G)

YOLOv10-N 640 2.3 6.7

YOLOv10-S 640 7.2 21.6

YOLOv10-M 640 15.4 59.1

YOLOv10-B 640 19.1 92.0

YOLOv10-L 640 24.4 120.3

YOLOv10-X 640 29.5 160.4

Table 5.  Details of the YOLOv10 variants.

 

Fig. 7.  CIB and PSA modules introduced in YOLOv10.
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latency concerns. Through architectural innovations, it demonstrates that attention-based models can achieve 
real-time performance comparable to CNNs. YOLOv12 maintains the classic three-part structure, backbone, 
neck, and head, with significant modifications to integrate attention without compromising speed.

Regarding the backbone, YOLOv12 maintains a hierarchical architecture for progressive multi-scale feature 
extraction, with early stages inherited from YOLOv11 and optimized for efficiency. Its main innovation is the 

Fig. 10.  Structure of C2PSA block used in YOLOv11.

 

Fig. 9.  Structure of a C3k2 block, and comparison with C2F.

 

Fig. 8.  High-level diagram of the YOLOv11 architecture.
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Residual Efficient Layer Aggregation Network (R-ELAN), shown in Fig. 11, which replaces the traditional ELAN. 
R-ELAN introduces a residual shortcut from the input to the output, combined with a scaling factor, effectively 
mitigating gradient blockage and improving convergence, particularly in large-scale models. Additionally, the 
aggregation strategy has been redesigned. Instead of splitting the input and processing multiple paths in parallel 
as in ELAN, R-ELAN first adjusts the channel dimensions through a transition layer. After this adjustment, 
the features are processed sequentially and then concatenated, forming a stable and computationally efficient 
bottleneck structure.

To further optimize the backbone, YOLOv12 integrates 7×7 separable convolutions to maintain a wide 
spatial receptive field while reducing parameters and memory usage. This design eliminates the need for explicit 
positional encoding, enabling spatial awareness without the high computational cost of traditional large-kernel 
operations. Additionally, lightweight convolutional blocks based on multiple small-kernel operations are 
employed. By decomposing computation and increasing parallelization, the model enhances processing speed 
while preserving rich feature representation. Finally, unlike YOLOv8 to YOLOv11, YOLOv12 omits the triple-
block stacking in the final backbone stages and instead uses a single R-ELAN block, minimizing structural 
redundancy and improving training stability without sacrificing representational capacity.

As for the neck, YOLOv12 continues the modular feature fusion strategy used in previous YOLO versions but 
adapts it to better accommodate the integration of attention mechanisms. A central innovation in this component 
is the use of Area Attention, a lightweight and efficient local attention mechanism tailored specifically for real-
time object detection. Unlike conventional attention modules that rely on window partitioning (e.g., Swin 
Transformer) or complex grid patterns (e.g., axial or criss-cross attention), Area Attention segments the feature 
map into equal vertical or horizontal areas, as shown in Fig. 12, using a simple reshape operation, eliminating 
the overhead of explicit partitioning and maintaining a relatively large receptive field.

To further accelerate feature processing, YOLOv12 incorporates FlashAttention in the neck. FlashAttention 
addresses a key limitation of traditional attention mechanisms: inefficient memory access caused by irregular 
transfers between high-speed SRAM and high-bandwidth memory, leading to high latency. By restructuring 
attention computation into efficient memory I/O operations, FlashAttention reduces bandwidth usage and wall-
clock time. Combined with Area Attention, it enables localized attention at high speed, allowing YOLOv12 
to achieve real-time inference even at higher resolutions. Together, these components enhance feature 
discrimination in cluttered scenes, improve focus on critical regions, and retain fine-grained spatial information 
with minimal computational overhead.

Moreover, YOLOv12 modifies the MLP ratio in its attention blocks to improve computational efficiency. 
Traditionally set at 4:1 in standard vision transformer designs, this ratio determines the relative width of the 
intermediate feed-forward layer compared to the input dimension. YOLOv12 reduces this to 1.2:1 in smaller 
model scales (n,s, m) and to 2:1 in larger ones (l, x), effectively rebalancing the computational load between the 
attention mechanism and the subsequent feed-forward processing. This change not only reduces the overall 

Fig. 11.  Comparison of R-ELAN (introduced in YOLOv12) with prior architectural blocks including GELAN, 
ELAN, C3K2, and CSPNet.

 

Model Size (pixels) Params (M) FLOPs (B)

YOLOv11n 640 2.6 6.5

YOLOv11s 640 9.4 21.5

YOLOv11m 640 20.1 68.0

YOLOv11l 640 25.3 86.9

YOLOv11x 640 56.9 194.9

Table 6.  Details of the YOLOv11 variants.
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parameter count and memory usage but also accelerates inference while preserving model representational 
capacity.

Finally, the prediction head in YOLOv12 maintains the foundational design of earlier YOLO models, 
employing convolutional layers to predict class probabilities, bounding box coordinates, and objectness 
scores. Some refinements have been introduced to streamline the prediction pathways, enhancing efficiency 
and supporting consistent multi-scale detection45. Additionally, the head integrates Area Attention, improving 
spatial awareness and contributing to faster, more precise predictions. As with previous versions, YOLOv12 is 
available in five model variants, detailed in Table 7.

Performance metrics
Precision
Precision serves as an indicator of the reliability of positive identifications made by an object detection model. It 
measures the proportion of correctly identified positives against the total number of items labeled as positive46,47. 
The formula to calculate precision is given in Eq. 1:

	
Precision = T P

T P + F P
,� (1)

where TP represents the count of correctly identified positive instances, and FP represents the instances 
erroneously classified as positive. A high precision score indicates that the model is effectively minimizing false 
positive identifications.

Recall
Recall is a metric that measures the model’s ability to identify all relevant instances within a dataset46. It quantifies 
the proportion of actual positives that are correctly detected. Mathematically, recall can be defined as shown in 
Eq. 2:

	
Recall = T P

T P + F N
,� (2)

where FN denotes the false negatives. High recall is indicative of a model’s effectiveness, highlighting the model’s 
capability to capture as many positives as possible.

Mean average precision
Mean average precision (mAP) is a metric used to evaluate the overall accuracy of object detection models across 
various threshold settings46. It aggregates the precision scores across different recall levels, providing a single 
figure that summarizes the model’s performance. mAP is calculated by averaging the area under the precision-
recall curve for each class and then computing the mean of these averages across all classes, as shown in Eq. 3:

	
mAP = 1

N

N∑
i=1

APi,� (3)

Model Size (pixels) Params (M) FLOPs (G)

YOLOv12n 640 2.5 6.0

YOLOv12s 640 9.1 19.4

YOLOv12m 640 19.6 59.8

YOLOv12l 640 26.5 82.4

YOLOv12x 640 59.3 184.6

Table 7.  Details of the YOLOv12 variants.

