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exhaled breath biomarkers using
machine learning-a new analysis
framework
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Exhaled breath samples of lung cancer patients (LC), tuberculosis (TB) patients and asymptomatic
controls (C) were analyzed using gas chromatography-mass spectrometry (GC-MS). Ten volatile

organic compounds (VOCs) were identified as possible biomarkers after confounders were statistically
eliminated to enhance biomarker specificity. The diagnostic potential of these possible biomarkers was
evaluated using multiple machine learning models and their performance for classifying patients and
controls was compared. Partial least squares-discriminant analysis (PLS-DA) emerged as the best-
performing model for separating lung cancer from controls, with a recall (sensitivity) of 82%, precision
of 90%, accuracy of 80% and F1-score of 86%. To further validate this model, TB data was introduced as
a confounding disease, and the model achieved precision, recall, accuracy and F1-score of 88% each, in
distinguishing lung cancer from TB. These findings address the inter-disease variability and underscores
the reliability of the reported VOCs as potential biomarkers of lung cancer. This study establishes a new
framework integrating machine learning and confounder elimination for biomarker confirmation.

Lung cancer remains a serious global health challenge, representing one of the deadliest malignancies with
increasing prevalence worldwide among all cancers'. According to the World Health Organization, it claims over
1.8 million lives annually®. Biologically, lung cancer is divided into non-small cell lung cancer (NSCLC), which
accounts for about 85% of cases, and small cell lung cancer (SCLC), which comprises approximately 15%?>. In
developing countries, the incidence and mortality rates of lung cancer are constantly on the rise’. The insidious
onset of lung cancer often results in late stage diagnosis, since initial symptoms such as chest pain, weight loss,
coughing, and hemoptysis only emerge as the disease progresses®. Therefore, early diagnosis of lung cancer is
crucial. Statistics reveal that the 5-year survival rate for early-stage lung cancer is 90% while it plummets to
less than 5% for those diagnosed at a late stage®. Cancer diagnosis often requires many tests, some of which are
invasive surgical procedures. Existing non-invasive methods often have limitations. For example, low-dose spiral
CT scans, offers more sensitivity compared to conventional chest X—rays7’8, however, despite its advancements,
it yields high false positive rate and exposes patients to radiation, potentially accelerating cancer progression’.
This underlines the need for a non-invasive, low-cost and rapid diagnostic tool that allows for early detection of
lung cancer, which can give patients a fighting chance to overcome the disease.

In response to these challenges, special attention is drawn to volatile organic compounds (VOCs) in exhaled
human breath because its easy and comfortable for patients as its non-invasive and can even be applied to
patients in intensive care units!®!!l. Several studies have underscored the viability of this approach!>!3.
Alternative approaches for exhaled breath analysis such as proton transfer reaction mass spectrometry (PTR-
MS)', single-photon ionization mass spectrometry (SPI-MS)'> and selected-ion flow-tube mass spectrometry
(SIFT-MS)'® have been explored. However, they suffer from poor sensitivity and specificity in VOC identification
and quantification when compared to the gas chromatography-mass spectrometry (GC-MS)!”. The GC-MS has
advantages in the separation of the compounds based on their volatility in the chromatographic column which
makes identification more accurate. Previous studies have been devoted to identifying lung cancer biomarkers
using various GC-MS conditions!>!#!° in conjunction with analytical software tools such as chemstation®,
MZmine?!, Xcalibur?? and R packages®.
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Machine learning methods including random forest, principal component analysis and decision tree, just to
name a few, have been utilised to classify lung cancer status based on VOC profiles. Despite all these approaches
there is no standardized technique for diagnosing lung cancer via exhaled breath. This explains why there is no
single unique biomarker associated with lung cancer, as the VOCs identified vary from one research to the other.
The variability could be associated with sample treatment, clinical characteristics, analysis methods and varied
external factors. Therefore, there is a need to introduce a method that uses relative VOC concentrations and
retention times to identify lung cancer associated biomarkers and also eliminate all VOCs that are influenced
by exogenous factors. Previous studies have not been rigorous in dealing with these exogenous factors and this
work attempts to address this challenge.

This study focuses on profiling VOCs associated with lung cancer using a single quadruple GC-MS?** coupled
with Openchrom?®, Automated Mass Spectral Deconvolution and Identification System (AMDIS)?® and National
Institute of Standards and Technology (NIST)?’ data library. The study uniquely identifies VOCs not previously
linked to lung cancer, potentially offering an early diagnostic technique. By integrating machine learning models
and statistical methods, we determine the significance of these VOCs, eliminating those influenced by external
factors such as smoking and diet. Furthermore, different histological subtypes and stages of lung cancer can
cause breath patterns to vary, adding to the disease’s heterogeneity. This study sought to address these challenges.
Earlier research work has demonstrated that even with a small dataset, robust statistical and machine learning
methods can identify meaningful biomarker trends?.

