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Exhaled breath samples of lung cancer patients (LC), tuberculosis (TB) patients and asymptomatic 
controls (C) were analyzed using gas chromatography-mass spectrometry (GC-MS). Ten volatile 
organic compounds (VOCs) were identified as possible biomarkers after confounders were statistically 
eliminated to enhance biomarker specificity. The diagnostic potential of these possible biomarkers was 
evaluated using multiple machine learning models and their performance for classifying patients and 
controls was compared. Partial least squares-discriminant analysis (PLS-DA) emerged as the best-
performing model for separating lung cancer from controls, with a recall (sensitivity) of 82%, precision 
of 90%, accuracy of 80% and F1-score of 86%. To further validate this model, TB data was introduced as 
a confounding disease, and the model achieved precision, recall, accuracy and F1-score of 88% each, in 
distinguishing lung cancer from TB. These findings address the inter-disease variability and underscores 
the reliability of the reported VOCs as potential biomarkers of lung cancer. This study establishes a new 
framework integrating machine learning and confounder elimination for biomarker confirmation.

Lung cancer remains a serious global health challenge, representing one of the deadliest malignancies with 
increasing prevalence worldwide among all cancers1. According to the World Health Organization, it claims over 
1.8 million lives annually2. Biologically, lung cancer is divided into non-small cell lung cancer (NSCLC), which 
accounts for about 85% of cases, and small cell lung cancer (SCLC), which comprises approximately 15%3. In 
developing countries, the incidence and mortality rates of lung cancer are constantly on the rise4. The insidious 
onset of lung cancer often results in late stage diagnosis, since initial symptoms such as chest pain, weight loss, 
coughing, and hemoptysis only emerge as the disease progresses5. Therefore, early diagnosis of lung cancer is 
crucial. Statistics reveal that the 5-year survival rate for early-stage lung cancer is 90% while it plummets to 
less than 5% for those diagnosed at a late stage6. Cancer diagnosis often requires many tests, some of which are 
invasive surgical procedures. Existing non-invasive methods often have limitations. For example, low-dose spiral 
CT scans, offers more sensitivity compared to conventional chest X-rays7,8, however, despite its advancements, 
it yields high false positive rate and exposes patients to radiation, potentially accelerating cancer progression9. 
This underlines the need for a non-invasive, low-cost and rapid diagnostic tool that allows for early detection of 
lung cancer, which can give patients a fighting chance to overcome the disease.

In response to these challenges, special attention is drawn to volatile organic compounds (VOCs) in exhaled 
human breath because its easy and comfortable for patients as its non-invasive and can even be applied to 
patients in intensive care units10,11. Several studies have underscored the viability of this approach12,13. 
Alternative approaches for exhaled breath analysis such as proton transfer reaction mass spectrometry (PTR-
MS)14, single-photon ionization mass spectrometry (SPI-MS)15 and selected-ion flow-tube mass spectrometry 
(SIFT-MS)16 have been explored. However, they suffer from poor sensitivity and specificity in VOC identification 
and quantification when compared to the gas chromatography-mass spectrometry (GC-MS)17. The GC-MS has 
advantages in the separation of the compounds based on their volatility in the chromatographic column which 
makes identification more accurate. Previous studies have been devoted to identifying lung cancer biomarkers 
using various GC-MS conditions12,18,19 in conjunction with analytical software tools such as chemstation20, 
MZmine21, Xcalibur22 and R packages23.
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Machine learning methods including random forest, principal component analysis and decision tree, just to 
name a few, have been utilised to classify lung cancer status based on VOC profiles. Despite all these approaches 
there is no standardized technique for diagnosing lung cancer via exhaled breath. This explains why there is no 
single unique biomarker associated with lung cancer, as the VOCs identified vary from one research to the other. 
The variability could be associated with sample treatment, clinical characteristics, analysis methods and varied 
external factors. Therefore, there is a need to introduce a method that uses relative VOC concentrations and 
retention times to identify lung cancer associated biomarkers and also eliminate all VOCs that are influenced 
by exogenous factors. Previous studies have not been rigorous in dealing with these exogenous factors and this 
work attempts to address this challenge.

This study focuses on profiling VOCs associated with lung cancer using a single quadruple GC-MS24 coupled 
with Openchrom25, Automated Mass Spectral Deconvolution and Identification System (AMDIS)26 and National 
Institute of Standards and Technology (NIST)27 data library. The study uniquely identifies VOCs not previously 
linked to lung cancer, potentially offering an early diagnostic technique. By integrating machine learning models 
and statistical methods, we determine the significance of these VOCs, eliminating those influenced by external 
factors such as smoking and diet. Furthermore, different histological subtypes and stages of lung cancer can 
cause breath patterns to vary, adding to the disease’s heterogeneity. This study sought to address these challenges. 
Earlier research work has demonstrated that even with a small dataset, robust statistical and machine learning 
methods can identify meaningful biomarker trends28.