 

Fig. 12.  Comparison between the Area Attention mechanism used in YOLOv12 and other attention 
mechanisms33.
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where APi is the average precision for each class, and N is the number of classes. Furthermore, the AP calculation, 
shown in Eq. 4, involves integrating precision over the range of possible recall levels, which can vary depending 
on the detection threshold applied48.

	
AP =

∫ 1

0
precision(r)dr.� (4)

The mAP metric can be specified with different Intersection over Union (IoU) thresholds to provide more granular 
insights into the model’s performance. Two common variants are mAP@50 and mAP@50:9549. Achieving a high 
mAP score indicates that a detection model not only accurately identifies and localizes objects across different 
classes but also consistently upholds this accuracy under varying conditions of detection stringency50.

Training and implementation details
The aim of this study is to evaluate the models within a common setting to ensure that the results are comparable 
and relevant. The training was conducted using default hyperparameter configurations. This design choice 
prioritizes fairness and comparability over individual model optimization, ensuring that all architectures are 
evaluated under consistent and realistic training conditions. The most relevant parameters include: a learning 
rate of 0.01, SGD optimizer with momentum 0.937, weight decay of 0.0005, and input image resolution of 640×
640 pixels. The only adjustment applied across all models was setting the batch size to 64 to match available GPU 
memory. The training process spanned 100 epochs, a standard setting applied uniformly across all architectures 
to maintain consistency and facilitate direct comparisons.

During the evaluation process, the best-performing model from each training session was selected based 
on validation performance. The comparison and analysis were carried out in two stages: first, by contrasting 
the results of architectures within the same version, and second, by conducting a broader comparison across 
different architectures. This approach allowed us to identify the strengths and weaknesses of each model under 
similar conditions. Regarding the implementation code, we used the official open-source notebooks provided by 
the authors of each YOLO version. These notebooks include complete implementations for training, evaluation, 
and inference, and are publicly available on their respective GitHub repositories. The training environment 
utilized a high-performance computing setup with the TensorFlow framework. Specifically, the training was 
performed using four Nvidia A100 SXM4 40GB GPUs. Additionally, the setup included 128 CPU cores and 256 
GB of memory.

Results and discussion
YOLOv8
To begin with, the training times of the YOLOv8 variants, shown in Table 8, are analysed. As expected, times 
increase with model complexity. Notably, YOLOv8n and YOLOv8s show similar durations (0.602 and 0.641 
hours, respectively), suggesting their suitability for scenarios with limited computational resources and the need 
for rapid, cost-effective deployment. A similar trend is observed with YOLOv8m and YOLOv8l, with training 
times of 1.072 and 1.169 hours, respectively. Although more complex than the nano and small variants, they 
exhibit comparable efficiency, making them viable options when balancing training time and model complexity 
for tomato leaf disease detection. Finally, YOLOv8x records the highest training time at 1.664 hours, as expected 
given its greater architectural complexity. However, the increase remains acceptable considering it has 65 million 
more parameters than the nano variant. This highlights the efficiency of YOLOv8, making even its most complex 
models viable for tomato leaf disease detection across varying computational environments.

Moving on to performance evaluation (Table 8), an incremental improvement is observed from the 
lightest to the most complex models. Notably, the mAP@50:95 increases from 0.538 (nano) to 0.776 (x-large), 
reflecting enhanced detection and localization accuracy as model complexity grows. A similar pattern is seen 
in precision, recall, and mAP@50 scores. These improvements suggest that while more complex models require 
additional training time, they deliver significantly better precision across multiple diseases, justifying the extra 
computational resources for practical deployment.

An important observation is that the most significant performance gains occur in the first three YOLOv8 
variants: nano, small, and medium. Beyond the medium model, improvements with the large and x-large 
versions are smaller and more incremental. This suggests that, for the task and dataset in this work, heavier 
variants reach a point of diminishing returns. Consequently, the nano, small, and medium models offer a more 
efficient trade-off between performance and computational cost, making them practical options for tomato leaf 
disease detection without requiring the most complex variants.

When analyzing each disease separately, the heavier YOLOv8 variants generally show better performance. 
For instance, YOLOv8x achieves the highest precision, mAP@50, and mAP@50:95 for late blight, leaf miner, 
and magnesium deficiency, while YOLOv8l records the best recall for late blight. Notably, YOLOv8x consistently 
reports the highest mAP@50:95 across all diseases, highlighting its effectiveness in capturing fine details. 
However, lighter models sometimes outperform heavier ones. YOLOv8m, for example, achieves the highest 
precision (0.947) and mAP@50 (0.905) for nitrogen deficiency, surpassing the large and x-large variants. 
Additionally, YOLOv8m also reports the best recall for spotted wilt virus, demonstrating that intermediate 
models can offer a more balanced and effective performance in certain cases.

Regarding inference speed, the YOLOv8n and YOLOv8s variants prove to be the fastest, with times of 2.2ms 
and 2.4ms respectively. The YOLOv8m variant has an inference time of 3.9ms, while the large variant adds an 
extra millisecond, reaching 4.9ms. Finally, the most heaviest variant, YOLOv8x, reports 6.8ms, making it the 
slowest among all variants. However, this speed is still acceptable, and it does not rule out YOLOv8x as a viable 
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option, especially considering the task of tomato leaf disease detection, where precision and detailed detection 
capability are crucial.

Further insights are provided by the tests shown in Fig. 13. In the first test (Fig. 13a), lighter models like 
YOLOv8n and YOLOv8s fail to correctly detect magnesium deficiency and often confuse sunlight reflections 
with disease symptoms. In contrast, heavier models accurately identify magnesium deficiency with higher 
confidence scores, with YOLOv8x exceeding 90%. In the second test (Fig. 13b), YOLOv8n again performs 
poorly, detecting only half of the instances with low confidence. From YOLOv8m onwards, models detect most 
instances, with YOLOv8l and YOLOv8x achieving confidence scores above 80%. However, the medium and 
large variants occasionally exhibit duplicate detections, suggesting slight issues with instance overlap.