Results

Ninety-nine exhaled breath samples from 52 participants were analyzed using gas chromatography-mass
spectrometry (GC-MS). Figure 1 shows a typical total ion chromatogram (TIC) representing the breath profile of
alung cancer patient. Key volatile organic compounds (VOCs) identified in this study are labeled and annotated
based on their retention times and mass spectral matches using the NIST library. The chromatogram gives an
overview of the VOC profile observed in a lung cancer patient and displays several distinct peaks corresponding
to compounds that were either absent or present at very low concentrations in control samples. This highlights
the chemical complexity of exhaled breath in affected individuals. Figure 1 visually summarizes the specific
VOCs that may be associated with lung cancer and have potential utility as diagnostic biomarkers.

To validate the performance of the GC-MS instrument, calibration curves were established for o-cymene
and hexadecane using external standards (see Supplementary Figures S1 and S2). Both curves showed excellent
linearity (R? = 0.998 and 0.997), confirming that the instrument response was proportional to concentration
(Supplementary Table S1). Hexadecane exhibited a significantly steeper slope (1.23x10° a.u./ppm) than o-cymene
(8548.06 a.u./ppm), indicating higher detector sensitivity. Calculated LODs and LOQs were 4.89/14.83 ppm
for o-cymene and 0.08/0.24 ppm for hexadecane, confirming trace-level detection capability. Replicate analysis
yielded low RSDs (2.16% and 3.14%), supporting method precision within the accepted <5% range®®. VOCs
without calibration standards were identified via NIST spectral matching (match and reverse match >80%).
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Fig. 1. A typical total ion chromatogram (TIC) of a lung cancer patient’s breath profile showing multiple
peaks at different retention times. Key VOCs identified in the study are labeled and annotated based on their
retention times and mass spectral matches using the NIST library.
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Internal standards were not added to patient samples to avoid altering the integrity of the breath samples, a
critical concern in diagnostic studies.

In the initial statistical analysis, the criterion for identifying significant VOCs was to ensure that each
compound’s mass spectrum matched a reference spectrum in the NIST library with a match factor of 80% or
higher. The peak areas of the 20 identified VOCs were used as input parameters for statistical analysis. Since most
variables did not follow a normal distribution (as confirmed by the Shapiro-Wilk test), a non-parametric Mann-
Whitney U test was applied to determine significant differences between groups. All 20 VOCs showed significant
differences (p < 0.05) between lung cancer patients and controls, showing their potential for lung cancer diagnosis
as shown in Table 1. Most importantly, these compounds were found to have elevated levels in lung cancer
patients compared to controls, hinting at their association with the disease. Any compound that demonstrated
statistical significance (p < 0.05) in relation to factors such as smoking history, gender, lung cancer stage, histology
and has exogeneous association was excluded as a potential biomarker to ensure that the biomarkers identified
are not influenced by these variables. The results in Table 1 show that males had considerably higher levels of
hexanedioic acid, bis(2-ethylhexyl) ester and dodecane than females (p < 0.05). While the biological significance
of this observation remains uncertain, previous studies suggest that sex-specific differences in lipid metabolism
and oxidative stress pathways may influence VOC profiles®®. However, confirming any such relationship would
require larger, controlled studies designed to specifically investigate gender-based metabolic variations in lung
cancer. In our study population, a higher incidence of lung cancer was observed among males compared to
females (Fig. 5a), which may reflect both biological and lifestyle-related influences. These findings underscore
the importance of controlling for gender-related factors in breath biomarker studies and highlight the need for
targeted research into sex-specific metabolic processes that may contribute to disease risk.

Phenyl acetate showed significantly elevated levels in smokers than in non-smokers (p < 0.05) and
reseachers have indicated that smoking can also affect the VOCs in exhaled breath?!. Additionally, other VOCs
such as 1,2-dichlorobenzene, 3-methylheptyl acetate, 2-Phenoxyethanol, I,2-benzenedicarboxylic acid bis(2-
methylpropyl) ester, and decanal were also influenced by both smoking and gender®2-34. Chen et al. observed
higher levels of decanal in smokers than in non-smokers®. Moreover, 3-methylheptyl acetate, an ester
compound, shares structural similarity with esters commonly used as flavorants in tobacco products, suggesting
that its presence in breath samples may be related to smoking behavior®. Given that a significant proportion of
the male participants in the study were smokers, the gender-based differences observed in the levels of the above
mentioned VOCs could likely be attributed to smoking behavior. This suggests that the influence of these VOCs
may be more strongly associated with lifestyle factors rather than with lung cancer-specific mechanisms and
hence can be eliminated as possible biomarkers.

