Table 13 Precision, recall, and specificity comparison. Significant values are in bold.
Model | Precision (Before) | Precision (After) | Recall (Before) | Recall (After) | Specificity (Before) | Specificity (After) |
---|---|---|---|---|---|---|
ResNet-5047 | 0.829 | 0.906 | 0.845 | 0.921 | 0.841 | 0.913 |
DenseNet-12148 | 0.847 | 0.914 | 0.857 | 0.927 | 0.859 | 0.921 |
EfficientNet-B349 | 0.853 | 0.925 | 0.865 | 0.937 | 0.859 | 0.932 |
Vision Transformer50 | 0.842 | 0.931 | 0.855 | 0.940 | 0.847 | 0.937 |
MobileNetV351 | 0.815 | 0.883 | 0.827 | 0.896 | 0.827 | 0.890 |
Inception-v452 | 0.838 | 0.910 | 0.849 | 0.924 | 0.849 | 0.918 |
Swin Transformer53 | 0.856 | 0.934 | 0.867 | 0.945 | 0.861 | 0.939 |
ConvNeXt54 | 0.848 | 0.920 | 0.859 | 0.934 | 0.854 | 0.927 |
RegNet-Y55 | 0.828 | 0.897 | 0.843 | 0.912 | 0.835 | 0.904 |
NFNet56 | 0.859 | 0.938 | 0.870 | 0.951 | 0.865 | 0.942 |
Average | 0.842 | 0.916 | 0.854 | 0.929 | 0.850 | 0.922 |