Results
Ninety-nine exhaled breath samples from 52 participants were analyzed using gas chromatography–mass 
spectrometry (GC-MS). Figure 1 shows a typical total ion chromatogram (TIC) representing the breath profile of 
a lung cancer patient. Key volatile organic compounds (VOCs) identified in this study are labeled and annotated 
based on their retention times and mass spectral matches using the NIST library. The chromatogram gives an 
overview of the VOC profile observed in a lung cancer patient and displays several distinct peaks corresponding 
to compounds that were either absent or present at very low concentrations in control samples. This highlights 
the chemical complexity of exhaled breath in affected individuals. Figure  1 visually summarizes the specific 
VOCs that may be associated with lung cancer and have potential utility as diagnostic biomarkers.

To validate the performance of the GC-MS instrument, calibration curves were established for o-cymene 
and hexadecane using external standards (see Supplementary Figures S1 and S2). Both curves showed excellent 
linearity (R2 = 0.998 and 0.997), confirming that the instrument response was proportional to concentration 
(Supplementary Table S1). Hexadecane exhibited a significantly steeper slope (1.23x109 a.u./ppm) than o-cymene 
(8548.06 a.u./ppm), indicating higher detector sensitivity. Calculated LODs and LOQs were 4.89/14.83 ppm 
for o-cymene and 0.08/0.24 ppm for hexadecane, confirming trace-level detection capability. Replicate analysis 
yielded low RSDs (2.16% and 3.14%), supporting method precision within the accepted <5% range29. VOCs 
without calibration standards were identified via NIST spectral matching (match and reverse match >80%). 

Fig. 1.  A typical total ion chromatogram (TIC) of a lung cancer patient’s breath profile showing multiple 
peaks at different retention times. Key VOCs identified in the study are labeled and annotated based on their 
retention times and mass spectral matches using the NIST library.
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Internal standards were not added to patient samples to avoid altering the integrity of the breath samples, a 
critical concern in diagnostic studies.

In the initial statistical analysis, the criterion for identifying significant VOCs was to ensure that each 
compound’s mass spectrum matched a reference spectrum in the NIST library with a match factor of 80% or 
higher. The peak areas of the 20 identified VOCs were used as input parameters for statistical analysis. Since most 
variables did not follow a normal distribution (as confirmed by the Shapiro-Wilk test), a non-parametric Mann-
Whitney U test was applied to determine significant differences between groups. All 20 VOCs showed significant 
differences (p < 0.05) between lung cancer patients and controls, showing their potential for lung cancer diagnosis 
as shown in Table  1. Most importantly, these compounds were found to have elevated levels in lung cancer 
patients compared to controls, hinting at their association with the disease. Any compound that demonstrated 
statistical significance (p < 0.05) in relation to factors such as smoking history, gender, lung cancer stage, histology 
and has exogeneous association was excluded as a potential biomarker to ensure that the biomarkers identified 
are not influenced by these variables. The results in Table 1 show that males had considerably higher levels of 
hexanedioic acid, bis(2-ethylhexyl) ester and dodecane than females (p < 0.05). While the biological significance 
of this observation remains uncertain, previous studies suggest that sex-specific differences in lipid metabolism 
and oxidative stress pathways may influence VOC profiles30. However, confirming any such relationship would 
require larger, controlled studies designed to specifically investigate gender-based metabolic variations in lung 
cancer. In our study population, a higher incidence of lung cancer was observed among males compared to 
females (Fig. 5a), which may reflect both biological and lifestyle-related influences. These findings underscore 
the importance of controlling for gender-related factors in breath biomarker studies and highlight the need for 
targeted research into sex-specific metabolic processes that may contribute to disease risk.

Phenyl acetate showed significantly elevated levels in smokers than in non-smokers (p < 0.05) and 
reseachers have indicated that smoking can also affect the VOCs in exhaled breath31. Additionally, other VOCs 
such as 1,2-dichlorobenzene, 3-methylheptyl acetate, 2-Phenoxyethanol, 1,2-benzenedicarboxylic acid bis(2-
methylpropyl) ester, and decanal were also influenced by both smoking and gender32–34. Chen et al. observed 
higher levels of decanal in smokers than in non-smokers35. Moreover, 3-methylheptyl acetate, an ester 
compound, shares structural similarity with esters commonly used as flavorants in tobacco products, suggesting 
that its presence in breath samples may be related to smoking behavior36. Given that a significant proportion of 
the male participants in the study were smokers, the gender-based differences observed in the levels of the above 
mentioned VOCs could likely be attributed to smoking behavior. This suggests that the influence of these VOCs 
may be more strongly associated with lifestyle factors rather than with lung cancer-specific mechanisms and 
hence can be eliminated as possible biomarkers.

