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This study explores the application of deep learning to fungal disease diagnosis, focusing on an 
automated detection system for hyphae and spores in clinical samples. This study employs a 
combination of the YOLOX and MobileNet V2 models to analyze fungal fluorescence images. The 
YOLOX model is used to identify individual fungal spores and hyphae, and the MobileNet V2 model is 
employed to identify fungal mycelium. Finally, their combination yields the results of the two analysis 
processes, providing positive or negative results for the entire sample set. The proposed dual-model 
framework is evaluated in terms of the precision, recall, F1-score, and Kappa metrics. For the YOLOX 
model, the precision is 85% for hyphae and 77% for spores, and for the MobileNet V2 model, the 
precision is 83%. The recall value of the YOLOX model is 90% for hyphae and 85% for spores, and 
that of the MobileNet V2 model is 100%. The agreement of the proposed dual-model framework with 
the doctors’ evaluations in terms of precision, recall, and Kappa values is 92.5%, 99.3%, and 0.857, 
respectively. The high agreement value suggests the proposed dual-model framework’s ability to 
identify fungal hyphae and spores in fluorescence images can reach the level of clinicians. With the help 
of the proposed framework, the time and labor of fungal diagnosis can be significantly saved.
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Fungi are common in nature, but a weakened immune system increases vulnerability to fungal infections1. 
Superficial fungal infections can affect the skin, hair, and nails of humans, whereas invasive fungal diseases 
(IFDs) involve systemic infections impacting various organs2. Over the past 20 years, the incidence and mortality 
rates of IFDs have consistently increased worldwide3,4. The IFDs have a hidden onset, non-specific clinical 
manifestations, and are often masked by symptoms of underlying diseases5,6. The most severe problem clinicians 
currently face in terms of IFD diagnosis is the lack of rapid and efficient diagnostic techniques for IFDs, which 
hinders providing patients with the best treatment opportunity7.

The IFD diagnostic methods are mainly based on microscopy, culture, and histopathology. However, there 
are not enough skilled clinicians in the field of fungal microscopy, causing high workloads for clinicians and 
potential misinterpretation of diagnostic results. This problem is even more pronounced in rural hospitals, 
where inexperienced technicians might miss infections or produce false positives, which could further affect the 
selection of subsequent treatment plans.

Over the past decade, deep learning (DL) has demonstrated remarkable progress across multiple disciplines, 
leading to its widespread application in both research and clinical practice. The medical imaging field has 
particularly benefited from recent DL advancements, yielding significant improvements in image segmentation, 
object detection, and classification tasks8,9. Although substantial research has focused on pathological 
image analysis, fungal image analysis has remained an understudied area despite its clinical relevance. Many 
researchers, including Zieliński et al10, have used deep learning in fungal identification, classifying bright-field 
microscopic images of fungi. This approach minimizes the need for biochemical tests, speeds up identification, 
and reduces diagnostic costs. Koo et al.11 conducted automated detection of superficial fungal infections from 
bright field microscopic images with 40 × and 100 × magnifications using the YOLO v4 object detection model. It 
was demonstrated that this object detection model can accurately detect hyphae in microscopic images. Rahman 
et al.12 presented a pioneering study that employed deep convolutional neural networks (CNNs) for classifying 
89 pathogenic fungal genera from bright-field microscopic images. The research team trained and compared 
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the performance of different CNN architectures, enhancing the potential for rapid and precise identification of 
fungal species. Naama et al.13 employed a decision support system for pathologists when diagnosing cutaneous 
fungal infections using PAS and GMS stains, which improved both accuracy and diagnosis speed while reducing 
the pathologists’ workload. Shubhankar et al.14,15 introduced an innovative meta-learning-based deep learning 
architecture named MeFunX, which combined the CNN and XGBoost models. The MeFunX model achieved 
a 92.49% accuracy in the early detection of fungal infections from microscopic images, outperforming state-
of-the-art models, including the VGG16, ResNet, and EfficientNet models. Yilmaz et al.16 demonstrated that 
the VGG16/InceptionV3 models, with approximately 96% accuracy, could outperform clinicians in automated 
fungal detection from KOH microscopy, providing faster and more accurate diagnoses.

However, most of the aforementioned studies have predominantly focused on non-superficial fungi and 
used bright-field images rather than fluorescence images for fungi detection. In recent years, fewer studies 
have been conducted on AI-based identification of superficial fungi from bright-field images, but they have 
not comprehensively analyzed the integrated recognition of fungal spores, hyphae, and mycelium in superficial 
fungi, which is crucial for reflecting real-world clinical application scenarios. In addition, these studies have not 
investigated the consistency of interpretation among clinicians.

