Table 14 Performance on minority classes and class imbalance handling. Significant values are in bold.
Model | Minority class F1 (Before) | Minority class F1 (After) | Balanced accuracy (Before) | Balanced accuracy (After) | Improvement ratio |
---|---|---|---|---|---|
ResNet-5047 | 0.762 | 0.881 | 0.812 | 0.904 | 1.156 |
DenseNet-12148 | 0.781 | 0.892 | 0.828 | 0.915 | 1.142 |
EfficientNet-B349 | 0.790 | 0.907 | 0.837 | 0.928 | 1.148 |
Vision Transformer50 | 0.778 | 0.913 | 0.825 | 0.932 | 1.173 |
MobileNetV351 | 0.741 | 0.858 | 0.794 | 0.885 | 1.158 |
Inception-v452 | 0.773 | 0.889 | 0.821 | 0.912 | 1.150 |
Swin Transformer53 | 0.796 | 0.918 | 0.841 | 0.936 | 1.153 |
ConvNeXt54 | 0.784 | 0.903 | 0.831 | 0.924 | 1.152 |
RegNet-Y55 | 0.757 | 0.874 | 0.806 | 0.897 | 1.154 |
NFNet56 | 0.803 | 0.925 | 0.846 | 0.941 | 1.152 |
Average | 0.777 | 0.896 | 0.824 | 0.917 | 1.154 |