In our study, the distribution of lung cancer stages depicted in Fig. 5b demonstrates a prevalence of stage III 
diagnoses in NSCLC patients and stage IV in SCLC patients, aligning with established literature that underscores 
the typically slower progression of NSCLC compared to the more aggressive progression seen in SCLC37 . This 
observation reflects the differing biological behaviors of these two types of lung cancer and the information is 

VOC name

Lung cancer vs
Control

Histology
(NSCLC vs SCLC)

Stages
(III vs IV) Smoking Gender

(p-value) (p-value) (p-value) (p-value) (p-value)

1,2 Benzenedicarboxylic acid, bis(2- methylpropyl)ester * 0.007 n.s n.s 0.034 0.045

1,2-Dichlorobenzene 0.07 n.s n.s 0.025 0.034

2,2,4,6,6-Pentamethylheptane 0.002 n.s n.s n.s n.s

2,3,6,7-Tetramethyloctane 0.006 n.s n.s n.s n.s

2-Bromododecane 0.013 n.s n.s n.s n.s

2-Phenoxyethanol 0.044 n.s n.s 0.017 0.026

2,5,9-Trimethyldecane 0.07 n.s n.s n.s n.s

3,3-Dimethylpentane 0.003 n.s n.s n.s n.s

3-Methylheptyl acetate 0.024 n.s n.s 0.040 0.037

4-Methylundecane 0.013 n.s n.s n.s n.s

Decanal 0.014 n.s n.s 0.048 0.030

Diethyl Phthalate ∗ 0.03 n.s 0.020 n.s n.s

Dodecane 0.009 n.s n.s n.s 0.033

Ethanone 1-(2,4,6-trihydroxyphenyl) 0.003 n.s n.s n.s n.s

Hexadecane 0.013 n.s 0.003 n.s n.s

Hexanedioic acid, bis(2-ethylhexyl)ester ∗ 0.002 n.s n.s n.s 0.023

O-cymene 0.007 n.s n.s n.s n.s

Octanal 0.005 n.s n.s n.s n.s

Pentadecanal 0.027 n.s n.s n.s n.s

Phenyl acetate 0.015 n.s n.s 0.050 n.s

Table 1.  List of VOCs used to study intergroup differences and confounder elimination. Compounds marked 
with an asterisk (*) are common plasticizers.
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crucial as it provides a context for understanding the variations in volatile organic compounds (VOCs) observed 
across these two major histological groups of lung cancer. Interestingly, several studies suggest that VOC profiles 
differ across lung cancer subtypes, Corradi et al. showed that ethylbenzene was higher in adenocarcinoma than 
squamous cell carcinoma38. However, other studies did not find a significant impact of histology on exhaled 
VOCs39–41, which is consistent with our study that did not identify histology-specific VOCs as we can observe 
from Table 1 that all the identified compound were not statistically significant (n.s). This suggests that the VOCs 
identified are not sensitive to a particular lung cancer type. A few studies also compared the lung cancer stages, 
but there was no specific difference40,42,43 noted in the composition of the VOCs for this comparison. However, 
in our study stage-dependent variations were observed, with hexadecane and diethyl phthalate showing elevated 
level in stage III compared to stage IV. This stage-based variation may reflect metabolic changes associated 
with tumor progression and highlights the potential of these VOCs for disease monitoring rather than early 
diagnosis. However, more studies still need to be done to confirm this.

An average of 819 compounds per sample were identified using OpenChrom software. Contaminants 
associated with the tedlar bag, such as N,N-dimethylacetamide and phenol44,45 were excluded and a total of 
2265 features were extracted. This huge amount of data requires dimensionality reduction software to interpret 
and visualize. We first applied Principal component analysis (PCA) as an unsupervised technique to reduce the 
complexity of the data while retaining the majority of its variance. This was followed by Partial least discriminant 
analysis (PLS-DA), a supervised method, to visualize the class separation between; lung cancer (blue), TB 
(green) and control (red), and a prediction model was established as shown in Fig. 2. PLS components, namely 
PLS1 and PLS2, primarily capture the variations based on the characteristic peaks of the VOCs as identified by 
their retention times and peak area(s). PLS1 captures the largest variance that is involved in class separation. 
A significant spread can be observed in this axis indicating that these components are highly effective in 
distinguishing between the three classes, PLS2 captures additional variance orthogonal to PLS1 and further 
contributes to the class separation. The green cluster (TB) shows to be well separate from the blue cluster (lung 
cancer) along PLS1, which suggests that this component captures features in the breath profile that differentiate 
lung cancer from TB. The tight clustering of the green points indicates consistency in the TB patients and the 
spread of the blue points indicated that there is great variability in lung cancer samples which could be due to 
the different types of lung cancer types (NSCLC and SCLC) and different stages. The red cluster (control) is 
distinct from both green and blue along PLS2, which indicates that this component captures variance related to 
the separation of the healthy controls from the diseased patients.

