
Integrative analysis of 
thiamethoxam induced 
hepatocellular carcinoma toxicity 
mechanisms
Chenghao Wang1, Zhichao Wang1, Yinqin Hu2, Shi Xiang1, Hui Chen1,3 & Chao Yang1,3

Neonicotinoid (NEO) pesticides play a crucial role in agricultural production. However, their potential 
risks to human health and the environment cannot be overlooked. To gain a comprehensive 
understanding of the toxicity and mode of action of NEOs, thiamethoxam (THX), which exhibits the 
highest potential for carcinogenicity and hepatotoxicity, was selected as the subject of this study. 
We identified 61 intersection genes between THX targets and hepatocellular carcinoma (HCC)-
related genes. These genes were then uploaded to the Metascape database for Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The GO analysis indicated 
that the significant biological processes mainly involved the response to xenobiotic stimuli, cellular 
response to chemical stress, cellular response to biotic stimuli, and response to toxic substances. 
The KEGG enrichment analysis pinpointed several key pathways, primarily including the cell cycle 
and Glycolysis/Gluconeogenesis. Subsequently, the intersection genes were imported into the Gene 
Expression Profiling Interactive Analysis (GEPIA) and Gene Expression Omnibus (GEO) databases to 
analyze expression differences, leading to the identification of 15 significantly differentially expressed 
core genes (SDECGs). By applying the Support Vector Machine (SVM) machine—learning model, 
we screened out five feature genes (CYP2C19, CYP3A4, FBP1, THBS4, CYP7A1) and constructed 
a nomogram. Molecular docking of THX with these five feature genes showed binding energies of 
less than −5 kcal/mol. This study offers a theoretical foundation for understanding the underlying 
mechanisms of THX-induced HCC. The findings provide a scientific basis for the safety assessment of 
THX in agricultural applications and contribute to the establishment of pesticide safety standards.
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Neonicotinoid (NEO) pesticides are the fourth generation of insecticides, which have good effects on the control 
of stack-inhaling mouth pests, small Lepidopteran and Coleopteran pests1. The commonly used NEOs include 
Imidacloprid (IMI), Acetamiprid (ACE), Thiamethoxam (THX), Clothianidin (CLO) and Dinotefuran (DIN)2. 
Unlike previous generations of pesticides, such as organophosphorus pesticides and pyrethroids, which inhibit 
acetylcholinesterase and interfere with sodium channels, NEOs kill insects by directly binding to the insect’s 
acetylcholine receptor and simulating acetylcholine acting on its nervous system3–5. Its insecticidal mechanism 
is more selective, systematic, and less residual, so it has been widely used worldwide6. As the utilization of 
neonicotinoid pesticides has increased, they have been detected in various environmental media, such as 
domestic soil, water resources, and residential areas7–9. Residues have also been found in foods, such as fruit 
and other products consumed by humans, which has prompted concerns about potential exposure risks10. 
Moreover, traces of these pesticides have been detected in biological samples like blood and urine, further 
emphasizing the necessity for discourse surrounding their safety11,12. Studies have demonstrated that NEOs can 
have adverse effects on human health, including contributing to chronic diseases such as neurological disorders 
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and cancer13,14. Recent clinical research suggested that exposure to neonicotinoids and their metabolites may 
increase the risk of liver cancer15.

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and ranks as the seventh 
most common frequently occurring malignant tumor and is the fourth leading cause of cancer-related mortality 
in the world16,17. Researches indicate that the development of HCC is associated with chronic liver diseases 
and pesticide exposure18. Nevertheless, few studies have undertaken a comparative analysis of the hepatic 
toxicity and carcinogenic potential of commonly used neonicotinoid insecticides. Furthermore, research on the 
mechanisms by which these pesticides may induce HCC is also limited.