YOLOv9
The training times of YOLOv9 9 reveals that all variants require over two hours. YOLOv9-T, YOLOv9-S, and 
YOLOv9-M report very similar durations (2.290, 2.452, and 2.497 hours) despite differences in parameter count. 
YOLOv9-C shows a moderate increase (2.905 hours), while YOLOv9-E, the most complex variant, approaches 
four hours. Overall, YOLOv9 exhibits considerably long training times, potentially limiting its practicality under 
resource constraints.

Moving to performance evaluation (Table 9), heavier variants demonstrate clear superiority over lighter ones. 
YOLOv9-E achieves the best overall results, approaching 90% in precision and mAP@50, and notable scores 
of 0.795 and 0.590 in recall and mAP@50:95, respectively. YOLOv9-C follows, with precision and mAP@50 
above 80%, and competitive recall and mAP@50:95 values. In contrast, YOLOv9-M and YOLOv9-S report 
performance below 80% in precision, recall, and mAP@50, and under 50% in mAP@50:95. YOLOv9-T performs 

Model Class Precision Recall mAP@50 mAP@50:95 Speed (ms) Training time (hours)

YOLOv8n

Late blight 0.812 0.788 0.829 0.505

2.2 0.602

Leaf miner 0.856 0.541 0.724 0.446

Magnesium deficiency 0.842 0.802 0.867 0.603

Nitrogen deficiency 0.793 0.791 0.834 0.544

Potassium deficiency 0.795 0.816 0.842 0.604

Spotted wilt virus 0.862 0.715 0.824 0.525

All 0.827 0.742 0.820 0.538

YOLOv8s

Late blight 0.874 0.846 0.896 0.623

2.4 0.641

Leaf miner 0.894 0.720 0.838 0.575

Magnesium deficiency 0.912 0.873 0.926 0.719

Nitrogen deficiency 0.835 0.806 0.863 0.650

Potassium deficiency 0.883 0.851 0.918 0.724

Spotted wilt virus 0.910 0.824 0.898 0.660

All 0.885 0.820 0.890 0.658

YOLOv8m

Late blight 0.894 0.867 0.915 0.690

3.9 1.072

Leaf miner 0.901 0.800 0.881 0.655

Magnesium deficiency 0.915 0.879 0.932 0.761

Nitrogen deficiency 0.947 0.813 0.905 0.716

Potassium deficiency 0.936 0.886 0.933 0.791

Spotted wilt virus 0.923 0.862 0.915 0.722

All 0.919 0.851 0.914 0.722

YOLOv8l

Late blight 0.902 0.883 0.927 0.738

4.9 1.169

Leaf miner 0.923 0.811 0.896 0.695

Magnesium deficiency 0.933 0.863 0.927 0.787

Nitrogen deficiency 0.923 0.806 0.889 0.725

Potassium deficiency 0.937 0.917 0.950 0.823

Spotted wilt virus 0.923 0.846 0.914 0.752

All 0.923 0.854 0.917 0.753

YOLOv8x

Late blight 0.926 0.873 0.928 0.758

6.8 1.664

Leaf miner 0.921 0.830 0.902 0.723

Magnesium deficiency 0.937 0.883 0.937 0.807

Nitrogen deficiency 0.900 0.821 0.898 0.758

Potassium deficiency 0.944 0.883 0.934 0.834

Spotted wilt virus 0.928 0.857 0.919 0.777

All 0.926 0.858 0.919 0.776

Table 8.  Results of each version of YOLOv8 on evaluation set (1438 images), plus training time (100 epochs).
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the worst across all metrics. These findings highlight that, although lighter variants train faster, their effectiveness 
in disease detection is significantly inferior.

Analyzing per-disease performance, a pattern similar to the overall results emerges. YOLOv9-E consistently 
outperforms all other variants, notably achieving 0.916 mAP@50 for magnesium deficiency, being the only 
case exceeding 90% across diseases and metrics. YOLOv9-C and YOLOv9-M show competitive but variable 
performances. YOLOv9-C excels in precision for diseases like leaf miner and magnesium deficiency, while 
YOLOv9-M shows higher recall in late blight and nitrogen deficiency. Both maintain mAP@50:95 scores 
frequently above 50%. Meanwhile, YOLOv9-S declines, surpassing 80% mAP@50 only for late blight, magnesium 
deficiency, and potassium deficiency. Finally, YOLOv9-T shows the weakest performance, achieving acceptable 
precision only for spotted wilt virus (0.745) and reporting very low mAP@50:95, below 30% for diseases like leaf 
miner and nitrogen deficiency.

Regarding inference speed, clear variations emerge as model complexity increases. The T variant is the 
fastest at 2.8 ms, while the S variant rises to 3.6 ms. YOLOv9-M shows a notable jump to over 7 ms, suggesting 
limitations for real-time applications. This trend continues with YOLOv9-C at 8.9 ms and YOLOv9-E reaching 
11.5 ms. Although heavier variants offer better precision and detection, their higher inference times raise 
concerns about practical deployment in tomato leaf disease detection.

Fig. 13.  Inference tests of YOLOv8.
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Finally, Fig. 14 shows the graphical test results. In the first test (Fig. 14a), all models struggle to fully match 
the ground-truth detections. YOLOv9-S and YOLOv9-M incorrectly detect magnesium deficiency in unaffected 
areas, and all variants falsely detect leaf miner instances in the leaf center. Heavier models show improved 
confidence scores, though still below 90%. In the second test (Fig. 14b), overall performance improves, but issues 
persist, such as YOLOv9-C incorrectly detecting magnesium deficiency and some late blight instances. Again, 
heavier variants achieve higher confidence scores, occasionally exceeding 80%, but never surpassing 90%. These 
findings highlight that, despite better precision, the heavier models still face challenges in detection fine-tuning.

YOLOv10
Beginning with the training times of YOLOv10 models (Table 10), overall, differences between models are not 
excessive despite variations in parameter count. YOLOv10-N reports the shortest time at 0.830 hours, making 
it ideal for resource-limited scenarios. YOLOv10-S increases slightly to 0.926 hours, while YOLOv10-M and 
YOLOv10-B add less than half an hour more. The heavier YOLOv10-L and YOLOv10-X variants show the 
highest times, 1.643 and 2.008 hours, respectively. Notably, the overall difference between YOLOv10-N and 
YOLOv10-X is just over an hour, suggesting that even the heaviest models maintain reasonable training times, 
supporting their practical use for leaf disease detection.