There is some observed overlap between blue points (lung cancer) and red points (controls), the observed 
overlap can be partly attributed to the presence of shared VOCs with a subset of controls. It is noted that 
these controls fall within the same age range typically associated with early signs of lung cancer46. Given this 
demographic similarity and the asymptomatic nature of the controls, it is concivable that they might be more 
suspectible to developing lung cancer as they age, however, this needs further investigations. As observed in 

Fig. 2.  Score plot from the PLS-DA analysis of lung cancer patients, TB patients and controls. The lung cancer/
TB/control status was used as the supervisory variable (R2Y = 0.87 and Q2Y = 0.70).
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Table 2, certain compounds identified in lung cancer were also detected in a small subset of control samples. 
According to the R2Y  value of 0.87 it means that 87% of the variability is explained by the model which indicates 
that the chosen VOCs are effective in distinguishing between lung cancer patients, TB patients, and controls 
based on their breath samples. When it is applied to new, unseen data, the model can be able to predict 70% of the 
variability in the disease condition, as indicated by its Q2Y  of 0.70. This strongly shows that the model is robust 
and has possible applicability in real-world situations. In addition to fitting the current data well, a high Q2Y  
score in relation to R2Y  indicates that the model can also generalize well to new samples. After excluding VOCs 
affected by gender, smoking history, exogeneous factors, lung cancer stages and histology, a refined list of 10 
potential VOCs unique to lung cancer was established as shown in Table 2. All compounds exhibited large Cliff ’s 
delta effect sizes (δ ≥ 0.474) , reinforcing their discriminatory power. Notably, 2,2,4,6,6-Pentamethylheptane 
and 2,3,6,7-Tetramethyloctane showed the highest discrimination, with δ = 0.60 and 0.63 respectively. These 
VOCs remain strong candidates for breathalyzer development.

In Table 2, three VOCs, 3,3-Dimethylpentane, Octanal and 2,2,4,6,6-Pentamethylheptane have been previously 
reported as candidate exhaled breath biomarkers for lung cancer. However, to the best of our knowledge, this is 
the first time that the following VOCs are being reported in association with lung cancer: 2-Bromododecane, 
Pentadecanal, 2,3,6,7-tetramethyloctane, 4-Methylundecane, Ethanone,1-(2,4,6-trihydroxyphenyl), 
2,5,9-Trimethyldecane and o-cymene. This VOCs were all showing a high Variable Importance in Projection 
(VIP) score (>1) as shown in Table 2, which underscores their contribution to the class separation between lung 
cancer and controls. The inclusion of both previously reported and new VOCs confirms the reliability of the 
new identified biomarkers, shown in this study. To evaluate the discriminative power of these VOCs, machine 
learning classification models such as PLS-DA, Support vector machine (SVM) and K-nearest neighbor(KNN) 
were performed using Python. Figure 3a shows the bar graph of the prediction metrics (Recall (sensitivity), 
precision, accuracy and F1-score) of these models for classifying lung cancer patients and controls. PLS-DA 
outperformed the other models, showing its superior prediction accuracy with a sensitivity of 82%, precision of 
90%, accuracy of 80% and F1-score of 86%.

Because of its capability to manage multicollinearity and focus on maximizing the separation between 
predefined classes, PLS-DA performs better than SVM and KNN. PLS-DA combines dimensionality reduction 
and class discrimination, unlike SVM, which focuses on identifying the best hyperplane for classification, or 
KNN, which uses proximity-based classification. PLS-DA uses the variation in the data which is most relevant 
for class separation, and this is very useful when analyzing high-dimensional datasets such as breath samples 
with large variability, whereby the number of VOC features is usually more than the number of samples. 
Furthermore, because of its ability to generate VIP scores it allows for the identification of the most significant 
compounds that are causing the class separation. In light of these strengths, PLS-DA was further tested by adding 
TB data as a confounding disease to validate the VOCs that were observed. Since PLS-DA had been successful 
in differentiating between lung cancer and controls, the goal was to see if it could also distinguish between TB 
and lung cancer. It is pleasing to report that the model was again very successful in differentiating LC from TB as 
shown by Figure 2, with a recall, F1-score, precision and accuracy of 88%. This proves that the VOCs identified 
are potential lung cancer biomarkers and rule out false positives that might be associated with similar metabolic 
pathways between TB and lung cancer.

