Table 2 Quantitative comparison of methods on the TNO dataset.

From: Texture-preserving and information loss minimization method for infrared and visible image fusion

Methods

Year

MI

VIF

AG

CC

SCD

EN

QAB/F

SF

DDcGAN45

2020

1.5107

0.4451

3.9118

0.4375

1.6226

6.9104

0.3414

12.1566

PMGI46

2020

1.9975

0.4635

2.5859

0.4141

1.5263

7.0255

0.4140

8.7531

NestFuse47

2020

2.0934

0.5539

3.8253

0.4468

1.5307

7.0165

0.5053

9.7701

RFN-Nest48

2021

1.7597

0.4720

1.6669

0.4480

1.6041

6.9764

0.3334

5.8759

SDNet49

2021

1.9096

0.4927

3.6285

0.4111

1.5640

6.7127

0.4337

11.7009

MFEIF23

2021

1.8538

0.5384

2.9083

0.4416

1.5560

6.6650

0.4532

7.1030

TarDAL44

2022

2.0013

0.5333

3.9112

0.4175

1.3856

6.8284

0.3996

10.5084

DDFM50

2023

1.7577

0.3185

3.4528

0.4543

1.5455

6.8552

0.2440

7.8717

DATFuse51

2023

2.3187

0.5201

2.5904

0.4221

1.4933

6.4818

0.4976

9.6988

CDDFuse37

2023

2.0807

0.5419

3.8687

0.4469

1.5686

6.9836

0.5075

11.5175

BTSFusion18

2024

1.3757

0.5064

4.2795

0.4406

1.6335

6.7130

0.4114

11.2330

SFCFusion52

2024

1.6566

0.5340

3.5832

0.4665

1.6010

7.1110

0.4296

10.7048

PromptFusion53

2024

2.9755

0.5709

4.1560

0.4682

1.6882

6.9597

0.5174

11.9845

TPFusion(ours)

\(-\)

2.4564

0.5687

4.3945

0.4687

1.6801

7.0514

0.5213

12.1247