Table 16 Minority class performance comparison across GAN architectures. Significant values are in bold.

From: Novel dual gland GAN architecture improves human protein localization classification using salivary and pituitary gland inspired loss functions

GAN architecture

Minority class F1 (Before)

Minority class F1 (After)

Improvement

Improvement percentage (%)

Dual-Gland GAN (Ours)

0.777

0.896

 + 0.119

 + 15.3

ECP-IGANN38

0.777

0.876

 + 0.099

 + 12.8

GSIP-GAN37

0.777

0.864

 + 0.087

 + 11.2

MCI-GAN40

0.777

0.851

 + 0.074

 + 9.5

WGAN

0.777

0.842

 + 0.065

 + 8.4

CycleGAN

0.777

0.836

 + 0.059

 + 7.6

Conditional GAN

0.777

0.834

 + 0.057

 + 7.3

DCGAN

0.777

0.827

 + 0.050

 + 6.4

Traditional GAN

0.777

0.812

 + 0.035

 + 4.5