To address the aforementioned, we initially utilized the ADMETlab3.0 and Protox3.0 databases to predict 
the toxicity of five commonly used NEOs and found the pesticide with the highest potential for carcinogenicity 
and liver damage. Subsequently, network toxicology, enrichment analysis, GEO database and four machine 
learning algorithms combined with molecular docking were used to investigate the mechanism of the pesticide 
inducing HCC. The above methods are valuable due to their capacity to predict and detect possible toxic effects 
by analyzing large datasets and biological data, thereby providing an in-depth understanding of the risks related 
to pesticide exposure at the molecular level. Moreover, assessing the potential carcinogenic and hepatotoxic 
effects of this pesticide is crucial for evaluating its safety in both agricultural and medical contexts, as well as 
for generating scientific evidence that can guide the establishment of safety protocols and protective guidelines.

Methods
Toxicity analysis of common neonicotinoid pesticides and pesticide selection
The chemical information and Simplified Molecular Input Line Entry System (SMILES) identifiers for five NEOs 
were obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov/) and PubMed (https://pubmed.nc- ​b​i​.​n​l​m​.​
n​i​h​.​g​o​v​/​​)​. The toxicity scores for these pesticides were assessed using the ProTox3.0 ​(​​​h​t​t​p​s​:​/​/​t​o​x​.​c​h​a​r​i​t​e​.​d​e​/​p​r​
o​t​o​x​3​/​i​n​d​e​x​.​p​h​p​?​s​i​t​e​=​h​o​m​e​​​​​) and ADMETlab3.0 (https://admetlab3.scb- dd.com/server/screening) databases. 
The pesticide with the highest potential for carcinogenicity and hepatotoxicity was selected for further analysis.

Identification of pesticide and HCC-related targets
Relevant pesticide targets were retrieved from the SwissTarget Prediction (http://swisstarget-prediction.ch/) 
and CTD (https://ctdbase.org/) databases. Targets in the Swiss Target Prediction were chosen if their p-value 
exceeded 0. Protein names were standardized by using the database- UniProt (https://www.uniprot.org/), and 
duplicate entries were eliminated. The main HCC-related targets were obtained from GenCards ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​g​e​
n​e​c​a​r​d​s​.​o​r​g​/​​​​​) and supplemented by OMIM (https://www.omi- m.org/). The intersection of pesticide and HCC-
related targets were identified by VENNY2.1 (​h​t​t​p​s​:​​/​/​b​i​o​i​​n​f​o​g​p​.​​c​n​b​.​c​s​​i​c​.​e​s​​/​t​o​o​l​s​​/​v​e​n​n​y​​/​i​n​d​e​x​​.​h​t​m​l) as potential 
toxicological targets for further investigation.

GO and KEGG functional analysis
The intersected protein names were input into the Metascape database ​(​​​h​t​t​p​s​:​/​/​m​e​t​a​s​c​a​p​e​.​o​r​g​/​g​p​/​i​n​d​e​x​.​h​t​m​l​#​/​
m​a​i​n​/​s​t​e​p​1​​​​​) for GO analysis and KEGG pathway enrichment19. For GO analysis, the top 20 biological processes 
(BP), cellular components (CC), and molecular functions (MF) were selected according to p-values. The 20 
signaling pathways with the smallest p-values were selected in the KEGG analysis. The plot was then performed 
according to −log10(P).

GEPIA analysis and GEO data collection for validation of expression differences, 
chromosomal position, and correlation of SDECGs
In order to reveal the core mechanism of THX affecting HCC in more depth, we screened the intersection targets. 
The intersected targets were input into the GEPIA (http://gepia.cancer-pku.cn/) website to assess significant 
differential expression (P < 0.01) of each target in HCC and normal groups, and the differential targets were 
identified as core genes for further analysis. Then a search of the GEO-database ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​n​c​b​i​.​n​l​m​.​n​i​h​.​g​o​
v​/​g​e​o​/​​​​​) for datasets related to “Hepatocellular carcinoma” was conducted. GSE45267, GSE62232, GSE112790 
and GSE54236 were used for further study. Gene symbol annotation and data correction were performed using 
Perl code to extract the expression levels of core genes in normal and HCC samples. Then these data were 
extracted for differential expression analysis using RStudio packages such as “limma”, “ggpubr” and “pheatmap”. 
The results were shown using boxplots and heatmaps, and then verified with the results obtained from GEPIA. 
Significantly differentially expressed core genes (SDECGs) were defined as genes with an adjusted p-value (adjP, 
FDR-corrected) < 0.01, consistent with GEPIA expression results20. The chromosomal location of core genes 
was determined using Perl code and visualized as circular plots using the ‘Rcircos’ R package. Additionally, the 
correlation of each SDECG was computed using the ‘cor’ function and visualized.