Turning to the performance results (Table 10), overall performance improves with increasing model 
complexity. YOLOv10-X stands out with the highest metrics across the board. However, lighter models also 
achieve strong results; YOLOv10-M, for example, records a precision of 0.938, just slightly behind YOLOv10-
X’s 0.942. Even YOLOv10-N demonstrates notable performance, with precision and mAP@50 scores exceeding 

Model Class Precision Recall mAP@50 mAP@50:95 Speed (ms) Training time (hours)

YOLOv9-T

Late blight 0.667 0.679 0.696 0.337

2.7 2.290

Leaf miner 0.748 0.449 0.553 0.278

Magnesium deficiency 0.688 0.645 0.688 0.388

Nitrogen deficiency 0.540 0.418 0.436 0.233

Potassium deficiency 0.661 0.526 0.580 0.318

Spotted wilt virus 0.745 0.584 0.668 0.326

All 0.675 0.550 0.604 0.313

YOLOv9-S

Late blight 0.742 0.771 0.804 0.440

3.6 2.452

Leaf miner 0.789 0.540 0.652 0.345

Magnesium deficiency 0.768 0.765 0.818 0.502

Nitrogen deficiency 0.654 0.657 0.696 0.408

Potassium deficiency 0.795 0.715 0.801 0.513

Spotted wilt virus 0.789 0.698 0.771 0.421

All 0.756 0.691 0.757 0.438

YOLOv9-M

Late blight 0.736 0.811 0.802 0.467

7.3 2.497

Leaf miner 0.775 0.606 0.689 0.378

Magnesium deficiency 0.770 0.791 0.839 0.546

Nitrogen deficiency 0.690 0.716 0.737 0.456

Potassium deficiency 0.826 0.748 0.847 0.573

Spotted wilt virus 0.801 0.744 0.795 0.455

All 0.766 0.736 0.785 0.479

YOLOv9-C

Late blight 0.790 0.788 0.837 0.506

8.9 2.905

Leaf miner 0.840 0.637 0.746 0.425

Magnesium deficiency 0.845 0.815 0.874 0.582

Nitrogen deficiency 0.839 0.672 0.782 0.519

Potassium deficiency 0.846 0.754 0.827 0.582

Spotted wilt virus 0.851 0.763 0.842 0.515

All 0.835 0.738 0.818 0.522

YOLOv9-E

Late blight 0.846 0.819 0.885 0.568

11.5 3.890

Leaf miner 0.872 0.695 0.799 0.488

Magnesium deficiency 0.891 0.858 0.916 0.633

Nitrogen deficiency 0.893 0.739 0.845 0.600

Potassium deficiency 0.851 0.851 0.882 0.672

Spotted wilt virus 0.893 0.810 0.877 0.581

All 0.874 0.795 0.867 0.590

Table 9.  Results of each version of YOLOv9 on evaluation set (1,438 images), plus training time (100 epochs).

 

Scientific Reports |        (2025) 15:26890 14| https://doi.org/10.1038/s41598-025-11064-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


80%. These results indicate that all YOLOv10 variants deliver reliable performance, offering flexibility to adapt 
to different computational resources and application requirements.

Analyzing the performance for each disease, the overall trend persists, with all YOLOv10 variants showing 
strong results. Major differences arise when comparing lighter models like YOLOv10-N and YOLOv10-S 
with heavier ones like YOLOv10-L and YOLOv10-X. YOLOv10-X achieves notable precision for magnesium 
deficiency (0.951) and spotted wilt virus (0.954), while YOLOv10-L surpasses it with 0.965 precision and 0.971 
mAP@50 for potassium deficiency. Mid-complexity models like YOLOv10-B and YOLOv10-M also perform 
well, often exceeding 90% in key metrics; for example, YOLOv10-M achieves 0.957 precision for potassium 
deficiency. Although YOLOv10-N and YOLOv10-S show lower overall performance, they still present solid 
results, with YOLOv10-S often reaching above 90% and YOLOv10-N surpassing 80%. However, YOLOv10-N 
records the lowest figure (0.587 recall for leaf miner) among all architectures. Overall, the YOLOv10 family 
proves highly effective for tomato leaf disease detection.

Regarding inference speeds, as model complexity increases, a corresponding rise in latency is observed. 
YOLOv10-N and YOLOv10-S achieve speeds of 2.1ms and 2.3ms, respectively, while YOLOv10-M reaches 3.4ms. 
YOLOv10-B and YOLOv10-L follow with 4.2ms and 4.9ms, remaining within an acceptable range. YOLOv10-X 
records the highest latency at 6.7ms, but this value is still reasonable for practical applications. Overall, despite 

Fig. 14.  Inference tests of YOLOv9.
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higher inference times in heavier models, all variants maintain a viable balance between precision and processing 
speed for tomato leaf disease detection.

Turning to the graphical tests in Fig. 15, the results align with the numerical observations. In the first test 
(Fig. 15a), all models detect most instances, with YOLOv10-S and YOLOv10-B achieving perfect detection; 
YOLOv10-B also shows slightly higher confidence scores. YOLOv10-L and YOLOv10-X mistakenly detect an 
extra leaf miner instance, while YOLOv10-M misses one spotted wilt virus. Confidence scores generally improve 
with heavier models, nearing or exceeding 90%. In the second test (Fig. 15b), YOLOv10-M, YOLOv10-B, and 
YOLOv10-X match the ground-truth exactly, with YOLOv10-X achieving the best confidence scores, often 
surpassing 90%. YOLOv10-N misses one detection, while YOLOv10-S and YOLOv10-L introduce false positives. 
Overall, all variants perform well, with relatively few errors and high confidence levels.

