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The early and accurate detection of autism spectrum disorder (ASD) is crucial for timely interventions 
that can significantly improve the quality of life for individuals on the spectrum. Despite the 
importance of early diagnosis, current ASD diagnostic methods face several challenges, including 
being time-consuming, subjective, and requiring specialized expertise, which limits their accessibility 
and scalability. Addressing these limitations, automated ASD detection through facial image analysis 
offers a non-invasive, efficient, and scalable alternative. However, existing machine learning and 
deep learning techniques frequently face challenges such as limited generalizability, inadequate 
interpretability, and insufficient performance on diverse datasets. This study introduces an effective 
deep learning framework for automated ASD detection that leverages pre-trained convolutional neural 
networks (CNNs), including VGG16, VGG19, InceptionV3, VGGFace, and MobileNet. The proposed 
framework integrates advanced preprocessing techniques, data augmentation, and Explainable AI 
(XAI) methods, such as Local Interpretable Model-agnostic Explanations (LIME), to enhance both 
accuracy and interpretability. The experimental results demonstrate the effectiveness of the proposed 
framework, with the VGG19 model achieving an accuracy of 98.2%, outperforming many state-of-the-
art methods. This work represents a significant step forward in automated ASD diagnostics, offering 
a reliable, efficient, and interpretable solution that can aid clinicians in making timely and accurate 
diagnoses.
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Autism Spectrum Disorder is a developmental disability that mentions the neurological and interpersonal 
communication challenges, as well as distinct behavioral patterns. The more a condition is diagnosed at an early 
stage, the more the support and interventions given hence why detection of ASD has remained a priority in 
medical and psychological literature. Today, researchers use examination and observation methods, including 
the assessment of Autism, Autism Diagnostic Observation Schedule (ADOS) and the Autism Diagnostic 
Interview-Revised (ADI-R)1,2. ADOS is a standardized assessment tool utilized by clinicians and researchers 
to evaluate and diagnose ASD through direct observation of an individual’s communication, social interaction, 
and behavioral patterns. In contrast, the ADI-R is a structured interview administered to parents or caregivers, 
aimed at collecting detailed information on the individual’s developmental history and behaviors, with a focus 
on core domains relevant to ASD diagnosis. While these tools are widely accepted, they are time-consuming, 
require trained specialists, and are often subject to clinical interpretation3.

The recent study proposes machine learning (ML) and deep learning (DL) approaches to address these 
limitations, as they are more efficient, less time-consuming, and less sensitive to human biases in screening 
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of autism spectrum disorder (ASD). The first attempts at employing machine learning in the task of ASD 
classification have demonstrated bounded successes in utilizing SVMs and random forests to classify patients 
based on both behavioral data as well as neuroimaging genetics4. However, these traditional ML methods 
struggle to handle the high dimensionality and complex structures inherent in autism-related data, often leading 
to limited accuracy and generalization. Ma et al.5 proposed a model based on the more interpretable contrast 
variational autoencoder (CVAE) to differentiate ASD in young children based on their s-MRI. This model was 
designed to focus on ASD distinctive characteristics anticipating that it would attain more than 94% accuracy in 
cross-validation. Further, to enhance the prediction of neuroanatomical interpretations and uncover biomarkers 
related to ASD, they used a transfer learning approach, which helped to achieve better outcomes even if the 
data were scarce. Ram Arumugam et al.6 proposed a CNN based model for ASD prediction through analysis of 
facial images. Their approach, aimed at promoting early diagnosis and early intervention, was trained and tested 
on the Kaggle dataset using an 80:20 train-test split. The model used herein gave a correct classification of 91% 
loss rate was 0.53. This method present a cheaper method of diagnosing ASD relatively to focused facial image 
analysis in contrast to the MRI base generally used for ASD diagnosis.

