Table 13 Precision, recall, and specificity comparison. Significant values are in bold.

From: Novel dual gland GAN architecture improves human protein localization classification using salivary and pituitary gland inspired loss functions

Model

Precision (Before)

Precision (After)

Recall (Before)

Recall (After)

Specificity (Before)

Specificity (After)

ResNet-5047

0.829

0.906

0.845

0.921

0.841

0.913

DenseNet-12148

0.847

0.914

0.857

0.927

0.859

0.921

EfficientNet-B349

0.853

0.925

0.865

0.937

0.859

0.932

Vision Transformer50

0.842

0.931

0.855

0.940

0.847

0.937

MobileNetV351

0.815

0.883

0.827

0.896

0.827

0.890

Inception-v452

0.838

0.910

0.849

0.924

0.849

0.918

Swin Transformer53

0.856

0.934

0.867

0.945

0.861

0.939

ConvNeXt54

0.848

0.920

0.859

0.934

0.854

0.927

RegNet-Y55

0.828

0.897

0.843

0.912

0.835

0.904

NFNet56

0.859

0.938

0.870

0.951

0.865

0.942

Average

0.842

0.916

0.854

0.929

0.850

0.922