In our study, the distribution of lung cancer stages depicted in Fig. 5b demonstrates a prevalence of stage III
diagnoses in NSCLC patients and stage IV in SCLC patients, aligning with established literature that underscores
the typically slower progression of NSCLC compared to the more aggressive progression seen in SCLC* . This
observation reflects the differing biological behaviors of these two types of lung cancer and the information is

Lung cancer vs | Histology Stages
Control (NSCLCvs SCLC) | (III vs IV) | Smoking | Gender

VOC name (p-value) (p-value) (p-value) | (p-value) | (p-value)
1,2 Benzenedicarboxylic acid, bis(2- methylpropyl)ester * | 0.007 n.s n.s 0.034 0.045
1,2-Dichlorobenzene 0.07 n.s n.s 0.025 0.034
2,2,4,6,6-Pentamethylheptane 0.002 n.s n.s n.s n.s
2,3,6,7-Tetramethyloctane 0.006 n.s n.s n.s n.s
2-Bromododecane 0.013 n.s n.s n.s n.s
2-Phenoxyethanol 0.044 n.s n.s 0.017 0.026
2,5,9-Trimethyldecane 0.07 n.s n.s n.s n.s
3,3-Dimethylpentane 0.003 n.s n.s n.s n.s
3-Methylheptyl acetate 0.024 n.s n.s 0.040 0.037
4-Methylundecane 0.013 n.s n.s n.s n.s
Decanal 0.014 n.s n.s 0.048 0.030
Diethyl Phthalate * 0.03 n.s 0.020 n.s n.s
Dodecane 0.009 n.s n.s n.s 0.033
Ethanone 1-(2,4,6-trihydroxyphenyl) 0.003 n.s n.s n.s n.s
Hexadecane 0.013 n.s 0.003 n.s n.s
Hexanedioic acid, bis(2-ethylhexyl)ester * 0.002 n.s n.s n.s 0.023
O-cymene 0.007 n.s n.s n.s n.s
Octanal 0.005 n.s n.s n.s n.s
Pentadecanal 0.027 n.s n.s n.s n.s
Phenyl acetate 0.015 n.s n.s 0.050 n.s

Table 1. List of VOCs used to study intergroup differences and confounder elimination. Compounds marked
with an asterisk (*) are common plasticizers.
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crucial as it provides a context for understanding the variations in volatile organic compounds (VOCs) observed
across these two major histological groups of lung cancer. Interestingly, several studies suggest that VOC profiles
differ across lung cancer subtypes, Corradi et al. showed that ethylbenzene was higher in adenocarcinoma than
squamous cell carcinoma®. However, other studies did not find a significant impact of histology on exhaled
VOCs*4!, which is consistent with our study that did not identify histology-specific VOCs as we can observe
from Table 1 that all the identified compound were not statistically significant (n.s). This suggests that the VOCs
identified are not sensitive to a particular lung cancer type. A few studies also compared the lung cancer stages,
but there was no specific difference?®*?** noted in the composition of the VOCs for this comparison. However,
in our study stage-dependent variations were observed, with hexadecane and diethyl phthalate showing elevated
level in stage III compared to stage IV. This stage-based variation may reflect metabolic changes associated
with tumor progression and highlights the potential of these VOCs for disease monitoring rather than early
diagnosis. However, more studies still need to be done to confirm this.

An average of 819 compounds per sample were identified using OpenChrom software. Contaminants
associated with the tedlar bag, such as N,N-dimethylacetamide and phenol**> were excluded and a total of
2265 features were extracted. This huge amount of data requires dimensionality reduction software to interpret
and visualize. We first applied Principal component analysis (PCA) as an unsupervised technique to reduce the
complexity of the data while retaining the majority of its variance. This was followed by Partial least discriminant
analysis (PLS-DA), a supervised method, to visualize the class separation between; lung cancer (blue), TB
(green) and control (red), and a prediction model was established as shown in Fig. 2. PLS components, namely
PLS1 and PLS2, primarily capture the variations based on the characteristic peaks of the VOCs as identified by
their retention times and peak area(s). PLSI captures the largest variance that is involved in class separation.
A significant spread can be observed in this axis indicating that these components are highly effective in
distinguishing between the three classes, PLS2 captures additional variance orthogonal to PLS1 and further
contributes to the class separation. The green cluster (TB) shows to be well separate from the blue cluster (lung
cancer) along PLS1, which suggests that this component captures features in the breath profile that differentiate
lung cancer from TB. The tight clustering of the green points indicates consistency in the TB patients and the
spread of the blue points indicated that there is great variability in lung cancer samples which could be due to
the different types of lung cancer types (NSCLC and SCLC) and different stages. The red cluster (control) is
distinct from both green and blue along PLS2, which indicates that this component captures variance related to
the separation of the healthy controls from the diseased patients.