Model Class Precision Recall mAP@50 mAP@50:95 Speed (ms) Training time (hours)

YOLOv10-N

Late blight 0.825 0.816 0.872 0.515

2.1 0.830

Leaf miner 0.834 0.587 0.713 0.404

Magnesium deficiency 0.844 0.819 0.876 0.582

Nitrogen deficiency 0.780 0.746 0.792 0.520

Potassium deficiency 0.833 0.830 0.837 0.587

Spotted wilt virus 0.850 0.769 0.842 0.513

All 0.827 0.761 0.822 0.520

YOLOv10-S

Late blight 0.866 0.847 0.914 0.623

2.3 0.926

Leaf miner 0.886 0.755 0.845 0.546

Magnesium deficiency 0.917 0.884 0.928 0.682

Nitrogen deficiency 0.900 0.807 0.883 0.635

Potassium deficiency 0.911 0.904 0.892 0.672

Spotted wilt virus 0.907 0.869 0.914 0.637

All 0.898 0.845 0.896 0.633

YOLOv10-M

Late blight 0.926 0.873 0.943 0.670

3.4 1.274

Leaf miner 0.927 0.781 0.876 0.603

Magnesium deficiency 0.943 0.872 0.943 0.732

Nitrogen deficiency 0.936 0.784 0.843 0.628

Potassium deficiency 0.957 0.851 0.922 0.755

Spotted wilt virus 0.936 0.849 0.917 0.678

All 0.938 0.835 0.907 0.678

YOLOv10-B

Late blight 0.933 0.879 0.951 0.693

4.2 1.416

Leaf miner 0.919 0.812 0.886 0.630

Magnesium deficiency 0.941 0.886 0.943 0.744

Nitrogen deficiency 0.915 0.784 0.852 0.673

Potassium deficiency 0.929 0.895 0.929 0.794

Spotted wilt virus 0.935 0.862 0.925 0.704

All 0.929 0.853 0.915 0.706

YOLOv10-L

Late blight 0.907 0.859 0.933 0.697

4.9 1.643

Leaf miner 0.916 0.822 0.892 0.644

Magnesium deficiency 0.940 0.876 0.943 0.762

Nitrogen deficiency 0.920 0.768 0.839 0.684

Potassium deficiency 0.965 0.912 0.971 0.825

Spotted wilt virus 0.934 0.868 0.929 0.724

All 0.930 0.851 0.918 0.723

YOLOv10-X

Late blight 0.925 0.884 0.951 0.715

6.7 2.008

Leaf miner 0.930 0.838 0.905 0.670

Magnesium deficiency 0.951 0.893 0.947 0.780

Nitrogen deficiency 0.949 0.784 0.858 0.680

Potassium deficiency 0.942 0.904 0.966 0.828

Spotted wilt virus 0.954 0.886 0.943 0.744

All 0.942 0.865 0.928 0.736

Table 10.  Results of each version of YOLOv10 on evaluation set (1,438 images), plus training time (100 
epochs).
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YOLOv11
Beginning with training times (Table 11), a consistent increase is observed as model complexity grows. 
YOLOv11n, the lightest variant, reports the shortest time at 0.570 hours, followed by YOLOv11s at 0.679 hours, 
a modest increase. YOLOv11m requires 0.962 hours, approximately 42% more than YOLOv11s. The heavier 
variants, YOLOv11l and YOLOv11x, demand 1.227 and 1.635 hours, respectively. Notably, YOLOv11x’s training 
time is nearly three times that of YOLOv11n, reflecting the significant computational cost associated with larger 
models. It is worth highlighting that even the most robust variant, YOLOv11x, requires just over 1.5 hours 
to train, which is a remarkably efficient time considering its complexity. Their relatively low training times, 
combined with their scalability across different variants, make them suitable for diverse use cases, ranging 
from resource-constrained environments to high-performance systems requiring robust accuracy and speed. 
Therefore, these models present themselves as strong candidates for practical applications and deployments.

When analyzing the performance results (Table 11), an incremental improvement in performance is observed 
with increasing model complexity. YOLOv11x emerges as the best-performing variant with a precision of 0.940, 
recall of 0.884, mAP@50 of 0.936, and mAP@50:95 of 0.790. In contrast, YOLOv11n reports the lowest values, 
with 0.835 precision, 0.773 recall, 0.840 mAP@50, and 0.565 mAP@50:95. YOLOv11l ranks second, achieving 
0.931 precision and 0.932 mAP@50, very close to YOLOv11x. Meanwhile, YOLOv11s and YOLOv11m show 
intermediate but competitive results, with YOLOv11s notably achieving 0.913 precision and 0.906 mAP@50, 
making it a strong candidate for resource-limited applications. Overall, the YOLOv11 models offer excellent 

Fig. 15.  Inference tests of YOLOv10.
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performance paired with efficient training times, establishing them as robust and versatile solutions for tomato 
leaf disease detection.

Analyzing the inference times, lighter models perform faster as expected. YOLOv11n is the quickest at 2.1 ms 
per image, followed by YOLOv11s at 3.7 ms, YOLOv11m at 4.9 ms, YOLOv11l at 5.8 ms, and YOLOv11x at 7.9 
ms. Despite being the slowest, YOLOv11x maintains an efficient inference time suitable for most applications.

Regarding per-class performance, the more complex models, YOLOv11l and YOLOv11x, deliver the best 
results. YOLOv11l achieves the highest scores for potassium deficiency, while YOLOv11x excels across most 
classes, surpassing 95% precision in magnesium and nitrogen deficiencies and leading in late blight metrics. 
Lighter models also perform notably. YOLOv11s achieves precision above 90% in five of six classes, and 
YOLOv11m shows strong results like 0.945 precision in magnesium deficiency and 0.944 mAP@50 in late blight. 
Even YOLOv11n consistently exceeds 80% across categories. Overall, the YOLOv11 family balances complexity 
and accuracy effectively, offering robust solutions for tomato leaf disease detection across different resource 
constraints.

Moving forward, Fig. 15 presents the inference tests using YOLOv11 models. In the first test (Fig. 16a), 
all models perform satisfactorily, with well-localized bounding boxes and high confidence scores. However, 
none achieve perfect alignment with the ground truth: YOLOv11n, YOLOv11m, YOLOv11l, and YOLOv11x 
correctly predict eight out of nine instances, while YOLOv11s identifies only six. Confidence scores are generally 
high, often exceeding 50% and reaching above 90% in more complex models. The second test (Fig. 16b) is 
more challenging. YOLOv11n detects seven out of nine instances but shows overlapping and lower confidence; 
YOLOv11s underperforms with fewer correct detections. YOLOv11m improves with eight correct predictions 

Model Class Precision Recall mAP@50 mAP@50:95 Speed (ms) Training time (hours)

