Table 15 Comprehensive before/after classification performance comparison across GAN architectures. Significant values are in bold.

From: Novel dual gland GAN architecture improves human protein localization classification using salivary and pituitary gland inspired loss functions

GAN architecture

Avg precision before

Avg Precision After

Precision improvement (%)

Avg recall before

Avg recall after

Recall improvement (%)

Avg F1-score before

Avg F1-score after

F1-score improvement (%)

Dual-Gland GAN (Ours)

0.842

0.916

 + 8.8

0.854

0.929

 + 8.8

0.847

0.922

 + 8.9

Traditional GAN

0.842

0.867

 + 3.0

0.854

0.871

 + 2.0

0.847

0.869

 + 2.6

DCGAN

0.842

0.879

 + 4.4

0.854

0.886

 + 3.7

0.847

0.882

 + 4.1

WGAN

0.842

0.891

 + 5.8

0.854

0.897

 + 5.0

0.847

0.894

 + 5.5

Conditional GAN

0.842

0.883

 + 4.9

0.854

0.889

 + 4.1

0.847

0.886

 + 4.6

CycleGAN

0.842

0.888

 + 5.5

0.854

0.894

 + 4.7

0.847

0.891

 + 5.2

GSIP-GAN

0.842

0.902

 + 7.1

0.854

0.908

 + 6.3

0.847

0.905

 + 6.8

ECP-IGANN

0.842

0.908

 + 7.8

0.854

0.915

 + 7.1

0.847

0.911

 + 7.6

MCI-GAN

0.842

0.895

 + 6.3

0.854

0.901

 + 5.5

0.847

0.898

 + 6.0