Immune cell infiltration, differences, and correlation in HCC samples
Immune cell infiltration was assessed using the CIBERSORT algorithm in R (4.4.1), with 1,000 iterations to 
estimate the relative abundance of various immune cell types. The results were visualized through bar plots 
representing immune cell content in each sample. To compare immune cell infiltration between normal and 
HCC groups, single-sample Gene Set Enrichment Analysis (ssGSEA) was conducted using the “GSVA” and 
“GSABase” R packages. The ssGSEA results were visualized using box plots to highlight differences in immune 
cell content. Furthermore, the correlation between SDECGs and ssGSEA scores was analyzed, and the correlation 
coefficients were visualized for better interpretation21.
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Machine learning models for pesticide-induced HCC and feature gene selection with external 
validation
Four predictive models were constructed using the expression data of significantly SDECGs, including Random 
Forest (RF), Support Vector Machine (SVM), Generalized Linear Model (GLM), and Extreme Gradient Boosting 
(XGB). All models were implemented in R (4.4.1) using the caret package, with model-specific algorithms 
provided by randomForest, kernlab, and xgboost. Each model was trained on a 70% randomly selected training 
set using five-fold repeated cross-validation to optimize performance and minimize overfitting. To further 
evaluate the predictive performance and interpretability of each model, model interpretation procedures 
were constructed using the DALEX package. A unified prediction function was first defined to ensure the 
compatibility of all models. Based on this function, the prediction residuals of each model for the test set were 
calculated. The residual distribution was visualized using inverse cumulative distribution plots and box plots. 
The receiver operating characteristic (ROC) curve and the area under the curve (AUC) were calculated by pROC 
software package. The receiver operating characteristic (ROC) curve was drawn for comparison visualization, 
and the AUC value was marked to comprehensively evaluate the discrimination ability of each model by the 
above method. After determining the optimal model, a nomogram was developed based on the feature genes 
and their expression levels in both normal and HCC groups. Decision curves and calibration curves were then 
used to assess the accuracy of the nomogram. For external validation, a separate dataset containing normal and 
HCC samples was obtained from GEO database. Machine learning models were then applied in R following the 
same methodology, and ROC curves were plotted to validate the model performance.

Molecular docking
The 3D structures of the selected pesticide components and feature genes were obtained from the PubChem, 
UniProt database and PDB database (http://www.rcsb.org/). If the required structure was not obtained in the 
PDB database, the AlphaFold structure was obtained in the UniProt database. Molecular docking was carried 
out using AutoDock Vina (1.1.2), and visualization was done with Pymol (2.6).

Results
Toxicity analysis of common neonicotinoid pesticides and pesticide selection
The chemical details of five plasticizers (IMI, ACE, THX, CLO, and DIN) are provided in Table 1 in Supplementary 
File, which includes their chemical formulas, molecular weights, and SMILES structures. Toxicity information 
related to NEOs was retrieved using ADMETlab 3.0 and Protox 3.0, as shown in Table 1. On the basis of 
carcinogenic and hepatotoxic properties, THX was selected for further investigation.

