Table 2 Adjacency coefficient Table.

From: Model based planning and layout optimization for multilevel express processing centers through A case study of air express sorting center

Functional Area Adjacency Coefficient

Distance Interval \(\:{\varvec{d}}_{\varvec{i}\varvec{j}}\)

1.0

\(\:\left[0\right.,\left.\:\frac{{d}_{max}}{6}\right)\)

0.8

\(\:\left[\frac{{d}_{max}}{6}\right.,\left.\:\frac{{d}_{max}}{3}\right)\)

0.6

\(\:\left[\frac{{d}_{max}}{3}\right.,\left.\:\frac{{d}_{max}}{2}\right)\)

0.4

\(\:\left[\frac{{d}_{max}}{2}\right.,\left.\:\frac{{2d}_{max}}{3}\right)\)

0.2

\(\:\left[\frac{{2d}_{max}}{3}\right.,\left.\:\frac{5{d}_{max}}{6}\right)\)

0

\(\:\left[\frac{5{d}_{max}}{6}\right.,\left.\:{d}_{max}\right)\)

  1. In order to be used for intelligent algorithm solutions, it is necessary to convert multi-objective functions into single-objective functions. We normalize the objective functions \(\:{F}_{1}\)and \(\:{F}_{2}\) with different dimensions, and the final single objective function \(\:F\) is:.