To further assess the classification performance of each model, receiver operating characteristic (ROC) curve 
analysis was performed for each model. The ROC curve for the PLS-DA model, shown in Fig. 3b, demonstrated 
excellent discriminative ability with an area under the curve (AUC) of 0.96. This AUC confirms the model’s 
ability in distinguishing between lung cancer patients and controls, indicating a very low false positive rate 

VOC name
Retention time(minutes)
±0.5 Molecular mass [base peak] (m/z) Cas. No VIP score

Cliffs Delta
(δ)

Detection
Frequency

Lung Cancer Control

 (%) (%)

2,2,4,6,6-Pentamethylheptane 14.11 170.0 [57] 13475-82-6 1.80 0.60 35.0 0

2,3,6,7-Tetramethyloctane 16.77 170.0 [43] 52670-34-5 1.51 0.63 50.0 13.6

2-Bromododecane 22.32 248.0 [57] 13187-99-0 1.16 0.51 30.0 4.5

2,5,9-Trimethyldecane 15.10 184.0 [57] 62108-22-9 1.19 0.50 25.0 0

3,3-Dimethylpentane 15.89 100.0 [43] 562-49-2 1.26 0.50 35.0 9.1

4-Methylundecane 17.31 170.0 [43] 2980-69-0 1.08 0.51 30.0 4.5

Ethanone,1-(2,4,6-trihydroxyphenyl) 18.97 168.0 [153] 480-66-0 1.70 0.55 30.0 0

O-cymene 15.01 134.0 [119] 527-84-4 1.38 0.59 40.0 9.1

Octanal 13.61 128.0 [43] 124-13-0 1.17 0.57 35.0 4.5

Pentadecanal 35.57 226.0 [82] 2765-11-9 1.58 0.54 55.0 18.2

Table 2.  VOCs selected as possible biomarkers of lung cancer. The new potential Biomarkers reported 
for the first time are highlighted in bold. The “molecular mass [base peak] (m/z)” column presents the 
calculated molecular weight alongside the most abundant fragment ion observed in the mass spectrum 
(base peak). Retention times are given with an approximate variability of ± 0.5, reflecting minor shifts due to 
chromatographic conditions and the percentage values represent the detection frequency of each compound 
within the lung cancer and control groups.
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and a high true positive rate. The PLS-DA AUC in comparison to the SVM and KNN AUC of 0.89 and 0.85, 
respectively (Supplementary Figure S3) underscores the effectiveness of our VOC identification approach and 
highlight its potential for clinical applications. This research not only advances the field of VOC identification 
but also lays a strong foundation in developing a lung cancer breathalyzer. This device could transform lung 
cancer diagnostics, offering a rapid, non-invasive, and cost-effective solution at the point of care, significantly 
enhancing early detection and, consequently, survival rates.

Discussion
Previous research has shown that VOCs due to oxidative stress are likely not to be disease-specific, as similar 
pathways are activated in various diseases47,48. However, the more cancer-specific processes, such as gene 
mutations, altered protein expression, and the Warburg effect, are likely to contribute to the abnormal VOC 
profiles observed in lung cancer patients49. To ensure that the identified VOCs were reliable and specific to lung 
cancer, we evaluated confounding factors such as smoking, gender, lung cancer stage, and histology. Smoking, 
a major risk factor for lung cancer, influenced VOCs such as phenyl acetate, and benzene derivatives, consistent 
with prior studies50. VOCs influenced by both gender and smoking (e.g.1,2-dichlorobenzene, 3-methylheptyl 
acetate, 2-Phenoxyethanol, 1,2-benzenedicarboxylic acid bis(2-methylpropyl) ester and decanal) highlight the 
intertwined effects of these variables, reinforcing the importance of controlling for such factors in biomarker 
identification. Although these compounds were reported in the results section for transparency, all VOCs 
significantly influenced by exogenous sources (e.g., plasticizers), lung cancer stage, histology, smoking, or gender 
were excluded from the final biomarker panel (Table 2). This filtering step ensured that only biologically relevant 
and disease-specific compounds were considered in the interpretation of lung cancer biomarkers. The inclusion 
of previously reported VOCs, such as 3,3-Dimethylpentane51, octanal38,52–54, 2,2,4,6,6-Pentamethylheptane55,56, 
alongside novel candidates; 2-Bromododecane, Pentadecanal, Ethanone,1-(2,4,6-trihydroxyphenyl), 
2,5,9-Trimethyldecane , o-cymene, 2,3,6,7-tetramethyloctane (previously detected in lung cancer cell 
cultures57,58) and 4-Methylundecane (also been identified in lung cancer cell culture58) underscores the 
credibility of our findings. The identification of o-cymene as a potential biomarker is particularly intriguing, 
given its structural similarity to p-cymene, which has been previously associated with lung cancer59 as shown 
in Fig.  4b . This similarity is attributed to the positional difference of the 1-methylethyl group, suggesting a 
common source for these VOCs.