There is some observed overlap between blue points (lung cancer) and red points (controls), the observed
overlap can be partly attributed to the presence of shared VOCs with a subset of controls. It is noted that
these controls fall within the same age range typically associated with early signs of lung cancer?. Given this
demographic similarity and the asymptomatic nature of the controls, it is concivable that they might be more
suspectible to developing lung cancer as they age, however, this needs further investigations. As observed in
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Fig. 2. Score plot from the PLS-DA analysis of lung cancer patients, TB patients and controls. The lung cancer/
TB/control status was used as the supervisory variable (R*Y = 0.87 and Q*Y = 0.70).
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Table 2, certain compounds identified in lung cancer were also detected in a small subset of control samples.
According to the R?Y value of 0.87 it means that 87% of the variability is explained by the model which indicates
that the chosen VOCs are effective in distinguishing between lung cancer patients, TB patients, and controls
based on their breath samples. When it is applied to new, unseen data, the model can be able to predict 70% of the
variability in the disease condition, as indicated by its QY of 0.70. This strongly shows that the model is robust
and has possible applicability in real-world situations. In addition to fitting the current data well, a high QY
score in relation to R?Y indicates that the model can also generalize well to new samples. After excluding VOCs
affected by gender, smoking history, exogeneous factors, lung cancer stages and histology, a refined list of 10
potential VOCs unique to lung cancer was established as shown in Table 2. All compounds exhibited large Cliff’s
delta effect sizes (0 > 0.474) , reinforcing their discriminatory power. Notably, 2,2,4,6,6-Pentamethylheptane
and 2,3,6,7-Tetramethyloctane showed the highest discrimination, with § = 0.60 and 0.63 respectively. These
VOCs remain strong candidates for breathalyzer development.

In Table 2, three VOCs, 3,3-Dimethylpentane, Octanal and 2,2,4,6,6-Pentamethylheptane have been previously
reported as candidate exhaled breath biomarkers for lung cancer. However, to the best of our knowledge, this is
the first time that the following VOCs are being reported in association with lung cancer: 2-Bromododecane,
Pentadecanal, 2,3,6,7-tetramethyloctane, 4-Methylundecane, Ethanone,1-(2,4,6-trihydroxyphenyl),
2,5,9-Trimethyldecane and o-cymene. This VOCs were all showing a high Variable Importance in Projection
(VIP) score (>1) as shown in Table 2, which underscores their contribution to the class separation between lung
cancer and controls. The inclusion of both previously reported and new VOCs confirms the reliability of the
new identified biomarkers, shown in this study. To evaluate the discriminative power of these VOCs, machine
learning classification models such as PLS-DA, Support vector machine (SVM) and K-nearest neighbor(KNN)
were performed using Python. Figure 3a shows the bar graph of the prediction metrics (Recall (sensitivity),
precision, accuracy and Fl-score) of these models for classifying lung cancer patients and controls. PLS-DA
outperformed the other models, showing its superior prediction accuracy with a sensitivity of 82%, precision of
90%, accuracy of 80% and F1-score of 86%.

Because of its capability to manage multicollinearity and focus on maximizing the separation between
predefined classes, PLS-DA performs better than SVM and KNN. PLS-DA combines dimensionality reduction
and class discrimination, unlike SVM, which focuses on identifying the best hyperplane for classification, or
KNN, which uses proximity-based classification. PLS-DA uses the variation in the data which is most relevant
for class separation, and this is very useful when analyzing high-dimensional datasets such as breath samples
with large variability, whereby the number of VOC features is usually more than the number of samples.
Furthermore, because of its ability to generate VIP scores it allows for the identification of the most significant
compounds that are causing the class separation. In light of these strengths, PLS-DA was further tested by adding
TB data as a confounding disease to validate the VOCs that were observed. Since PLS-DA had been successful
in differentiating between lung cancer and controls, the goal was to see if it could also distinguish between TB
and lung cancer. It is pleasing to report that the model was again very successful in differentiating LC from TB as
shown by Figure 2, with a recall, F1-score, precision and accuracy of 88%. This proves that the VOCs identified
are potential lung cancer biomarkers and rule out false positives that might be associated with similar metabolic
pathways between TB and lung cancer.