Also, the authors Sellamuthu et al.7 suggested a system based on an early diagnosis of autism using machine 
learning model trained on facial images along with the behavioral scores obtained through the ADOS test. The 
models of CNN architectures utilised in their research include; MobileNetV2, ResNet50, InceptionV3, and a new 
CNN model nabbed from the existing repository. Among them, the multimodal concatenation model achieved 
the highest accuracy of 97.05%, significantly outperforming the individual models: The accuracy obtained by the 
models is; MobileNetV2; 78.94%, InceptionV3; 71.06%, ResNet50; 56.19% and the new developed CNN model; 
76.18%. The multi-modality of data integration is illustrated in this study as a powerful method to enhance the 
degree of accurate ASD diagnosis.

ASD is a complex developmental disorder characterized by a variety of behaviors that distinguish it from 
other communication and cognitive disorders. Early detection has a crucial role in improving the quality of 
life for those with autism, as it reduces the number of years a kid goes undiagnosed. Nowadays, the integration 
of machine learning into the diagnostic process for individuals with ASD has introduced novel methodologies 
and concepts to address this complex condition. Recent advancements in machine learning, particularly 
deep learning and automated machine learning (AutoML), have shown great potential for diagnosing autism 
spectrum disorder (ASD) through facial image analysis.

Recently, several CNN-based architectures, including VGG16, VGG19, InceptionV3, VGGFace, and 
MobileNet, have been applied to enhance the detection of ASD. These architectures, initially developed for general 
image recognition, have demonstrated efficacy in extracting significant features related to facial expressions, eye 
gaze, and behavioral indicators potentially linked to autism8. Researchers are utilizing large datasets and fine-
tuning pretrained models for autism-specific tasks, thus addressing some limitations of traditional methods 
and providing a non-invasive, scalable, and data-driven approach to ASD screening. This study investigates the 
application of pre-trained models in ASD detection and classification, highlighting advancements, challenges, 
and the potential for AI-driven diagnostics to enhance autism assessment accuracy and accessibility.

This study introduces a novel deep learning-based framework for the automated detection of ASD using facial 
images, addressing limitations in traditional diagnostic methods. The proposed framework employs a selection 
of powerful pre-trained convolutional neural networks CNNs including five pretrained models, optimized 
through hyperparameter tuning and enhanced by advanced data augmentation techniques to improve model 
generalizability and robustness. In addition, the integration of XAI via the LIME algorithm, which increases 
transparency by identifying facial regions that influence model predictions, is a key contribution.

The key contributions of this study are outlined below:

•	 We propose a comprehensive, automated framework for ASD detection using facial images (ASD-FIC), com-
bining multiple pre-trained CNN architectures with domain-specific fine-tuning.

•	 The framework includes targeted hyperparameter tuning (e.g., batch size, learning rate, shuffle configuration) 
tailored to the characteristics of ASD datasets demonstrating improved training efficiency and convergence 
stability.

•	 We introduce a data augmentation pipeline that preserves subtle ASD-related facial cues, enabling better 
generalization while mitigating overfitting on limited and imbalanced datasets a critical challenge in ASD 
research.

•	 Beyond simply applying LIME, we systematically integrate explainable AI into model evaluation by identi-
fying specific facial regions influencing classification decisions thus bridging the gap between deep learning 
predictions and clinical relevance.

•	 A rigorous comparative analysis of five state-of-the-art CNN models (VGG16, VGG19, InceptionV3, Mo-
bileNet, and VGGFace) is conducted using consistent experimental protocols, providing new insights into 
their relative performance for ASD screening tasks.