Furthermore, the presence of shared VOCs such as o-cymene, which shows varying concentrations across 
different disease groups (lung cancer, tuberculosis, and controls), as shown in Fig. 4a, was confirmed through 
external calibration. Despite its higher LOD (4.89 ppm) o-cymene was frequently detected in patient samples, TB 
group exhibited a much higher median concentration (79.13 ppm) compared to the lung cancer (17.62 ppm) and 
control (5.54 ppm) group, highlighting the complexity of diagnosing diseases using VOC profiles. These results 
suggest that o-cymene is a VOC of potential diagnostic relevance, albeit not specific to lung cancer. Notably the 
results indicated that TB patients exhibit higher concentrations of o-cymene compared to lung cancer patients 
and healthy controls. This highlights that the need for a comprehensive VOC profile, rather than individual 
compounds, is essential for differentiating between diseases affecting the same organ. Higher concentrations of 
o-cymene observed in TB and lung cancer samples compared to controls suggest a potential association with 
biological processes such as oxidative stress and inflammation. However, the direct role of o-cymene in these 
pathways remains speculative and warrants further investigation to establish a clear connection and understand 
its mechanistic significance in these disease states. By considering a broad spectrum of VOCs and their 
interactions with biological processes such as inflammation, researchers can better understand the underlying 
mechanisms of disease and enhance the performance metrics of diagnostic tools.

Fig. 3.  (a) The performance metrics of the prediction models for classification of lung cancer patients and 
control and (b) PLS-DA Receiver operating characteristics (ROC) curve for classification of lung cancer 
patients and controls.
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The consistent detection of the VOCs in patients unlike in controls likely reflects underlying biological 
heterogeneity rather than technical variability. This is supported by the strong performance of the PLS-DA 
model, which achieved sensitivity, precision, accuracy and F1-score of 88% in distinguishing lung cancer from 
TB, a disease with overlapping oxidative stress signatures. The ROC curve for PLS-DA (AUC = 0.96) further 
confirms its excellent diagnostic capability (Fig. 3b), outperforming both SVM and KNN models, results are 
shown in Supplementary Figure S3. The findings of these compounds shows that breath VOC analysis may 
diagnose lung cancer and provide functional insights into understanding its metabolism.

Conclusion
Exhaled breath analysis presents a promising, non-invasive approach for disease diagnosis. However, the 
composition of exhaled VOCs is influenced by various factors unrelated to the disease, such as smoking and 
gender, which must be carefully considered to avoid false-positive or misleading results. This study identified 
10 statistically significant VOCs that distinguish lung cancer patients from healthy controls and tuberculosis 
patients. The integration of advanced statistical analysis and machine learning models (new framework) ensured 
the reliability of these biomarkers. The superior performance of PLS-DA, with high sensitivity, precision, 
accuracy and F1-score in distinguishing lung cancer from controls and TB, demonstrates its potential as a robust 
diagnostic tool. Importantly, the ability to differentiate TB from lung cancer addresses a critical challenge in 
pulmonary disease diagnostics, as both conditions exhibit overlapping inflammatory and metabolic processes. 
These findings support the development of a point-of-care breathalyzer for early lung cancer detection. VOC 
profiling using machine learning is proposed as a new analysis framework. Advanced breath analysis could 
transform non-invasive cancer screening, boosting early diagnosis and patient outcomes.

Methods
Study population and clinical characteristics
Fifty two (52) participants were enrolled and voluntarily gave their informed consent, with legal guardians 
consenting where applicable. The cohort included 22 controls, 20 Lung cancer (14-NSCLC and 6-SCLC) patients 
and 10 active tuberculosis (TB) diagnosed patients. The number of TB patients included in the study was decided 
to reflect a balance between achieving sufficient statistical significance and accommodating the constraints of 
patient availability. Over three consecutive days (and in rare cases, two consecutive days) in order to minimize 
batch effects, 99 breath samples were collected and examined. Lung cancer patients were medically confirmed 
using histopathology and CT imaging while tuberculosis patients were confirmed via positive sputum culture 
tests and/or the GeneXpert Mycobacterium tuberculosis/Rifampin (MTB/RIF) assay. Controls were selected 
based on absence of any known medical or family history of lung cancer, TB and any known lung diseases. 
Figure 5a shows that all SCLC patients were males, indicating a significantly skewed gender distribution. Figure 
5b describes the staging of the disease among participants, based on the Tumor, Lymph nodes, Metastasis 
(TNM) staging system which utilizes imaging and histological data obtained at diagnosis. It reveals that most 
NSCLC patients were diagnosed at stage III, whereas SCLC patients were predominantly diagnosed at stage IV.