This study introduces an advanced deep-learning framework that uses fluorescence fungal images and 
integrates the YOLOX and MobileNet V2 models to identify fungal spores and hyphae from clinical samples. 
Based on the results, the proposed dual-model framework has significant application value in clinical practice in 
terms of improving the accuracy and alleviating clinicians’ workload.

Materials and method
Materials
This study was conducted under the supervision of the Ethics Committee (KY2023-057) of Huashan Hospital, 
affiliated with Fudan University. Our study had adhered to the guidelines and principles stated in the’Declaration 
of Helsinki’. Written informed consent was obtained from the patients for the examination of their samples and 
the use of their clinical data. The clinical samples of superficial fungi prepared for fluorescence images were 
mainly collected from February 2023 to February 2024. Personal information was not required in this study. 
The fluorescence staining solution for fungal samples was provided by Jiangsu Life Time Biological Co., Ltd., 
and image scanning was performed at 10 × magnification using the intelligent fluorescence microscope from 
Shanghai TuLi Technology Co., Ltd.

Annotation and dataset
All the images had a resolution of 1,920 × 1,080 pixels and were annotated by two experienced clinicians. The 
annotation was performed using an in-house developed software named APTime, developed by SODA Data 
Technology Co., Ltd. A total of 942 images were labeled for constructing an object detection model, among 
which 813 images were divided into a training set and a validation set, and 129 images were used to construct 
an independent test set. For constructing the mycelium detection model, 689 images containing mycelium were 
collected and cropped into 600 × 600-pixel tiles with a 160-pixel overlap, resulting in a total of 1,351 mycelium-
positive patches and 3,072 mycelium-negative patches. These images were divided into training, validation, and 
testing sets, as shown in Table 1. Finally, 70 negative samples were collected to evaluate the performance of the 
proposed framework.

Dual-model framework
The obtained fluorescence fungal images are analyzed by the two deep learning models, and the final result for 
a whole image is obtained by integrating the output results of the two models. First, the YOLOX model is used 
to identify scattered hyphae and spores17. The YOLOX-L is selected in this study as an object detection model to 
classify, locate, and count the spores and hyphae. The CSPNet model is used as a backbone.

For mycelium detection, the MobileNet V2 architecture is used18. The images, with the initial size of 
1,920 × 1,080 pixels, are segmented into 160-pixel tiles with a 600 × 600-pixel overlap, which are then resized to a 
size of 512 × 512 pixels for further processing by the MobileNet V2 model. For the analysis of an entire image by 
the MobileNet V2 model, first, a classification result for each tile of an image is obtained, and then all the results 
of all the tiles are aggregated. If any tile indicates a positive result, the entire image is considered mycelium-
positive, as illustrated in Fig. 1.

Model training
Image preprocessing included three key steps: (1) normalization through pixel value division by 255; (2) 
preservation of standard RGB channel ordering; and (3) random brightness adjustments with ± 20% of the 
original intensity to ensure robustness across varying illumination conditions.

YOLOX MobileNet V2

Image Spore Hypha Image Negative patch Positive patch

Training set 669 1,975 2,793

689

1,265 556

Validation set 144 460 587 904 397

Test set 129 556 399 903 398

Table 1.  Datasets used for training and validation of the YOLOX and MobileNet V2 models.
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In the YOLOX-L model’s training process, MixUp and Mosaic were used for data augmentation. Data 
augmentation for MobileNet training was performed by random flip, rotation, and blurring. In addition, the hue, 
saturation, and input image values were also randomly altered. During MobileNet training, batch-level balancing 
was used to ensure that training batches contained an equal number of positive and negative samples. This 
approach could effectively mitigate the impact of class imbalance during the optimization process. To mitigate 
overfitting in both the YOLOX and MobileNet V2 models during model training, this study implemented 
the dropout (rate = 0.5), label smoothing (ε = 0.001), and L2 weight regularization (λ = 0.001). These measures 
collectively improved the models’ generalization ability on unseen data while maintaining diagnostic accuracy.

Evaluation
This study conducted a comprehensive evaluation of the proposed model’s performance, examining various 
metrics: (1) the YOLOX model’s accuracy in detecting spores and hyphae; (2) the consistency of interpreting 
spores and hyphae among different clinicians; (3) the MobileNet V2 model’s accuracy in classifying mycelium; 
(4) the proposed dual-model framework’s accuracy in determining whether a sample image is positive or 
negative for any fungal form. To evaluate the YOLOX model’s performance (i.e., metric (1)), this study selected 
the Intersection over Union (IoU) metric to quantify the degree of overlap between the predicted and ground-
truth bounding boxes. The YOLOX model’s performance in detecting targets was evaluated using the precision, 
recall, PR-curve, AP, mAP, and F1-score metrics. The F1-score index was also used to evaluate consistency 
among clinicians (i.e., metric (2)). For the evaluation of metrics (3) and (4), the precision, recall, Kappa, and 
F1-score indices were used as quantitative metrics.

