Table 5 Hardware and software specifications.

From: Novel dual gland GAN architecture improves human protein localization classification using salivary and pituitary gland inspired loss functions

Component

Workstation

Laptop

Processor

Intel Xeon W-3275 (28 cores, 2.5GHz base, 4.4GHz boost)

Intel Core i9-12900H (14 cores, 2.5GHz base, 5.0GHz boost)

RAM

256GB DDR4-3200 ECC

64GB DDR5-4800

GPU primary

NVIDIA RTX A6000 (48GB GDDR6)

NVIDIA RTX 4090 Mobile (16GB GDDR6)

GPU secondary

NVIDIA RTX A5000 (24GB GDDR6)

N/A

Storage

4TB NVMe SSD RAID 0 + 24TB HDD (RAID 5)

2TB NVMe SSD

Operating system

Ubuntu 22.04 LTS

Ubuntu 22.04 LTS

CUDA version

12.2

12.1

cuDNN version

8.9.4

8.9.2

Python version

3.10.12

3.10.12

Deep learning framework

PyTorch 2.1.0

PyTorch 2.0.1

Image processing

OpenCV 4.8.0, scikit-image 0.21.0

OpenCV 4.7.0, scikit-image 0.20.0

Data management

pandas 2.1.1, NumPy 1.25.2

pandas 2.0.3, NumPy 1.24.3

Visualization

Matplotlib 3.7.2, Tensorboard 2.13.0

Matplotlib 3.7.1, Tensorboard 2.12.3

Optimization libraries

NVIDIA DALI, TorchVision 0.16.0

TorchVision 0.15.2

Memory utilization

Peak: 44GB GPU, 212GB RAM

Peak: 14GB GPU, 48GB RAM

Training duration

 ~ 72 h (full dataset)

 ~ 12 h (subset testing)

Inference speed

0.37s per image

1.24s per image