From Table  3, the majority of SCLC patients are former smokers, whereas NSCLC patients include 
both former smokers and non-smokers. Participants were between the ages of 17 and 84. The mean age of 

Fig. 4.  (a) Box plot showing the concentration of o-cymene (in parts per million, ppm) across different 
diagnostic groups (lung cancer, tuberculosis, and controls), determined using external standard calibration. (b) 
Chemical structures of p-cymene and o-cymene presented side-by-side to highlight structural similarities.
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NSCLC patients was 65, SCLC patients was 63, that of TB patients was 40 and for controls it was 48. Careful 
consideration was given in choosing the age range of the controls, to make sure they provided a healthy baseline 
for comparison and reflected the larger demographics of the patients. The age range of 27 to 77 years for controls 
was purposefully selected to represent a broad spectrum of the adult population and closely correspond with 
the age distribution of lung cancer incidence, which generally rise with age. Lung cancer is mostly prevalent 
in older adults, as seen by the mean age of 65 years for NSCLC patients and 63 years for SCLC patients, which 
represents typical age ranges for diagnosis. In order to identify any early indicators of lung cancer that might 
exist prior to the usual age-related increases in incidence, we included younger persons in the control group, 
beginning at age 27. The relevance and applicability of our findings across various age groups were further 
improved by extending the age range of controls to 77 years, which permitted direct comparison across a similar 
lifespan. The same was done for TB, with an age range from 17 to 79 years. By using an age matched technique, 
it is possible to make sure that variation in VOCs found in breath samples are more likely caused by the illnesses 
and not by aging-related physiological changes. Furthermore, the broad age range offers reliable information 
for examining age as a possible confounding variable, enabling more in-depth comprehension and stratification 
in our research. To ensure a broad sample group, participants included outpatients from different parts of the 
country as well as inpatients from Princess Marina Hospital and Nyangabgwe Referral Hospital in Gaborone 
and Francistown, Botswana, respectively. This diversity is important because it includes a broad spectrum of 
lifestyle characteristics and environmental exposures linked to lung cancer, from big cities to rural locations. 
Additionally, the geographical diversity of the patients aids in capturing the variation in environmental exposures 
and genetic backgrounds that impacts the onset and course of the diseases. Breath samples were collected early 
in the morning before any meal or medication intake, to minimize confounding factors such as medication and 
diet.

Declaration
All sample collection, handling, and data analysis procedures adhered to guidelines approved by the Ministry of 
Health and Wellness in Botswana and the ethics committees of the following institutions in Botswana, Human 
Resources development Council (HRDC), Princess Marina Hospital and Nyangabgwe Referral Hospital. The 
experimental protocols followed international standards for research involving human participants namely the 
Declaration of Helsinki.

Sample collection and analytical procedure
A 0.5 liter Tedlar bag (Keika Ventures, USA) with a mouth piece, was used to collect breath samples. The 
participants were instructed to exhale into the bag until it was almost full while slightly pinching their nostrils 
to prevent re-inhalation. To minimize compound degradation, the filled tedlar bags were immediately stored in 
a cold environment and transported to the laboratory for analysis on the same day.

NSCLC SCLC Controls TB

Age(mean) 65 63 48 40

Current smoker 0 0 3 –

Former smoker 6 5 3 –

Never smoked 8 1 16 –

Table 3.  Age and smoking history of participants.

 

Fig. 5.  Bar graph showing distribution of study groups by (a) gender of the participants. (b) lung cancer stage 
distribution.
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A single quadrupole GC/MS instrument (Agilent 7890B GC coupled with 5977A MSD) was used to analyse 
the samples. To maintain the chromatographic baseline intergrity and make sure no residual chemicals from 
previous runs impacted the results, a blank run was conducted before each sample analysis. A blank run involved 
injecting an empty SPME fiber under the same analytical conditions to confirm the absence of carryover from 
previous runs. Using a solid-phase micro extraction (SPME) fiber (75µm Carboxen/Polydimethylsiloxane 
CAR/PDMS), volatile organic compounds were preconcentrated. The fiber was inserted into the tedlar bag and 
exposed to the breath sample for a few minutes and then desorbed for 2 minutes at 250◦C in the hot GC injector, 
no chemical derivatization was performed. An Agilent J & W DB-5 capillary column (30 m × 0.25 mm i.d., 
0.25 µm film thickness) was used to separate the compounds. For a total of 50 minutes of analysis time, the 
temperature was held at 35◦C for 5 minutes before being ramped to 250◦C at a rate of 5◦C/min and held for 
an additional 2 minutes. The carrier gas (helium) flow was maintained at a flow rate of 1.2 mL/min in splitless 
mode. The electron impact ionization was set at 70.0 eV, the quadrupole at 150◦C, and the mass spectrometer 
(MS) ion source at 230◦C, with selective ion monitoring (SIM). With a signal threshold of 100, mass spectra 
were obtained in full scan mode, encompassing the m/z range of 25-350, at a scan rate of 1.2 scans/second. The 
Automated Mass Spectral Deconvolution and Identification System (AMDIS, v2.73) software (​h​t​t​p​s​:​​​/​​/​c​h​e​m​d​
a​t​​a​.​n​i​s​​t​.​g​​​o​v​/​d​o​​k​u​w​i​​k​​i​/​d​​o​k​u​​.​​p​h​​p​​?​i​d​=​c​h​e​m​​d​a​t​a​:​a​m​d​i​s) and OpenChrom Lablicate Edition 1.5.0 (https://www.
openchrom.net/) were used for chromatographic data acquisition, peak detection, and deconvolution. The NIST 
11 MS library (v2.3) was used for compound identification, with minimum match and reverse match threshold 
of 80/100.