YOLOv11n

Late blight 0.844 0.824 0.872 0.554

2.1 0.570

Leaf miner 0.839 0.610 0.754 0.473

Magnesium deficiency 0.856 0.839 0.887 0.628

Nitrogen deficiency 0.797 0.789 0.839 0.572

Potassium deficiency 0.814 0.806 0.834 0.608

Spotted wilt virus 0.863 0.768 0.851 0.555

All 0.835 0.773 0.840 0.565

YOLOv11s

Late blight 0.877 0.864 0.909 0.659

3.7 0.679

Leaf miner 0.904 0.755 0.862 0.604

Magnesium deficiency 0.910 0.894 0.941 0.745

Nitrogen deficiency 0.931 0.804 0.889 0.688

Potassium deficiency 0.922 0.860 0.919 0.737

Spotted wilt virus 0.932 0.847 0.916 0.678

All 0.913 0.837 0.906 0.685

YOLOv11m

Late blight 0.927 0.892 0.944 0.739

4.9 0.962

Leaf miner 0.923 0.820 0.901 0.681

Magnesium deficiency 0.945 0.893 0.942 0.788

Nitrogen deficiency 0.925 0.826 0.906 0.744

Potassium deficiency 0.890 0.886 0.929 0.805

Spotted wilt virus 0.933 0.872 0.927 0.744

All 0.924 0.865 0.925 0.750

YOLOv11l

Late blight 0.913 0.887 0.933 0.765

5.8 1.227

Leaf miner 0.920 0.840 0.909 0.698

Magnesium deficiency 0.939 0.897 0.941 0.799

Nitrogen deficiency 0.912 0.821 0.903 0.748

Potassium deficiency 0.955 0.921 0.965 0.852

Spotted wilt virus 0.945 0.890 0.941 0.767

All 0.931 0.876 0.932 0.771

YOLOv11x

Late blight 0.939 0.921 0.952 0.778

7.9 1.635

Leaf miner 0.938 0.862 0.923 0.731

Magnesium deficiency 0.951 0.902 0.947 0.822

Nitrogen deficiency 0.955 0.828 0.912 0.771

Potassium deficiency 0.911 0.895 0.937 0.841

Spotted wilt virus 0.947 0.895 0.942 0.795

All 0.940 0.884 0.936 0.790

Table 11.  Results of each version of YOLOv11 on evaluation set (1,438 images), plus training time (100 
epochs).
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and stronger confidence scores. YOLOv11x detects extra instances with misplacements, while YOLOv11l 
achieves near-perfect detection with high confidence, reinforcing its reliability.

YOLOv12
Starting with the training times (Table 12), they increase progressively with model scale, from 0.640 hours for 
YOLOv12n to 2.094 hours for YOLOv12x. This growth reflects the rise in parameters and complexity across 
variants. Notably, the increase is not linear: while YOLOv12m requires around 1.17 hours, YOLOv12x nearly 
doubles that time, highlighting inefficiencies in scaling. This can be critical in environments with limited 
computational resources or frequent retraining needs.

Turning to the performance (Table 12), all YOLOv12 variants reflects the benefits of its attention-centric 
design. Precision rises from 0.860 (YOLOv12n) to 0.947 (YOLOv12x), indicating improved reliability and fewer 
false positives as capacity increases, largely due to Area Attention. Recall also improves, from 0.790 to 0.873, 
although the gain is more moderate, suggesting that while larger models detect more true instances, attention 
mechanisms alone may not fully compensate for limited capacity in smaller variants.

The most significant improvement appears in mAP@50:95, rising from 0.604 (YOLOv12n) to 0.783 
(YOLOv12x), a relative gain of nearly 18%. This highlights the effectiveness of additions like R-ELAN and 

Fig. 16.  Inference tests of YOLOv11.
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position-aware convolutions in refining localization. Notably, the jump from YOLOv12s to YOLOv12m (+0.049) 
shows mid-scale models already benefit considerably from attention mechanisms. Meanwhile, mAP@50 
improves more gradually, from 0.864 to 0.933, indicating that all models perform well at coarse localization, with 
larger models primarily enhancing fine-grained accuracy. However, this performance gain comes at the cost of 
increased inference time, rising from 1.5 ms (YOLOv12n) to 10.5 ms (YOLOv12x). While expected, this trade-
off is critical for deployment, particularly in real-time or edge-computing scenarios. Notably, YOLOv12m offers 
a strong balance, achieving 0.907 mAP@50 and 0.717 mAP@50:95 at just 4.9 ms, positioning it as a competitive 
mid-scale option for accuracy and efficiency.

When examining per-class performance across YOLOv12 variants, a clear improvement in classification and 
localization is observed as model complexity increases. YOLOv12n, though modest overall, achieves respectable 
precision for potassium deficiency (0.871) and spotted wilt virus (0.873), but struggles with leaf miner, where 
recall drops to 0.666. YOLOv12s shows substantial improvement, with all classes reaching at least 0.847 mAP@50, 
and particularly strong results in magnesium deficiency (0.920) and leaf miner (0.905), highlighting enhanced 
sensitivity to subtle disease patterns.

YOLOv12m further strengthens this trend, becoming the first variant where every class achieves over 0.875 
mAP@50. Complex diseases like magnesium deficiency and spotted wilt virus surpass 0.920 mAP@50, reflecting 
the benefits of deeper attention layers and R-ELAN aggregation in improving spatial discrimination. In 
YOLOv12l, class-wise performance remains highly balanced. Although the overall mAP gain over YOLOv12m 
is modest, precision and recall stay consistently high across all classes. Magnesium deficiency reaches 0.938 
mAP@50, and potassium deficiency achieves the highest mAP@50:95 at 0.788, highlighting YOLOv12l’s ability 

Model Class Precision Recall mAP@50 mAP@50:95 Speed (ms) Training time (hours)