The structure of this study is organized as follows: Section 2 presents an analysis of previous approaches to ASD 
detection based on machine learning and deep learning and highlights the advantages and disadvantages of 
such approaches. Section 3 details the proposed framework, which includes the use of pre-trained CNN models, 
data pre-processing, augmentation strategies, explainable artificial intelligence tools (like LIME), and evaluation 
metrics. Section 4 explains the data set on which the model was trained, compares its performance with existing 
models and provides an understanding of why the proposed model might be useful. Section 5 contains the 
study’s final recommendations and the potential for future research.
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Literature review
This section reviews existing research on the application of machine learning and deep learning methods 
for the automated detection of ASD using facial images. It covers a wide range of approaches, including 
traditional machine learning classifiers, pre-trained convolutional neural networks, explainable AI techniques, 
and multimodal frameworks. The aim is to highlight the progress made, assess the strengths and limitations 
of previous studies, and identify key gaps that the current study seeks to address, particularly in terms of 
accuracy, interpretability, and real-world applicability. Table 1 summarizes the most recent published work on 
ASD detection using facial features, highlighting advances in deep learning, multimodal integration, and the 
importance of interpretability.

Traditional and automated machine learning for ASD detection
Early machine learning approaches to ASD detection have relied on conventional classifiers like Support Vector 
Machines (SVM) and Random Forests, yet were often limited by high-dimensional data complexity. Elshoky et 
al.17 contrasted traditional ML methods with AutoML using the TPOT framework, finding AutoML achieved a 
notable 96% accuracy on the Kaggle ASD dataset. This improvement stemmed from automated hyperparameter 
tuning and model selection, which reduced manual effort and improved model robustness. However, while 
efficient, AutoML models often remain black boxes with limited interpretability. Similarly, Rashed et al.23 
introduced ASDD, which leveraged AutoML tools like Lazy Predict, AutoKeras, and TPOT in combination 
with dimensionality reduction techniques such as PCA and Chi-Square tests. Their integration of data from 
multiple corpora improved generalization across age ranges, but reliance on structured textual datasets limits 
adaptability to image-based analysis. K. Khan and R. Katarya24 offer a comprehensive survey categorizing prior 
work into data-focused, algorithm-based, and conventional ML frameworks, emphasizing the frequent use and 
strong performance of supervised methods like SVM, Random Forest, and Logistic Regression across varied 
datasets such as ABIDE, UCI, and AQ-10, with some models achieving accuracies above 90%. Sethi et al25 
study compares five ML models on a Kaggle screening dataset, identifying Random Forest as the best performer 
(accuracy of 92.2%, F1-score of 0.92), though it notes limitations due to the dataset’s small size, imbalance, and 
lack of multimodal data like MRI or facial imagery.

Deep learning with pre-trained CNN models
Recent advances in deep learning have leveraged pre-trained CNN architectures for ASD classification from 
facial images. Hosseini et al.26 used a MobileNet-based deep model trained on the Kaggle dataset, reporting 
94.64% accuracy and identifying facial traits like wide-set eyes as important markers. Ahmed et al.20 similarly 
applied MobileNet and InceptionV3 and achieved 95% accuracy, emphasizing model simplicity and real-time 
deployment feasibility. Alsaade and Alzahrani18 employed Xception with 91% accuracy, but noted decreased 

Refs. Year Dataset used Dataset size Proposed methods Predicted classes Accuracy

9 2024 Kaggle ASD Dataset 2940 images ResNet34, ResNet50, VGG16, VGG19, 
AlexNet, MobileNetV2 ASD vs Non-ASD ResNet50: 92%, VGG19: 87%

10 2023 Kaggle ASD Dataset 3014 images VGG16, VGG19, EfficientNetB0 ASD vs Non-ASD VGG16: 84.66%, VGG19: 80.05%, 
EfficientNetB0: 87.9%

11 2023 Kaggle ASD Dataset 3014 images MobileNetV2, ResNet50V2, Xception ASD vs Non-ASD Xception: 98.9%, ResNet50V2: 97.1%, 
MobileNetV2: 91.4%

12 2023 Kaggle ASD Dataset 2936 images VGG16, VGG19 ASD vs Non-ASD VGG16: 86.33%, VGG19: 84.00%