Identification of THX and HCC-related targets
The core biological significance of gene crossover in network toxicology lies in its ability to decipher the 
molecular interconnections between compound targets and disease mechanisms. This process provides a critical 
mechanistic foundation for elucidating how THX exerts its effects in the context of this study, thereby offering 
deeper insights into the underlying action pathways and contributing to a more comprehensive understanding 
of the therapeutic or toxicological mechanisms involved. A total of 11 and 124 THX-related targets were 
obtained from Swiss Target Prediction and CTD, respectively. After merging and removing duplicates, 84 THX-
related targets were identified. A total of 11,938 and 192 HCC-related targets were retrieved from Genecards and 
OMIM, respectively. To ensure that the genes obtained were highly correlated with HCC, the GeneCards “score” 
threshold was set to ≥ 3 (determined by rounding the median score value upward22). Following the merging 
and removal of duplicates, 5672 targets were identified. A Venn diagram was constructed, resulting in the 
identification of 61 common targets (Fig. 1), which were subjected to further analysis to elucidate the molecular 
mechanisms underlying THX-induced HCC.

GO and KEGG functional analysis
The 61 common targets were imported into Metascape for GO and KEGG enrichment analysis23. The significant 
biological processes identified based on p-values included response to xenobiotic stimulus, cellular response 
to chemical stress, cellular response to biotic stimulus and response to toxic substance. The mainly involved 
cellular components were peroxisome, organelle outer membrane, endoplasmic reticulum lumen. The primary 
molecular functions included protein domain specific binding, protein homodimerization activity, protease 
binding. The KEGG enrichment analysis identified several key pathways, including IL-17, FoxO, HIF-1 signaling 
pathway, cell cycle and Glycolysis / Gluconeogenesis (Fig. 2).

GEPIA analysis, GEO data collection, and validation of expression differences, chromosome 
location, and correlation of SDECGs
Following the importation of the 61 common targets into the GEPIA website, 15 targets exhibited significant 
differential expression (P < 0.01) (Figs. 1 2 in Supplementary File). We combined three datasets (GSE45267, 
GSE62232, and GSE112790) for analysis and model construction. After removing the batch effect using 
the “ComBat” function, the combined dataset included 41, 10, and 15 normal samples, and 46, 80, and 183 
hepatocellular carcinoma (HCC) samples from each respective dataset21. And GSE54236, which contained 80 
normal and 81 HCC samples was used for external validation. A differential analysis between the HCC group 
and the normal group from the combined GEO dataset was performed. The results revealed the following genes 
were differentially expressed (adjP < 0.01): ANXA10, ATF3, BAX, BCL6, CDC25C, CDK1, CYP2C19, CYP3A4, 
CYP7A1, ESR1, FBP1, GADD45B, IMPDH2, S100P and THBS4. The aforementioned genes were identified 
as SDECGs, these core genes selected through human sample validation, and demonstrate high accuracy and 
clinical relevance. The genes BAX, CDC25C, CDK1, CYP7A1, IMPDH2, S100P and THBS4 exhibited high 
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expression levels in HCC group, whereas the remaining genes showed low expression in HCC group, as 
illustrated in Figs. 3A and B. The expression patterns of these genes were consistent with the results obtained 
from GEPIA analysis. The exact chromosomal locations of the THX core genes are shown in Fig. 3C. As shown 
in Fig. 3D and E, the correlation analysis between each pair of SDECGs in the HCC samples demonstrated a 
robust, predominantly positive correlation between them.

Analysis of immune cell infiltration, differences, and correlation between normal and HCC 
samples
To investigate the underlying mechanisms distinguishing HCC from normal tissues, immune cell infiltration 
was analyzed from multiple perspectives. Initially, immune cell infiltration analysis was conducted, followed by 

Fig. 1.  Venn diagram of the intersection between HCC and THX target sets.

