Table 4 Performance of forecasting method through BPNN-DE.

From: Concrete crack opening forecasting by back propagation neural network and differential equation

Item

JB-1 with mean −21.67

JB-3 with mean −18.23

JB-7 with mean 0.95

Model

BPNN

BPNN-DE-1TD

BPNN-DE-2TD

BPNN

BPNN-DE-1TD

BPNN-DE-2TD

BPNN

BPNN-DE-1TD

BPNN-DE-2TD

\({K}_{1}\)

/

0.005

0.005

/

−0.0200

−0.0200

/

−0.11

−0.11

\({K}_{2}\)

/

0.001

0.001

/

0.0001

0.0001

/

0.000005

0.000005

\({C}{\prime}\)

/

−0.0001

−0.0001

/

−0.0008

−0.0008

/

−0.0085

−0.0085

TD1

/

26

26

/

23

23

/

16.5

16.5

TD2

/

26

17

/

23

10

/

16.5

11

The ratio < 20% error

100%

100%

100%

100%

100%

100%

73.7%

77.8%

79.2%

Average absolute error (% mm)

0.013% (0.0028)

0.013% (0.0027)

0.012% (0.0027)

0.07% (0.013)

0.036% (0.007)

0.034% (0.006)

14.99% (0.068)

13.10% (0.060)

12.62% (0.058)

Minimum error (% mm)

0% (0)

0% (0)

0% (0)

0% (0)

0% (0)

0% (0)

0% (0)

0% (0)

0% (0)

Maximum error (% mm)

0.060% (0.013)

0.063% (0.014)

0.063% (0.014)

0.219% (0.040)

0.135% (0.025)

0.127% (0.023)

85.45% (0.278)

74.32% (0.264)

66.86%

(0.236)

R2

0.780

0.867

0.877

0.619

0.896

0.916

0.856

0.892

0.903

KGE

0.838

0.926

0.936

0.700

0.912

0.956

0.897

0.914

0.951

VAF

0.778

0.864

0.870

0.619

0.895

0.913

0.858

0.893

0.901

Entropy

4.413

10.355

10.356

6.140

10.716

10.716

8.832

10.606

10.606

MI

1.24

2.48

2.46

2.31

3.58

3.59

4.88

4.98

4.99

TIC

132.85

131.76

131.73

138.83

137.34

136.70

137.55

137.85

138.46