13 2023 Private Dataset 125 toddlers Multimodal Machine Learning System 
(MMLS) based on response to name (RTN) ASD vs Non-ASD Computer-rated: 74.8%, Human-rated: 82.9%

14 2023 Custom Video 
Dataset

105 children 
(ASD: 62, 
Non-ASD: 
43)

CNN-based system using facial attributes 
(expressions, AUs, arousal, valence) ASD vs Non-ASD F1 Score: 76%, Sensitivity: 76%, Specificity: 69%

15 2023 ASD Children 
Dataset 2926 images Vision Transformer (ViT), Knowledge 

Distillation (ViTASD) ASD vs Non-ASD Accuracy: 94.50%

16 2023 Kaggle ASD Dataset 2540 images MobileNet, Xception, Inception V3, 
EfficientNetB0, EfficientNetB7, and VGG16 autistic and non-autistic Accuracy: 88%, 87.7%, 86.1%, 85.6%, 82.6%, 

and 86.3% respectively

17 2022 Kaggle ASD Dataset 
(Version 9) 2936 images AutoML (TPOT), Traditional ML, CNN ASD vs Non-ASD AutoML: 96%, CNN: 89%

18 2022 Kaggle ASD Dataset 2940 images Xception, VGG19, NASNetMobile ASD vs Non-ASD Xception: 91%, VGG19: 80%, NASNetMobile: 
78%

19 2022 Private Dataset 120 
participants

Ambient Facial Image Grouping Task 
(Oddball Detection) Autistic vs Non-Autistic

Accuracy not explicitly stated, but results 
show a significant difference between autistic 
(65.96%) and non-autistic participants (74.71%)

20 2022 Kaggle ASD Dataset 3014 images MobileNet, Xception ASD vs Non-ASD MobileNet: 95%, Xception: 94%
21 2021 Kaggle ASD Dataset 3,014 images MobileNet ASD vs Non-ASD 94.64%

22 2021
Private Dataset 
(Elim Autism 
Rehabilitation 
Center)

1122 ASD 
images, 561 
TD images

VGG16 ASD vs Non-ASD Accuracy: 95%, F1 score: 0.95

Table 1.  Summary of the most recent related work.
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performance with models like NASNetMobile (78%), highlighting the need for architecture selection. Reddy 
and Andrew10 compared VGG16, VGG19, and EfficientNetB0 on facial cues, with accuracies of 84.66%, 
80.05%, and 87.9%, respectively, reinforcing that even similar architectures can yield varying results. Ahmad 
et al.9 demonstrated that ResNet50 outperformed other CNNs, attaining 92% accuracy, showcasing the depth 
advantage in feature abstraction. However, while pretrained models offer high performance, many lack built-in 
interpretability, which remains a critical challenge in clinical applications.

Gaddala et al.12 implemented CNN models based on VGG16 and VGG19 to detect Autism Spectrum 
Disorder from facial images. Using the Kaggle ASD dataset (2936 images), their models achieved 86.33% and 
84.00% accuracy, respectively. These results demonstrate that traditional CNN architectures remain competitive 
when trained on properly curated datasets. Ram et al.6 proposed a CNN-based facial image analysis framework 
for ASD detection, using an 80:20 train-test split on the Kaggle dataset. Their model achieved a 91% accuracy 
with a relatively high loss rate of 0.53. This suggests the model has potential but may require further tuning 
to improve generalization and reduce overfitting. While offering a cost-effective alternative to MRI-based 
diagnostics, the high training loss highlights limitations in robustness. Khan and Katarya27 study presents a 
deep learning approach using the Xception architecture with transfer learning on rs-fMRI data from the ABIDE 
I dataset; while it achieves high training (97.66%) and validation (99.39%) accuracies, the test accuracy drops to 
67.35%, indicating overfitting and limited generalizability. The authors in28 use MobileNet and two dense layers 
to perform feature extraction and image classification for autism diagnostics. They obtained 94.6% accuracy 
using Deep Learning with either healthy or potentially autism.