YOLOv12n

Late blight 0.854 0.840 0.900 0.598

1.5 0.640

Leaf miner 0.846 0.666 0.785 0.506

Magnesium deficiency 0.869 0.854 0.903 0.656

Nitrogen deficiency 0.847 0.761 0.843 0.612

Potassium deficiency 0.871 0.825 0.882 0.656

Spotted wilt virus 0.873 0.793 0.871 0.595

All 0.860 0.790 0.864 0.604

YOLOv12s

Late blight 0.876 0.875 0.905 0.648

3.2 0.795

Leaf miner 0.881 0.752 0.847 0.589

Magnesium deficiency 0.910 0.870 0.920 0.721

Nitrogen deficiency 0.890 0.799 0.875 0.675

Potassium deficiency 0.923 0.838 0.865 0.706

Spotted wilt virus 0.905 0.851 0.903 0.670

All 0.897 0.831 0.886 0.668

YOLOv12m

Late blight 0.927 0.867 0.928 0.715

4.9 1.168

Leaf miner 0.916 0.794 0.884 0.652

Magnesium deficiency 0.939 0.883 0.937 0.755

Nitrogen deficiency 0.912 0.791 0.878 0.710

Potassium deficiency 0.911 0.860 0.894 0.754

Spotted wilt virus 0.931 0.863 0.921 0.717

All 0.923 0.843 0.907 0.717

YOLOv12l

Late blight 0.875 0.911 0.937 0.712

7.6 1.741

Leaf miner 0.905 0.802 0.884 0.656

Magnesium deficiency 0.939 0.892 0.938 0.764

Nitrogen deficiency 0.900 0.813 0.884 0.704

Potassium deficiency 0.952 0.873 0.933 0.788

Spotted wilt virus 0.919 0.861 0.915 0.720

All 0.915 0.859 0.915 0.724

YOLOv12x

Late blight 0.925 0.904 0.946 0.763

10.5 2.094

Leaf miner 0.943 0.836 0.914 0.725

Magnesium deficiency 0.962 0.889 0.945 0.820

Nitrogen deficiency 0.948 0.810 0.898 0.764

Potassium deficiency 0.945 0.910 0.955 0.835

Spotted wilt virus 0.959 0.889 0.941 0.791

All 0.947 0.873 0.933 0.783

Table 12.  Results of each version of YOLOv12 on evaluation set (1,438 images).
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to accurately detect both large, uniform symptoms and fine, scattered patterns, an outcome attributed to its 
deeper R-ELAN structures and integrated attention modules.

Finally, YOLOv12x maintains consistently high class-wise performance, though not uniformly. Potassium 
deficiency leads with 0.955 mAP@50 and 0.835 mAP@50:95, the highest across all models, while magnesium 
deficiency and spotted wilt virus also achieve strong metrics. In contrast, nitrogen deficiency lags slightly in 
mAP@50:95 (0.764) despite high precision, indicating less precise bounding box localization. Similarly, leaf 
miner exhibits lower recall and localization scores, likely due to its thin, linear patterns. Overall, YOLOv12x 
delivers top performance with high accuracy and confidence, although fine-grained symptom detection remains 
challenging even at maximum model capacity.

Regarding the visual tests, Fig. 17a shows the first qualitative comparison across YOLOv12 variants. Overall, 
models effectively control redundant detections, indicating stable confidence thresholds and well-calibrated 
post-processing. However, detection accuracy varies. From YOLOv12n through YOLOv12l, distinguishing 
spotted wilt virus from magnesium deficiency remains problematic, leading to incomplete identification of 
magnesium cases. Only YOLOv12x correctly detects both, likely due to deeper attention layers and enhanced 
spatial resolution. All models detect the single instance of leaf miner, although YOLOv12n and YOLOv12x 

Fig. 17.  Inference tests of YOLOv12.
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misclassify an additional instance, suggesting that both underparameterized and overparameterized models 
may confuse thin or vein-like background textures.

The second visual test, presented in Fig. 17b, again shows consistent bounding box behavior across YOLOv12 
variants, with no excessive overlapping, suggesting stable confidence calibration. However, this test proves 
more challenging, with lighter variants (nano, small, and medium) failing to detect leaf miner instances near 
image borders or within occluded regions. Conversely, these models reliably detect late blight cases. YOLOv12l 
improves leaf miner detection but struggles with late blight at the edges, indicating sensitivity to spatial context. 
Surprisingly, YOLOv12x exhibits the most errors, missing leaf miner in bright areas and showing lower confidence 
in peripheral late blight detections. This highlights that increased model complexity does not guarantee better 
robustness in edge-case scenarios.

General remarks
To conclude the analysis of the architectures, Figs. 18 and 19 compare all models based on overall performance. 
The first key observation is that YOLOv10 models are the lightest, with even the x-large version staying below 

Fig. 19.  Efficiency comparison between all architectures.

 

Fig. 18.  Performance comparison between all architectures regarding their number of parameters.
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30 million parameters. YOLOv9 increases in complexity, especially YOLOv9-E, nearing 60 million parameters. 
Similarly, YOLOv8’s large variant reaches almost 44 million parameters, while YOLOv8x becomes the most 
complex model, approaching 70 million. YOLOv12 follows a comparable scaling trend, with its nano variant 
matching the lightest models, and its x-large model growing to just under 60 million parameters, placing it above 
YOLOv9, YOLOv10, and YOLOv11 x-large variants, but still below YOLOv8x.

Analyzing Fig. 18, which compares performance relative to parameter count, the YOLOv10 models stand 
out by delivering strong precision even in lighter variants, with the medium model already outperforming all 
YOLOv8 and YOLOv9 counterparts. YOLOv10-M, B, L, and X consistently surpass 90% precision, showcasing 
the effectiveness of their NMS-free dual-head design. YOLOv8 models follow closely, maintaining precision 
mostly above 85%, while YOLOv9 variants lag, with competitive precision only in C and E versions. YOLOv11 
further elevates precision, with YOLOv11x nearing 95% and smaller variants matching or exceeding YOLOv8 
models of similar complexity. YOLOv12 shows comparable precision to YOLOv11, especially in its nano, small, 
and medium versions. However, the large variant drops slightly, falling below YOLOv8-L, YOLOv10-L, and 
YOLOv11-L levels, nearing 90%. Despite this, YOLOv12x achieves the highest precision among all models, 
outperforming even YOLOv8x while using fewer parameters, confirming the strength of its attention-centric 
design.

Analyzing recall, the gap between YOLOv10 and YOLOv8 narrows, with only YOLOv10-X outperforming 
all YOLOv8 variants. YOLOv8-L and YOLOv8-X show competitive recall values, equaling or slightly surpassing 
most YOLOv10 and YOLOv9 models. Lighter variants from both families perform similarly, without major 
differences. YOLOv11 again sets a new benchmark, with its medium, large, and x-large versions all exceeding 
85% recall, and even its nano model outperforming its counterparts. YOLOv12 shows intermediate recall, 
generally falling between YOLOv11 and YOLOv8, surpassing YOLOv8 consistently and maintaining a clear lead 
over YOLOv9, which remains the weakest. Among nano variants, YOLOv12n achieves the best recall, nearing 
80%. However, across all models, no variant exceeds 90% recall, highlighting a common limitation.

Moving on to mAP@50, YOLOv8 and YOLOv10 show similar performance, surpassing 80% in lighter variants 
and 90% in heavier ones. YOLOv11 again stands out, with its medium, large, and x-large models outperforming 
all others, and even its nano and small variants exceeding their counterparts from YOLOv8, YOLOv9, and 
YOLOv10. YOLOv9 remains the weakest, with only its E variant exceeding 85%. YOLOv12 positions itself 
between YOLOv10 and YOLOv8, generally outperforming the latter but trailing the former. Although YOLOv12 
does not surpass YOLOv11, its medium and large variants offer comparable results. Notably, YOLOv12n emerges 
as the best-performing nano model across all versions, confirming its strength in lightweight detection tasks.