 

Drug name Property Database Probability

Imidacloprid

Carcinogenicity ADMETlab 3.0  +  + 

Respiratory ADMETlab 3.0/Protox3.0  +  +  + / +  +  + 

Human Hepatotoxicity ADMETlab 3.0/Protox3.0  + / + 

Hematotoxicity ADMETlab 3.0  + 

Immunotoxicity Protox3.0  +  +  + 

Genotoxicity ADMETlab 3.0  +  +  + 

Acetamiprid

Carcinogenicity ADMETlab 3.0  + 

Respiratory ADMETlab 3.0/Protox3.0  +  +  + / +  +  + 

Human Hepatotoxicity Protox3.0  + 

Immunotoxicity Protox3.0  +  +  + 

Genotoxicity ADMETlab 3.0  +  +  + 

Thiamethoxam

Carcinogenicity ADMETlab 3.0  +  +  + 

Respiratory ADMETlab 3.0/Protox3.0  +  +  + / +  +  + 

Human Hepatotoxicity ADMETlab 3.0/Protox3.0  +  + / + 

Drug-induced Nephrotoxicity ADMETlab 3.0  +  + 

Hematotoxicity ADMETlab 3.0  +  + 

Immunotoxicity Protox3.0  +  +  + 

Genotoxicity ADMETlab 3.0  +  +  + 

Clothianidin

Carcinogenicity ADMETlab 3.0  +  + 

Respiratory ADMETlab 3.0/Protox3.0  +  +  + / +  +  + 

Human Hepatotoxicity ADMETlab 3.0/Protox3.0  + / + 

Hematotoxicity ADMETlab 3.0  +  + 

Immunotoxicity Protox3.0  +  +  + 

Dinotefuran

Carcinogenicity ADMETlab 3.0  +  + 

Respiratory Protox3.0  +  +  + 

Human Hepatotoxicity ADMETlab 3.0/Protox3.0  + / + 

Immunotoxicity Protox3.0  +  +  + 

Genotoxicity ADMETlab 3.0  +  +  + 

Table 1.  The prediction toxicity of Thiamethoxam. Tip: 0.5–0.7( +),0.7–0.9(+ +),0.9–1.0(+ + +).Larger 
probability represents a greater risk of toxicity.
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ssGSEA to identify significantly altered immune cells in both normal and HCC samples. The results revealed that 
monocytes were predominantly expressed in the normal group, while T cells (CD8), T cells regulatory(Tregs), M1 
macrophages, and activated dendritic cells were significantly upregulated in the HCC group (Fig. 4A). Further 
correlation analysis of immune cells demonstrated significant associations between immune cell infiltration and 
SDECGs (P < 0.05) (Fig.  4B). Specifically, resting dendritic cells, M0 macrophages, M1 macrophages, resting 
mast cells, and activated CD4 memory T cells showed a primarily negative correlation with SDECGs. In contrast, 
activated dendritic cells, M2 macrophages, activated mast cells, monocytes, activated NK cells, follicular helper 
T cells, and regulatory T cells (Tregs) exhibited a positive correlation with SDECGs.

Machine learning model for THX-induced HCC and feature gene selection with external 
validation
Four machine learning models—SVM, RF, XGB, GLM—were constructed using SDECGs data. Among these 
models, the SVM model demonstrated superior performance, as evidenced by its better ROC curves, residual box 
plots, and inverse cumulative distribution plots. Specifically, the SVM model exhibited the highest Area Under 
the Curve (AUC) and the lowest residuals and inverse cumulative values (Fig. 5A–C). Using the importance 
scores calculated from the SVM model, ten feature genes were identified from the SDECGs, including CYP2C19, 
CYP3A4, FBP1, THBS4, CYP7A1, ESR1, CDK1, BCL6, IMPDH2, and CDC25C (Fig. 5D). The top five feature 
genes were then used to construct nomograms, allowing for the derivation of individual score scales (Fig. 5E). 
These scores were employed to evaluate sensitivity to THX-induced HCC and predict the risk of developing HCC 
due to prolonged exposure to THX. Calibration curves and decision curves showed that the proximity of solid 
lines and dotted lines, as well as the distances between the red and grey lines, indicated a high degree of accuracy 
in the model’s predictions (Fig. 5F–G). The ROC curve further confirmed the model’s reliability, with an AUC of 
0.951 (95% CI > 0.903) (Fig. 5H). To validate the model externally, the top five identified genes were incorporated 
into the SVM-based prediction model. The resulting ROC curve for the validation set demonstrated an AUC of 
0.902, highlighting the model’s high accuracy when applied to the GEO dataset (Fig. 5I).