Explainable and interpretable AI in ASD classification
To address the need for transparency in ASD detection, researchers have integrated Explainable AI (XAI) 
tools into deep learning frameworks. Alam et al.11 presented a data-centric approach using XAI alongside 
Xception and ResNet50V2, achieving 98.9% and 97.1% accuracy, respectively. Their use of data augmentation 
and preprocessing was critical in enhancing model performance. Atlam et al.29 introduced a dual-component 
model combining deep learning classifiers with SHAP explanations to enhance clinical interpretability. The 
proposed model emphasizes transparency in medical decisions, reinforcing trust between AI systems and 
healthcare professionals. Ma et al.5 used a contrastive variational autoencoder (CVAE) on MRI features, coupled 
with transfer learning, reaching over 94% accuracy. While interpretability was prioritized, their dependence on 
neuroimaging limited scalability. Overall, these studies illustrate that embedding interpretability into AI models 
is not only feasible but essential for ethical and clinical adoption. Hossain et al.26 presented a novel approach 
using a multilayer perceptron (MLP) trained on questionnaire-based inputs from the Autism Spectrum Quotient 
Test. Unlike image-based models, their approach achieved a perfect 100% accuracy across all age groups using 
only ten key questions. While impressive, this model’s reliance on self-reported or caregiver-reported inputs 
introduces potential subjectivity and biases, limiting its standalone use without clinical oversight.

Uddin et al.30 conducted a systematic review of 130 publications from 2017 to 2023, emphasizing the 
progression of deep learning techniques in ASD diagnosis through image and video modalities. Their study 
concludes that image-based DL models have significantly enhanced the precision and speed of diagnosis. 
However, their review also notes gaps in model interpretability and integration with real-time clinical settings, 
pointing to the need for explainable and trusted AI in healthcare. Atlam et al.31 Introducing the Explainable 
Mental Health Disorders (EMHD) framework, this study integrates a Voting ensemble model (using feature 
selectors like Mutual Information, ANOVA, and RFE) with SHAP-based XAI to both classify and explain 
disorders in young children and toddlers. EMHD attains perfect scores (accuracy, precision, recall, and F1 score 
of 1.0). Almars et al.32 present IIENM, an IoT-integrated emotion recognition system leveraging EfficientNet 
to detect emotions in children with autism. Trained on two facial-expression datasets, the model captures real-
time facial and physiological data through IoT sensors. To ensure transparency, it incorporates explainable AI 
methods (LIME and Grad CAM) to spotlight image and signal regions critical to its predictions.

Multimodal and hybrid ASD detection approaches
Integrating multimodal data sources has emerged as a strategy to improve ASD diagnosis accuracy and resilience. 
Sellamuthu et al.7 proposed a hybrid framework combining facial images and ADOS behavioral scores, where 
a multimodal CNN model achieved 97.05% accuracy—outperforming individual models like MobileNetV2 
(78.94%) and ResNet50 (56.19%). Gutierrez et al.33 demonstrated that combining visual and audio cues for pain 
assessment in nonverbal patients achieved 92% accuracy and high specificity, underscoring multimodal AI’s 
potential in broader healthcare. Zhu et al.34 used toddlers’ response-to-name (RTN) signals in a multimodal 
system achieving up to 92% accuracy, introducing behavioral metrics into ASD screening. Although these 
methods significantly enhance classification, they often require multiple sensors or subjective annotations, 
which may reduce practicality for large-scale deployment.