To further assess the classification performance of each model, receiver operating characteristic (ROC) curve
analysis was performed for each model. The ROC curve for the PLS-DA model, shown in Fig. 3b, demonstrated
excellent discriminative ability with an area under the curve (AUC) of 0.96. This AUC confirms the model’s
ability in distinguishing between lung cancer patients and controls, indicating a very low false positive rate

Detection
Frequency
Retention time(minutes) Cliffs Delta Lung Cancer | Control

VOC name +0.5 Molecular mass [base peak] (m/z) | Cas. No VIP score | (9) (%) (%)
2,2,4,6,6-Pentamethylheptane 14.11 170.0 [57] 13475-82-6 | 1.80 0.60 35.0 0
2,3,6,7-Tetramethyloctane 16.77 170.0 [43] 52670-34-5 | 1.51 0.63 50.0 13.6
2-Bromododecane 22.32 248.0 [57] 13187-99-0 | 1.16 0.51 30.0 4.5
2,5,9-Trimethyldecane 15.10 184.0 [57] 62108-22-9 | 1.19 0.50 25.0 0
3,3-Dimethylpentane 15.89 100.0 [43] 562-49-2 1.26 0.50 35.0 9.1
4-Methylundecane 17.31 170.0 [43] 2980-69-0 1.08 0.51 30.0 4.5
Ethanone,1-(2,4,6-trihydroxyphenyl) | 18.97 168.0 [153] 480-66-0 1.70 0.55 30.0 0
O-cymene 15.01 134.0 [119] 527-84-4 1.38 0.59 40.0 9.1
Octanal 13.61 128.0 [43] 124-13-0 1.17 0.57 35.0 4.5
Pentadecanal 35.57 226.0 [82] 2765-11-9 | 1.58 0.54 55.0 18.2

Table 2. VOC:s selected as possible biomarkers of lung cancer. The new potential Biomarkers reported

for the first time are highlighted in bold. The “molecular mass [base peak] (m/z)” column presents the
calculated molecular weight alongside the most abundant fragment ion observed in the mass spectrum
(base peak). Retention times are given with an approximate variability of + 0.5, reflecting minor shifts due to
chromatographic conditions and the percentage values represent the detection frequency of each compound
within the lung cancer and control groups.
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Fig. 3. (a) The performance metrics of the prediction models for classification of lung cancer patients and
control and (b) PLS-DA Receiver operating characteristics (ROC) curve for classification of lung cancer
patients and controls.

and a high true positive rate. The PLS-DA AUC in comparison to the SVM and KNN AUC of 0.89 and 0.85,
respectively (Supplementary Figure S3) underscores the effectiveness of our VOC identification approach and
highlight its potential for clinical applications. This research not only advances the field of VOC identification
but also lays a strong foundation in developing a lung cancer breathalyzer. This device could transform lung
cancer diagnostics, offering a rapid, non-invasive, and cost-effective solution at the point of care, significantly
enhancing early detection and, consequently, survival rates.

Discussion

Previous research has shown that VOCs due to oxidative stress are likely not to be disease-specific, as similar
pathways are activated in various diseases*”*®. However, the more cancer-specific processes, such as gene
mutations, altered protein expression, and the Warburg effect, are likely to contribute to the abnormal VOC
profiles observed in lung cancer patients*. To ensure that the identified VOCs were reliable and specific to lung
cancer, we evaluated confounding factors such as smoking, gender, lung cancer stage, and histology. Smoking,
a major risk factor for lung cancer, influenced VOCs such as phenyl acetate, and benzene derivatives, consistent
with prior studies®®. VOCs influenced by both gender and smoking (e.g.1,2-dichlorobenzene, 3-methylheptyl
acetate, 2-Phenoxyethanol, I1,2-benzenedicarboxylic acid bis(2-methylpropyl) ester and decanal) highlight the
intertwined effects of these variables, reinforcing the importance of controlling for such factors in biomarker
identification. Although these compounds were reported in the results section for transparency, all VOCs
significantly influenced by exogenous sources (e.g., plasticizers), lung cancer stage, histology, smoking, or gender
were excluded from the final biomarker panel (Table 2). This filtering step ensured that only biologically relevant
and disease-specific compounds were considered in the interpretation of lung cancer biomarkers. The inclusion
of previously reported VOCs, such as 3,3-Dimethylpentane®!, octanal®®*2~>4, 2,2,4,6,6-Pentamethylheptane®>>¢,
alongside novel candidates; 2-Bromododecane, Pentadecanal, Ethanone,1-(2,4,6-trihydroxyphenyl),
2,5,9-Trimethyldecane , o-cymene, 2,3,6,7-tetramethyloctane (previously detected in lung cancer cell
cultures®”®) and 4-Methylundecane (also been identified in lung cancer cell culture®®) underscores the
credibility of our findings. The identification of o-cymene as a potential biomarker is particularly intriguing,
given its structural similarity to p-cymene, which has been previously associated with lung cancer® as shown
in Fig. 4b . This similarity is attributed to the positional difference of the 1-methylethyl group, suggesting a
common source for these VOCs.