Molecular Docking
In order to verify whether the proteins encoded by the top five THX feature genes are the optimal targets for 
inducing HCC, molecular docking was performed. The Autodock Vina docking results showed that the binding 
energy of the complexes formed by THX and the target proteins were (−6.2, −6.9, −6.8, −5.7, −6.0 kcal/mol) 
(Table 2), respectively, which were all less than -5 kcal/mol. These data suggested strong interactions between 
THX and the target proteins. Visualization with PyMOL revealed the formation of hydrogen bonds between the 
target proteins and THX which confirmed the stability of these interactions (Fig. 6).

Discussion
As a second-generation NEO featuring a mechanism analogous to its predecessor, THX has emerged as a 
staple in global agriculture—particularly across key farming nations including China, the United States, and 

Fig. 2.  GO and KEGG analysis of THX and HCC-Related Targets (A–C) Diagrams of BP, CC, and MF results 
in GO analysis; (D) KEGG analysis diagram.
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numerous European countries—due to its exceptional efficacy, minimal toxicity, and broad-spectrum pesticidal 
activity. This versatility is further underscored by its dual application in seed treatment protocols and foliar spray 
formulations, enabling comprehensive pest management across diverse cropping systems such as grain, fruit, 
vegetables and so on24,25. The use of THX has also generated some controversy and challenges. In recent years, 
several countries and regions have implemented strict regulatory measures, or have limited its use on certain 
crops26. However, there is limited research on thiamethoxam’s potential to cause disease, particularly cancer. 
Accordingly, in this study, we first predicted the toxicity of commonly used neonicotinoid pesticides through 
the toxicology prediction platform. The findings of this study indicated that the carcinogenic potential and 
liver injury toxicity of THX were higher than those of the other four commonly used neonicotinoid pesticides. 
Subsequently, the mechanism of thiamethoxam-induced hepatocellular carcinoma was studied using network 
toxicology methods. Additionally, ACE was found to have the lowest carcinogenic potential, while CLO and 
DIN exhibited lower hepatotoxicity, providing valuable insights for future pesticide usage.

Fig. 3.  Differential gene expression profiling and interaction analysis. (A) Box plot showing the expression 
differences of core genes between normal and HCC samples; (B) Heatmap of SDECG expression in normal and 
HCC samples; (C) Circular plot depicting the chromosomal locations of core genes; (D) Correlation network 
of SDECGs; (E) Correlation analysis between the two SDECGs. Tip: ** is p < 0.01; *** is p < 0.001.
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GO analyses of the 61 intersecting targets revealed key biological processes, including cellular response to 
xenobiotic stimulus, chemical stress, biotic stimulus, and toxic substances. The result of KEGG enrichment 
analysis mainly included cell cycle and Glycolysis / Gluconeogenesis. The development of HCC is associated 
with chronic liver diseases such as chronic hepatitis, cirrhosis, and liver fibrosis. Prolonged exposure to external 
stimuli, including viral infections and chemicals, can lead to chronic liver damage, increasing the risk of HCC27. 
The onset of HCC is often accompanied by dysregulation of the cell cycle. HCC cells frequently accelerate the cell 
cycle by modulating cyclin-dependent kinases (CDKs), promoting tumor proliferation and transformation28. 
The up-regulation of CDK1 in HCC samples, as observed in our differential gene analysis, lends further 
support to support this conclusion. As shown in Fig. 3E, there was a strong positive correlation between CDK1 
and CDC25C. The metabolic pathways of glycolysis and gluconeogenesis are vital in the development and 
progression of hepatocellular carcinoma (HCC)29. Gluconeogenesis is the reverse process of glycolysis and is 
inhibited in tumorous liver30. In clinical studies, synthetic glucocorticoid drugs such as dexamethasone have 
been reported to have therapeutic effects on HCC. The underlying mechanism is to enhance the gluconeogenic 
pathway to inhibit tumor growth and angiogenesis31. This is consistent with the results obtained from our KEGG 
enrichment analysis.