Fig. 1.  The proposed framework for fungal spore and hypha identification, where each image is subjected to 
two analytical processes to analyze scattered hypha, spore, and mycelium.
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Results
Evaluation of scattered spore and hypha detection ability of YOLOX model
This evaluation process involved 129 images containing scattered spores or hyphae, which were labeled and 
double-checked by two doctors to ensure data quality. The specific dataset contained various morphologies 
of spores and hyphae commonly seen in clinical practice. Among them, the spores included round, oval, and 
bowling ball-shaped spores in budding, and the hyphae included septate, non-septate hyphae, and branched 
hyphae, as shown in Fig. 2(a). Different shapes of objects used in the evaluation could all be accurately identified 
by the trained YOLOX model. The PR-curves and AP performances were separately evaluated for hyphae and 
spores at different IoU thresholds of 0.1, 0.3, 0.5, and 0.75, as presented in Fig. 2(b).

YOLOX model detects hyphae with the form of a box, but the hyphae have a characteristic form that cannot 
be displayed in accordance with the shape of the box because of its curved linear structure. Therefore, to reduce 
the false-negative rate, the model should be able to detect as many hyphae suspect areas as possible. Accordingly, 
in this study, the IOU value was set to the lowest value. When the IoU was set to 0.1, the recall value of the 
spore or hypha detection was the highest, as displayed in Fig. 2(c); the F1-score and AP values were 0.81 and 
0.89 for spore, 0.88 and 0.92 for hyphae, respectively; the mAP was 0.9. The results indicated that the proposed 
model could accurately identify different morphologies of hyphae and spores. However, as spores were more 

Fig. 2.  (a) Different forms of spores and hypha; (b) the PR curves of the YOLOX model in identifying spores 
and hypha for different IoU values, where the left diagram shows the PR curves for spore, and the right 
diagram depicts the PR curves for hyphae; in both diagrams, the horizontal coordinate indicates the recall rate, 
and the vertical coordinate shows the precision rate; (c) precision, recall, and F1-score results of the YOLOX 
model.
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susceptible to the background noise, the model exhibited superior performance in hypha detection compared to 
its performance in spore detection.

Evaluation of consistency among clinicians
Different clinicians might come to different conclusions when reading images under a microscope. To assess the 
consistency between their, three experienced clinicians annotated the same dataset, and their labeled results were 
compared using the F1-score metric as an evaluation indicator, as shown in Table 2. The comparison results of 
the three clinicians showed that the F1-score value agreement between any two of them was 80%–90%, and the 
agreement between the proposed AI model and any one doctor was also 80%–90%. Several factors contributed 
to the inconsistency between clinicians, as well as between clinicians and the proposed AI model, as illustrated in 
Fig. 3. First, the Bounding box size varied and did not strictly follow the target object’s edges drawn by different 
clinicians. In addition, for some cases where multiple spores or hyphae targets were intertwined, different 

Fig. 3.  Illustration of conditions under which clinicians might have different interpretations.

 

Doctor 1 Doctor 2 Doctor 3 Proposed AI-based framework

Spore

Doctor 1 0.81 0.85 0.80

Doctor 2 0.84 0.83

Doctor 3 0.80

Hypha

Doctor 1 0.87 0.90 0.82

Doctor 2 0.84 0.84

Doctor 3 0.83

Table 2.  Consistency of interpretation between different clinicians and between the three clinicians and the 
proposed dual-model framework in terms of the F1-score metric.
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clinicians drew different numbers of label boxes and classified them differently. For instance, one clinician 
might classify all the targets as a whole, while others might label each target within them separately. Further, 
the subjectivity factor was also introduced in some images that included targets with a very low fluorescence 
intensity or strong background noise.

Evaluation of fungal mycelium detecting ability of MobileNet V2 model
In preliminary analysis, this study tried to use the YOLOX model to detect all fungal forms, but the results 
indicated that the YOLOX model did not perform well in processing large targets with complex internal 
structures, such as fungal mycelium. Therefore, this study introduced the MobileNet V2 model for this task. 
Due to the characteristic of mycelium that comprised multiple entangled hyphae, as depicted in Fig. 4(a), it 
was difficult to identify and count a single hypha. However, a qualitative result of negative or positive mycelium 
was easier to obtain using a classification model. The precision, recall, and F1-score values of the classification 
model were 83%, 100%, and 93%, respectively, as presented in Figs. 4(b) and (c). As shown in Figs. 4(b) and 
(c), the MobileNet V2 model performed well in the mycelium classification task. The results indicated that the 
MobileNet V2 model had a high recall rate, meaning that it could hardly miss any mycelium.