Furthermore, the presence of shared VOCs such as o-cymene, which shows varying concentrations across
different disease groups (lung cancer, tuberculosis, and controls), as shown in Fig. 4a, was confirmed through
external calibration. Despite its higher LOD (4.89 ppm) o-cymene was frequently detected in patient samples, TB
group exhibited a much higher median concentration (79.13 ppm) compared to the lung cancer (17.62 ppm) and
control (5.54 ppm) group, highlighting the complexity of diagnosing diseases using VOC profiles. These results
suggest that o-cymene is a VOC of potential diagnostic relevance, albeit not specific to lung cancer. Notably the
results indicated that TB patients exhibit higher concentrations of o-cymene compared to lung cancer patients
and healthy controls. This highlights that the need for a comprehensive VOC profile, rather than individual
compounds, is essential for differentiating between diseases affecting the same organ. Higher concentrations of
o-cymene observed in TB and lung cancer samples compared to controls suggest a potential association with
biological processes such as oxidative stress and inflammation. However, the direct role of o-cymene in these
pathways remains speculative and warrants further investigation to establish a clear connection and understand
its mechanistic significance in these disease states. By considering a broad spectrum of VOCs and their
interactions with biological processes such as inflammation, researchers can better understand the underlying
mechanisms of disease and enhance the performance metrics of diagnostic tools.
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Fig. 4. (a) Box plot showing the concentration of o-cymene (in parts per million, ppm) across different
diagnostic groups (lung cancer, tuberculosis, and controls), determined using external standard calibration. (b)
Chemical structures of p-cymene and o-cymene presented side-by-side to highlight structural similarities.

The consistent detection of the VOCs in patients unlike in controls likely reflects underlying biological
heterogeneity rather than technical variability. This is supported by the strong performance of the PLS-DA
model, which achieved sensitivity, precision, accuracy and F1-score of 88% in distinguishing lung cancer from
TB, a disease with overlapping oxidative stress signatures. The ROC curve for PLS-DA (AUC = 0.96) further
confirms its excellent diagnostic capability (Fig. 3b), outperforming both SVM and KNN models, results are
shown in Supplementary Figure S3. The findings of these compounds shows that breath VOC analysis may
diagnose lung cancer and provide functional insights into understanding its metabolism.

Conclusion

Exhaled breath analysis presents a promising, non-invasive approach for disease diagnosis. However, the
composition of exhaled VOCs is influenced by various factors unrelated to the disease, such as smoking and
gender, which must be carefully considered to avoid false-positive or misleading results. This study identified
10 statistically significant VOCs that distinguish lung cancer patients from healthy controls and tuberculosis
patients. The integration of advanced statistical analysis and machine learning models (new framework) ensured
the reliability of these biomarkers. The superior performance of PLS-DA, with high sensitivity, precision,
accuracy and F1-score in distinguishing lung cancer from controls and TB, demonstrates its potential as a robust
diagnostic tool. Importantly, the ability to differentiate TB from lung cancer addresses a critical challenge in
pulmonary disease diagnostics, as both conditions exhibit overlapping inflammatory and metabolic processes.
These findings support the development of a point-of-care breathalyzer for early lung cancer detection. VOC
profiling using machine learning is proposed as a new analysis framework. Advanced breath analysis could
transform non-invasive cancer screening, boosting early diagnosis and patient outcomes.

Methods
Study population and clinical characteristics
Fifty two (52) participants were enrolled and voluntarily gave their informed consent, with legal guardians
consenting where applicable. The cohort included 22 controls, 20 Lung cancer (14-NSCLC and 6-SCLC) patients
and 10 active tuberculosis (TB) diagnosed patients. The number of TB patients included in the study was decided
to reflect a balance between achieving sufficient statistical significance and accommodating the constraints of
patient availability. Over three consecutive days (and in rare cases, two consecutive days) in order to minimize
batch effects, 99 breath samples were collected and examined. Lung cancer patients were medically confirmed
using histopathology and CT imaging while tuberculosis patients were confirmed via positive sputum culture
tests and/or the GeneXpert Mycobacterium tuberculosis/Rifampin (MTB/RIF) assay. Controls were selected
based on absence of any known medical or family history of lung cancer, TB and any known lung diseases.
Figure 5a shows that all SCLC patients were males, indicating a significantly skewed gender distribution. Figure
5b describes the staging of the disease among participants, based on the Tumor, Lymph nodes, Metastasis
(TNM) staging system which utilizes imaging and histological data obtained at diagnosis. It reveals that most
NSCLC patients were diagnosed at stage III, whereas SCLC patients were predominantly diagnosed at stage IV.
From Table 3, the majority of SCLC patients are former smokers, whereas NSCLC patients include
both former smokers and non-smokers. Participants were between the ages of 17 and 84. The mean age of
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Fig. 5. Bar graph showing distribution of study groups by (a) gender of the participants. (b) lung cancer stage
distribution.