The mAP@50:95 results confirm YOLOv11’s superiority, with its variants consistently leading and several 
models approaching the 80% threshold, which no other versions achieve. The prior advantage of YOLOv10-X 
over YOLOv8 disappears here, as YOLOv8-L and YOLOv8-X outperform their YOLOv10 counterparts. 
YOLOv9 continues to underperform, with only its heaviest variants nearing 60%. In this stricter evaluation, 
YOLOv12 improves its relative position, consistently surpassing YOLOv8 and YOLOv10 and establishing itself 
as the second-best architecture after YOLOv11. YOLOv12n again excels among nano models, surpassing 60%, 
while YOLOv12x ranks just behind YOLOv11x as the second-best performer overall.

Notably, the comparatively weaker performance of YOLOv9 can be attributed to architectural and training-
related factors. In particular, the integration of PGI with a reversible auxiliary branch and the GELAN backbone 
introduces higher training demands. While these innovations aim to maintain high accuracy and stable learning, 
they also introduce higher training demands and may require more extended convergence periods. Given the 
fixed training schedule of 100 epochs used across all models, combined with the diversity of disease classes 
and the density of instances in the dataset, YOLOv9 may not have had sufficient training time to fully optimize 
its parameters. This could explain why its performance lags behind later architectures such as YOLOv10 and 
YOLOv11, which adopt more efficient and lightweight components better suited for faster convergence.

Turning to Fig. 19, which compares efficiency in training time and latency, YOLOv9 models clearly require 
the most resources, with significantly higher training durations, making them the least practical for deployment. 
YOLOv10 improves efficiency, with all variants training under 2.1 hours. YOLOv8 performs even better, 
completing training in under 1.7 hours across all versions, positioning it among the most efficient. YOLOv11 
continues this trend with slightly longer times, especially in its larger models, but still within an excellent range. 
YOLOv12 ranks third, with all variants training under 2.5 hours, slightly slower than YOLOv11 and YOLOv8, 
yet far more efficient than YOLOv9.

Regarding latency, YOLOv8 and YOLOv10 models display similar behavior, with YOLOv8 offering the best 
balance between speed and detection performance. YOLOv10 maintains comparable latency but slightly lags in 
accuracy, making its overall efficiency less favorable. YOLOv11 achieves the highest accuracy but at a modest 
cost in latency compared to YOLOv8, a relevant factor for strict real-time applications. YOLOv9 performs the 
worst, with even its better variants, YOLOv9-C and YOLOv9-E, exceeding 11 ms, limiting their practical use. 
YOLOv12 follows a similar latency profile to YOLOv10 and YOLOv11, with YOLOv12n standing out as the 
fastest nano variant. The small to large YOLOv12 models maintain comparable efficiency, while YOLOv12x 
exhibits a notable latency increase, ranking as the slowest model after YOLOv9-E.

Overall, for tomato leaf disease detection, YOLOv11 offers the best trade-off between model complexity, 
training time, and practical deployment. It consistently delivers top-tier accuracy while maintaining reasonable 
training and inference times. YOLOv8, YOLOv10, and YOLOv12 also provide strong alternatives, each excelling 
in different trade-off combinations. YOLOv10 and YOLOv12 in particular stand out for their efficient lightweight 
variants. Conversely, YOLOv9 underperforms despite its complexity, showing longer training times and limited 
gains in accuracy. These findings highlight that selecting an architecture depends not only on raw performance 
but also on balancing computational cost and real-world deployment needs in agricultural scenarios.
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When training infrastructure is limited, opting for models such as YOLOv12n or YOLOv10-N provides 
significant time savings and enables faster retraining cycles, even if it comes at a small cost in detection accuracy. 
On the other hand, in environments where longer training times are acceptable and hardware resources are 
sufficient, models like YOLOv11x are preferable due to their superior generalization and precision. Ultimately, 
this study demonstrates that model choice should account for both resource availability and the precision 
demands of the target agricultural application, balancing efficiency with accuracy across varying deployment 
scenarios.

Limitations
Although this study makes a thorough effort to provide a comprehensive comparison, several limitations must 
be recognized. Firstly, the dataset used covers only six diseases, which may not fully represent the variety of 
diseases that could impact tomato leaves under different regional and environmental conditions. Additionally, 
the training and evaluation were conducted using high-performance hardware, which is not readily available in 
all settings, potentially affecting the replicability of the results in environments with more limited computational 
resources. Lastly, the focus of this work is solely on YOLO architectures, without considering other object 
detection models that may be of interest to certain readers.

Conclusions and future works
This work aims to compare YOLO architectures for the task of tomato leaf disease detection. Specifically, this 
study compares the latest versions of YOLO: YOLOv8, YOLOv9, YOLOv10, YOLOv11, and YOLOv12. For this, 
the Tomato-Village dataset, comprising a collection of 14,368 images of tomato leaf diseases across six types: 
late blight, leaf miner, magnesium deficiency, nitrogen deficiency, potassium deficiency, and spotted wilt virus, 
is used. Training was conducted using all available variants of the architectures, maintaining default parameters 
to ensure a solid comparative analysis. The results reveal significant differences in performance, highlighting the 
strengths and weaknesses of each architecture.

YOLOv11 models emerged as the top-performing architecture, achieving the highest precision, recall, and 
mAP scores while maintaining competitive training times and reasonable latency, positioning them as the most 
attractive option for tomato leaf disease detection. YOLOv10 and YOLOv12 follow closely, offering a strong 
balance between accuracy, speed, and efficiency. YOLOv8, while slightly behind YOLOv10, YOLOv11, and 
YOLOv12, still delivers notable performances and, in some cases, rivals heavier models. In contrast, YOLOv9 
shows the weakest results, with the longest training times, poorest metrics, and highest latency. Notably, 
YOLOv12n stands out as the best nano variant across all architectures, offering exceptional speed and robust 
detection capabilities, making it ideal for extremely resource-constrained scenarios.

Future research could evaluate these models under varying environmental conditions and on different plant 
disease datasets to assess their robustness and generalization. It would also be valuable to test their deployment in 
real-time agricultural monitoring systems and compare them with other object detection techniques to identify 
the most accurate and efficient solutions. Finally, future work could focus on developing practical platforms 
based on these architectures to enable early disease detection and improve crop management strategies.
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