We identified differentially expressed core genes through integrated analysis of GEPIA and GEO datasets, 
revealing a consistent trend of dysregulation in 15 candidate targets (SDECGs). Leveraging these data-driven 
observations, we developed a Support Vector Machine (SVM) model to prioritize key diagnostic features, which 
identified 10 high-impact genes (CYP2C19, CYP3A4, FBP1, THBS4, CYP7A1, ESR1, CDK1, BCL6, IMPDH2, 
and CDC25C). Based on their ranked importance in the SVM model, the top five genes were selected to 
construct a clinical nomogram. This data-derived diagnostic model for chronic THX exposure gains biological 
plausibility from the established roles of its key genes (e.g., CYP2C19, CYP3A4, CYP7A1, FBP1) in xenobiotic 

Fig. 4.  Immune cell infiltration analysis of SDECGs in HCC. (A) Box plot comparing immune cell fractions 
between normal and HCC samples; (B) Heatmap of the correlation analysis between SDECGs and immune 
cells. Tip: * is p < 0.05; ** is p < 0.01; *** is p < 0.001.
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metabolism and cellular stress responses. Critically, these genes converge on liver metabolic pathways-a well-
established hub influencing HCC pathogenesis32. Cytochrome P450 (CYP) is essential in the metabolism of 
drugs, chemicals, and endogenous compounds33. CYP2C19 is a drug-metabolizing enzyme, the metabolites 
produced during its metabolism may exert a significant influence on the liver’s microenvironment34. Abnormal 
CYP2C19 metabolism may contribute to the exacerbation of liver inflammation, thereby promoting the 
development of HCC35. CYP3A4 expression has been found to be significantly reduced in liver tumor tissues 
of patients with hepatocellular carcinoma36. Several studies have indicated that reduced CYP3A4 expression is 
associated with a poorer prognosis in patients with hepatocellular carcinoma (HCC)37. Dysregulation of bile 
acid metabolism is involved in the development of liver cancer38. Multiple studies have suggested that decreased 
CYP3A4 expression correlates with worse prognosis in patients with HCC, this enzyme is expressed only in 
the endoplasmic reticulum of hepatocytes and is regulated by the end product bile acids39. Studies have shown 
a correlation between elevated levels of major circulating bile acids and an increased risk of HCC, which is 
consistent with our results of increased CYP7A1 expression40. Fructose-1,6-bisphosphatase (FBP1) is a crucial 

Gene name UniProt id Binding energy (kcal/mol)

CYP2C19 P33261  − 6.2

CYP3A4 P08684  − 6.9

FBP1 P09467  − 6.8

THBS4 P35443  − 5.7

CYP7A1 P22680  − 6.0

Table 2.  Results of molecular docking binding energy.

 

Fig. 5.  Machine learning for screening the key genes. (A) ROC curves for SVM, RF, XGB, GLM; (B) Box plots 
of residuals for SVM, RF, XGB, GLM; (C) Reverse cumulative distribution of residuals for SVM, RF, XGB, 
GLM machine learning models; (D) Bar plot showing the feature importance of SVM, RF, XGB, GLM machine 
learning models; (E) Nomogram was constructed based on five feature genes; (F) Calibration curve of the 
feature gene nomogram for THX-induced HCC; (G) Decision curve for the feature gene nomogram for THX-
induced HCC; (H) ROC curve for the test GEO dataset; (I) ROC curves for external validation using the GEO 
dataset.
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enzyme in the process of gluconeogenesis41. Experimental studies have shown that low expression of FBP1 
promotes HCC progression42. At the same time, loss of FBP1 disrupts liver metabolic homeostasis and promotes 
tumor progression43. This verified the accuracy of our KEGG analysis results. Studies have demonstrated that 
overexpression of THBS4 can mediate the proliferation and metastasis of HCC44. The expression of THBS4 
have been linked to the invasion and metastasis of HCC45. Additionally, in the liver cancer microenvironment, 
THBS4 may promote tumor growth and metastasis by regulating intercellular interactions and angiogenesis46. 
The results of molecular docking showed that THX had a stable binding to the five signature genes, which 
revealed the accuracy of the above machine learning results and provided certain evidence for our study, and 
elucidated that THX-induced HCC may be mainly through the five signature genes.