NSCLC | SCLC | Controls | TB

Age(mean) 65 63 48 40
Current smoker | 0 0 3 -
Former smoker | 6 5 3 -
Never smoked | 8 1 16 -

Table 3. Age and smoking history of participants.

NSCLC patients was 65, SCLC patients was 63, that of TB patients was 40 and for controls it was 48. Careful
consideration was given in choosing the age range of the controls, to make sure they provided a healthy baseline
for comparison and reflected the larger demographics of the patients. The age range of 27 to 77 years for controls
was purposefully selected to represent a broad spectrum of the adult population and closely correspond with
the age distribution of lung cancer incidence, which generally rise with age. Lung cancer is mostly prevalent
in older adults, as seen by the mean age of 65 years for NSCLC patients and 63 years for SCLC patients, which
represents typical age ranges for diagnosis. In order to identify any early indicators of lung cancer that might
exist prior to the usual age-related increases in incidence, we included younger persons in the control group,
beginning at age 27. The relevance and applicability of our findings across various age groups were further
improved by extending the age range of controls to 77 years, which permitted direct comparison across a similar
lifespan. The same was done for TB, with an age range from 17 to 79 years. By using an age matched technique,
it is possible to make sure that variation in VOCs found in breath samples are more likely caused by the illnesses
and not by aging-related physiological changes. Furthermore, the broad age range offers reliable information
for examining age as a possible confounding variable, enabling more in-depth comprehension and stratification
in our research. To ensure a broad sample group, participants included outpatients from different parts of the
country as well as inpatients from Princess Marina Hospital and Nyangabgwe Referral Hospital in Gaborone
and Francistown, Botswana, respectively. This diversity is important because it includes a broad spectrum of
lifestyle characteristics and environmental exposures linked to lung cancer, from big cities to rural locations.
Additionally, the geographical diversity of the patients aids in capturing the variation in environmental exposures
and genetic backgrounds that impacts the onset and course of the diseases. Breath samples were collected early
in the morning before any meal or medication intake, to minimize confounding factors such as medication and
diet.

Declaration

All sample collection, handling, and data analysis procedures adhered to guidelines approved by the Ministry of
Health and Wellness in Botswana and the ethics committees of the following institutions in Botswana, Human
Resources development Council (HRDC), Princess Marina Hospital and Nyangabgwe Referral Hospital. The
experimental protocols followed international standards for research involving human participants namely the
Declaration of Helsinki.

Sample collection and analytical procedure

A 0.5 liter Tedlar bag (Keika Ventures, USA) with a mouth piece, was used to collect breath samples. The
participants were instructed to exhale into the bag until it was almost full while slightly pinching their nostrils
to prevent re-inhalation. To minimize compound degradation, the filled tedlar bags were immediately stored in
a cold environment and transported to the laboratory for analysis on the same day.
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A single quadrupole GC/MS instrument (Agilent 7890B GC coupled with 5977A MSD) was used to analyse
the samples. To maintain the chromatographic baseline intergrity and make sure no residual chemicals from
previous runs impacted the results, a blank run was conducted before each sample analysis. A blank run involved
injecting an empty SPME fiber under the same analytical conditions to confirm the absence of carryover from
previous runs. Using a solid-phase micro extraction (SPME) fiber (75um Carboxen/Polydimethylsiloxane
CAR/PDMS), volatile organic compounds were preconcentrated. The fiber was inserted into the tedlar bag and
exposed to the breath sample for a few minutes and then desorbed for 2 minutes at 250°C in the hot GC injector,
no chemical derivatization was performed. An Agilent ] & W DB-5 capillary column (30 m x 0.25 mm i.d.,
0.25 pm film thickness) was used to separate the compounds. For a total of 50 minutes of analysis time, the
temperature was held at 35°C for 5 minutes before being ramped to 250°C at a rate of 5°C/min and held for
an additional 2 minutes. The carrier gas (helium) flow was maintained at a flow rate of 1.2 mL/min in splitless
mode. The electron impact ionization was set at 70.0 eV, the quadrupole at 150°C, and the mass spectrometer
(MS) ion source at 230°C, with selective ion monitoring (SIM). With a signal threshold of 100, mass spectra
were obtained in full scan mode, encompassing the m/z range of 25-350, at a scan rate of 1.2 scans/second. The
Automated Mass Spectral Deconvolution and Identification System (AMDIS, v2.73) software (https://chemd
ata.nist.gov/dokuwiki/doku.php?id=chemdata:amdis) and OpenChrom Lablicate Edition 1.5.0 (https://www.
openchrom.net/) were used for chromatographic data acquisition, peak detection, and deconvolution. The NIST
11 MS library (v2.3) was used for compound identification, with minimum match and reverse match threshold
of 80/100.