Instrumental quality control (QC) was ensured by injecting authentic standards of o-cymene and hexadecane 
(Sigma Aldrich) at regular intervals across the analytical sequence. These standards were used to monitor retention 
time stability, peak area reproducibility, and detector performance throughout the study. Authentic standards 
of o-cymene and hexadecane (Sigma Aldrich) were used to validate compound identity using retention time 
and mass spectral matching. Calibration curves constructed from these standards (see Supplementary Figures 
S1 and S2) showed excellent linearity (R2 = 0.99) and were used to calculate the detector’s sensitivity, limit of 
detection (LOD), limit of quantification (LOQ) and reproducibility (%RSD) as reported in the Supplememtary 
Table S1. To minimize analytical variability, all samples were analyzed using the same instrument, operator and 
analytical protocol. Sample injection order was randomized to reduce run-order bias and a single SPME fiber 
type (CAR/PDMS) was used throughout the study to maintain consistent extraction consistency. For VOCs 
without available standards, identification was based on mass spectral matching (match factor and reverse 
match factor above 80%), supported by the instrument’s up-to-date calibration and validated retention time 
performance.

Each breath sample was analyzed once due to the long analysis time (  1 hour/sample) and the need to 
minimize degradation during storage and transport. To assess biological reproducibility, breath samples were 
collected from the same participants over three consecutive days, and each sample was analyzed separately. This 
is another additional quality control measure.

Statistical and machine learning application
All GC-MS data were collected in Total Ion Current (TIC) mode and processed using 1-norm normalization 
in OpenChrom. This method scales each sample such that the sum of absolute VOC intensities equals one, 
enabling fair comparisons across samples with differing total VOC abundances. A visualization of signal trends 
before and after normalization is provided in Supplementary Figure S4. These preprocessing steps, including 
mean-centering and auto-scaling, were essential to reduce variability and prepare the dataset for further analysis. 
The Mann-Whitney U test was used to ensure robust and reliable statistical analysis. A VOC with a p-value 
less than 0.05 was considered statistically significant. To control for potential confounding factors, subgroup 
comparisons were conducted to assess the influence of variables such smoking status, gender, lung cancer stage 
and histology type. Specifically, the peak area distributions were compared between smokers and nonsmokers, 
males and females, stage III and stage IV, and NSCLC and SCLC, using the Mann–Whitney U test. VOCs that 
showed significant differences (p < 0.05) in either comparison were identified as potentially influenced by these 
variables and were excluded from the final biomarker panel to ensure disease specificity.

To ensure biological relevance beyond statistical significance, Cliff ’s delta (δ) was calculated to quantify the 
strength of differences between lung cancer and control groups. Compounds with δ ≥ 0.474 were considered 
to have a large effect size and should be considered as potential lung cancer biomarkers. Principal component 
analysis (PCA) was applied as an unsupervised method to reduce data dimensionality. This helped to simplify 
the high-dimensional dataset while retaining most of the informative variance in the data. Partial least-squares 
discriminant analysis (PLS-DA) was then used to analyze differences in VOCs or variables. PLS-DA variables 
were deemed significant if their Variable Importance in Projection (VIP) score exceeded 1 and the model 
performance was assessed using R2( to evaluate the fit of the model) and Q2( to assess the predictability of 
the model). We also used Support vector machine (SVM) and K-nearest neighbor (KNN) to establish the best 
prediction model for lung cancer with all the identified VOCs as shown in Figure 6. To validate the model, we 
randomly split data into a training set (80%) for model derivation and a test set (20%) for model evaluation. 
Recall (sensitivity), precision, accuracy and F1-score were calculated in the test set to assess classification 
performance. Receiver Operating Characteristics (ROC) curves were also generated for each model to evaluate 
the model’s overall diagnostic accuracy. To avoid overfitting, three-fold cross-validation was used to validate 
the models. All statistical analyses were conducted using Jamovi v2.3.28 (https://www.jamovi.org/) and Python 
v3.12.4 in Jupyter Notebook v7.2.1, ​(​​​h​t​t​p​s​:​/​/​j​u​p​y​t​e​r​.​o​r​g​/​​​​​)​. The top performing model was subsequently applied 
to the TB dataset to further validate the identified biomarkers. The schematic workflow in Fig. 6 summarizes the 
data analysis framework.
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Data availability
The datasets generated and/or analysed during the current study are not publicly available due to the need to 
protect the privacy of participants and is still also being used for future work which has not yet been published 
but are available from the corresponding author on reasonable request.
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