It is noteworthy that considerable discrepancies in ssGSEA were discerned between the HCC and normal 
groups with respect to various immune cell types, including Monocytes, T cells CD8, Tregs, Macrophages M1 
and Dendritic cells activated. Furthermore, correlation analysis revealed significant associations between some 
SDECGs and immune cell types. These include M1 macrophages, Tregs, Monocytes. M1 macrophages are 
known to promote the activation of T cells and NK cells by secreting pro-inflammatory cytokines and chemical 
factors, and have been shown to enhance tumour-specific immune responses. These cytokines can induce 
tumor cell apoptosis, inhibit tumor angiogenesis, and even enhance immune surveillance of tumor cells47,48. 
In the tumor immune microenvironment, a higher proportion of M1 macrophages is often correlated with 
improved prognosis. Additionally, monocyte count has been identified as an independent prognostic factor 
for overall survival (OS) in patients with HCC. In the HCC microenvironment, monocytes can be polarized 
into tumor-promoting macrophages (M2 macrophages). M2 macrophages foster tumor growth and metastasis 
by enhancing angiogenesis and fibrosis within the tumor microenvironment49. However, in our study, there 
was no significant difference in M2 macrophages, which may be related to the number of samples. In addition, 
monocytes can trigger autophagy, induce epithelial-mesenchymal transition (EMT) of cancer cells, and promote 
tumor metastasis50. Tregs are the key mediators of HCC-related immunosuppression. Tregs can help cancer 
cells escape immune surveillance by inhibiting anti-tumor immune responses51. Our completed molecular 
docking results further imply potential mechanistic intersections: for instance, if THX binds to key regulatory 
proteins associated with these immune cells (such as receptors or signaling molecules on M1 macrophages, 
Tregs, or monocytes), it might modulate their functions. Binding to M1 macrophage-related targets could 
either enhance their anti—tumor cytokine secretion or disrupt it, while interactions with Treg-associated 
targets might impair their immunosuppressive capacity. These potential bindings, if validated, would deepen 
our understanding of THX’s immunomodulatory role in HCC, aligning with KEGG identified IL-17 mediated 
immune microenvironment alterations and the observed immune cell discrepancies from ssGSEA.

This study elucidates the potential molecular mechanisms of THX-induced HCC using network toxicology 
and machine learning methods, providing support for disease diagnosis in populations exposed to THX or long-
term use of this pesticide. However, it should be noted that this study is not without limitations. For example, 
this study solely investigates the molecular mechanisms underlying THX-induced HCC from a data analysis 
perspective. Therefore, additional experiments (such as animal studies) are required to validate these findings. 
Furthermore, due to the small number of clinical liver cancer samples, errors may have been introduced into 
the study results.

Fig. 6.  The molecular docking results of THX with the top five genes. The molecular docking analysis of 
THX binding to CYP2C19 (A), CYP3A4 (B), FBP1 (C), THBS4 (D) and CYP7A1 (E) was conducted using 
AutoDock Vina software,
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Conclusion
This study systematically investigated THX, a NEO with notable carcinogenic and hepatotoxic potential, by 
identifying 61 intersection genes between THX targets and hepatocellular carcinoma (HCC)-related genes. 
Through integrated bioinformatics analyses and machine learning modeling, five core feature genes (CYP2C19, 
CYP3A4, FBP1, THBS4, CYP7A1) were screened, and molecular docking confirmed strong binding affinities 
(≤ −5 kcal/mol) between THX and these genes. These findings provide mechanistic insights into THX-induced 
HCC, establishing a theoretical foundation for understanding its hepatotoxic and carcinogenic mechanisms.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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