Instrumental quality control (QC) was ensured by injecting authentic standards of o-cymene and hexadecane
(Sigma Aldrich) at regular intervals across the analytical sequence. These standards were used to monitor retention
time stability, peak area reproducibility, and detector performance throughout the study. Authentic standards
of o-cymene and hexadecane (Sigma Aldrich) were used to validate compound identity using retention time
and mass spectral matching. Calibration curves constructed from these standards (see Supplementary Figures
S1 and S2) showed excellent linearity (R? = 0.99) and were used to calculate the detector’s sensitivity, limit of
detection (LOD), limit of quantification (LOQ) and reproducibility (%RSD) as reported in the Supplememtary
Table S1. To minimize analytical variability, all samples were analyzed using the same instrument, operator and
analytical protocol. Sample injection order was randomized to reduce run-order bias and a single SPME fiber
type (CAR/PDMS) was used throughout the study to maintain consistent extraction consistency. For VOCs
without available standards, identification was based on mass spectral matching (match factor and reverse
match factor above 80%), supported by the instrument’s up-to-date calibration and validated retention time
performance.

Each breath sample was analyzed once due to the long analysis time ( 1 hour/sample) and the need to
minimize degradation during storage and transport. To assess biological reproducibility, breath samples were
collected from the same participants over three consecutive days, and each sample was analyzed separately. This
is another additional quality control measure.

Statistical and machine learning application

All GC-MS data were collected in Total Ion Current (TIC) mode and processed using 1-norm normalization
in OpenChrom. This method scales each sample such that the sum of absolute VOC intensities equals one,
enabling fair comparisons across samples with differing total VOC abundances. A visualization of signal trends
before and after normalization is provided in Supplementary Figure S4. These preprocessing steps, including
mean-centering and auto-scaling, were essential to reduce variability and prepare the dataset for further analysis.
The Mann-Whitney U test was used to ensure robust and reliable statistical analysis. A VOC with a p-value
less than 0.05 was considered statistically significant. To control for potential confounding factors, subgroup
comparisons were conducted to assess the influence of variables such smoking status, gender, lung cancer stage
and histology type. Specifically, the peak area distributions were compared between smokers and nonsmokers,
males and females, stage III and stage IV, and NSCLC and SCLC, using the Mann-Whitney U test. VOCs that
showed significant differences (p < 0.05) in either comparison were identified as potentially influenced by these
variables and were excluded from the final biomarker panel to ensure disease specificity.

To ensure biological relevance beyond statistical significance, Clift’s delta (§) was calculated to quantify the
strength of differences between lung cancer and control groups. Compounds with § > 0.474 were considered
to have a large effect size and should be considered as potential lung cancer biomarkers. Principal component
analysis (PCA) was applied as an unsupervised method to reduce data dimensionality. This helped to simplify
the high-dimensional dataset while retaining most of the informative variance in the data. Partial least-squares
discriminant analysis (PLS-DA) was then used to analyze differences in VOCs or variables. PLS-DA variables
were deemed significant if their Variable Importance in Projection (VIP) score exceeded 1 and the model
performance was assessed using R ( to evaluate the fit of the model) and Q?( to assess the predictability of
the model). We also used Support vector machine (SVM) and K-nearest neighbor (KNN) to establish the best
prediction model for lung cancer with all the identified VOCs as shown in Figure 6. To validate the model, we
randomly split data into a training set (80%) for model derivation and a test set (20%) for model evaluation.
Recall (sensitivity), precision, accuracy and Fl-score were calculated in the test set to assess classification
performance. Receiver Operating Characteristics (ROC) curves were also generated for each model to evaluate
the model’s overall diagnostic accuracy. To avoid overfitting, three-fold cross-validation was used to validate
the models. All statistical analyses were conducted using Jamovi v2.3.28 (https://www.jamovi.org/) and Python
v3.12.4 in Jupyter Notebook v7.2.1, (https://jupyter.org/). The top performing model was subsequently applied
to the TB dataset to further validate the identified biomarkers. The schematic workflow in Fig. 6 summarizes the
data analysis framework.
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Fig. 6. Workflow diagram for lung cancer VOC analysis.

Data availability

The datasets generated and/or analysed during the current study are not publicly available due to the need to
protect the privacy of participants and is still also being used for future work which has not yet been published
but are available from the corresponding author on reasonable request.
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