Fig. 4.  (a) Different forms of mycelium; (b) the confusion matrix of the MobileNet V2 model; (c) the 
MobileNet V2 model’s performance evaluated using the precision, recall, and F1-score values.
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Evaluation of fungal image positivity detection effect of proposed dual-model framework
For the evaluation of all the fungal forms used in this study, an ensemble workflow integrated the results of the 
spore and hypha detection model and the fungal mycelium classification model to obtain a final result of fungal 
negative or positive for the entire image. Fungal negative meant no hyphae or spores were identified. A total of 
219 images were used in this evaluation. The precision, recall, F1-score, and Kappa values of the proposed model 
were 92.5%, 99.3%, 95.7%, and 0.857, respectively, as shown in Figs. 5(a) and (b). The results demonstrated that 
the proposed fluorescence fungal image analysis framework’s results were highly consistent with the evaluation 
results of clinicians, having a significant clinical reference value.

Discussion
In clinical translational research, immunofluorescence images have been widely applied to pathological tissue 
analysis to study tumor microenvironments19, due to their ability to detect multiple biomarkers simultaneously 
on a single tissue section. This has led to the development of numerous AI-based fluorescent image analysis 
methods20. In clinical diagnosis, there is an increasing trend of fluorescence imaging application in the 
clinical diagnosis of fungal infections due to its sensitivity and specificity. Notably, fluorescence images using 
fluorescence dye that specifically stains the component of the fungal cell wall are better at distinguishing fungi 
from the background than bright-field images, allowing for clearer observation of fungal morphology and 
improving a doctor’s efficiency. In this study, two deep learning models, the YOLOX and MobileNet V2 models, 
were combined to conduct an analysis of fungal fluorescence images. In model performance validation, both 
individual and ensemble models demonstrated high efficacy in identifying fungal spores, hyphae, and mycelium, 
achieving results comparable to those of clinicians. To the best of our knowledge, this is the first time that fungal 
mycelium has been detected, separate from spores or single hyphae using a different model. Fungal mycelium is 
a common fungal form in clinical samples, and its accurate detection is important for clinical diagnosis. With the 
widespread use of digital scanners in hospitals, a fully automated analysis workflow powered by deep learning 
technology would be a promising approach to alleviate the burden of hospitals.

Previous studies have primarily focused on non-superficial fungi, including non-cutaneous fungal species, 
which exhibit significant morphological differences compared to superficial fungi. Consequently, the AI 
algorithms required for their detection might also differ15,16. In addition, in certain clinical fungal diagnostic 
scenarios, the challenge lies in fungal classification, a task addressed through image classification algorithms12. 
Although some studies have conducted the AI-based identification of superficial fungi from bright-field images 
in recent years, they have not comprehensively analyzed the integrated recognition of fungal spores, hyphae, and 
mycelium in superficial fungi, which is crucial to reflect real-world clinical application scenarios. In contrast, 
this study employs a combination of different AI algorithms to identify diverse morphological variations of 
superficial fungi, aiming to determine the presence of fungal infection in clinical samples.

Although this study has achieved promising results, it has some limitations. First, the annotation process of 
fungus images is time-consuming and complex. Second, the generalization ability of the proposed hybrid model 
is limited by the training data, and fungus species are diverse and are known for their seasonal and regional 
distribution characteristics. Therefore, future research could explore the following aspects. First, the proposed 
model could be further optimized to improve its classification ability for small targets and complex morphology. 
For instance, different AI-based models, such as the YOLOv5, Faster R-CNN, and EfficientNet models, could 
be employed to improve detection performance. Second, the training dataset could be expanded and diversified 
to enhance the proposed model’s generalization ability. Third, more advanced augmentation methods, such as 
domain-specific augmentations (e.g., synthetic lesion generation via StyleGAN for medical images), could be 
used to improve detection performance to address the problems of class imbalances and rare cases.

Fig. 5.  (a) The confusion matrix of the proposed dual-model framework; (b) the proposed dual-model 
framework’s performance evaluated using the precision, recall, F1-score.
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In summary, the combination of the YOLOX and the MobileNet V2 models provides a more comprehensive 
and effective method for analyzing fluorescent fungal images. Future work could further explore the optimization 
and fusion of the two algorithms to expand the recognition range of fungal species, aiming to further improve 
the accuracy of these models. At the same time, the proposed AI-driven framework could be combined with 
fluorescence scanning technology to provide a comprehensive clinical solution for automated skin fungal 
identification to support diagnostic decision-making.

Data availability
The datasets generated and/or analyzed in this study are available from the corresponding authors on a reason-
able request and with the necessary approval from the Ethics Committee.
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