Lightweight and real-time detection systems
To enable scalable and resource-efficient ASD screening, lightweight architectures and mobile deployment have 
been investigated. Sholikah et al.35 developed a real-time facial emotion recognition system using VGG-16 
embedded in a mobile application, reaching 91% accuracy. This enabled emotional feedback for ASD clients, 
demonstrating direct real-world utility. Singh et al.16 applied transfer learning with six pretrained models 
including MobileNet, Xception, and EfficientNetB7, achieving accuracies ranging from 82.6 to 88%, offering 
options tailored to device capabilities. Anjum et al.3 integrated five CNN models with logistic regression, 
reaching 88.33% accuracy, emphasizing fusion-based design for lightweight yet effective systems. Khosla et al.36 
used MobileNet for facial classification and applied domain-specific adjustments like eye-spacing normalization, 
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achieving 87% accuracy. While these models promise mobile deployment, reduced accuracy and increased 
sensitivity to preprocessing remain concerns.

Li et al.14 introduced a CNN-based facial affect analysis system that uses video data to classify ASD based 
on arousal, valence, and facial action units (AUs). Their system achieved an F1 score of 76% with sensitivity 
and specificity of 76% and 69%, respectively, on a dataset comprising 105 children (62 ASD, 43 non-ASD). 
This approach’s strength lies in its use of emotional cues over static features. Cao et al.15 developed ViTASD, a 
facial image-based ASD diagnostic model leveraging Vision Transformer (ViT) architectures. ViTASD achieved 
94.5% accuracy using a custom dataset of 2926 images. Unlike CNNs, ViTs handle spatial information globally, 
making them particularly suitable for nuanced tasks like ASD detection. While powerful, ViTs require more 
computational resources and large datasets for optimal training, which may limit adoption in low-resource 
settings. Gehdu et al.19 focused on perceptual differences in autistic individuals by examining how they group 
ambient facial images in an oddball detection task. Unlike typical classification models, this study emphasized 
behavioral characteristics and cognitive processing, using a private dataset with 120 participants. The study 
found significant performance discrepancies in facial image grouping between autistic (65.96%) and non-
autistic (74.71%) groups.

While ASD detection methods have advanced, they still face key challenges such as limited interpretability in 
traditional ML, overfitting and poor generalization in deep learning, scalability issues with MRI and self-reported 
data, reliance on complex sensors in multimodal systems, and reduced accuracy or high resource demands in 
lightweight and transformer-based models. This study introduces an innovative deep learning framework for 
automated ASD detection that utilizes pre-trained CNN models like VGG16, VGG19, InceptionV3, VGGFace, 
and MobileNet. It incorporates advanced preprocessing, data augmentation, and Explainable AI techniques such 
as LIME to improve both the accuracy and interpretability of the diagnostic process.

Methodology
This section introduces the proposed ASD-FIC framework employing Facial Image Classification, developed to 
improve the diagnosis of autism spectrum disorder (ASD) using deep learning models models such as VGG16, 
VGG19, InceptionV3, VGGFace and MobileNet. This approach is fundamentally based on the application of 
deep learning techniques using pre-trained models to diagnose ASD through the analysis of facial images. The 
basic framework of this approach is built upon the application of deep learning techniques using pre-trained 
models to diagnose ASD through facial image analysis. Widely adopted deep learning architectures—such as 
VGG16, VGG19, InceptionV3, VGGFace, and MobileNet—were selected for this task due to their effectiveness 
in image processing and feature extraction. Each model was chosen based on specific strengths that align with 
the objectives of this study. VGG16 and VGG19 were selected for their proven consistency in medical imaging 
tasks and their architectural depth, which enables the detection of subtle facial cues. InceptionV3 was included 
for its ability to perform multi-scale feature extraction, facilitating the identification of both local and global 
facial attributes. VGGFace, specialized in facial recognition, is expected to extract identity-invariant facial 
traits that may be indicative of ASD. MobileNet, on the other hand, was chosen for its computational efficiency, 
making it ideal for deployment in resource-limited or mobile healthcare settings. Together, these models 
provide a balanced mix of performance, specialization, and efficiency, enabling a comparative evaluation across 
architectures with varying levels of complexity and practical applicability in clinical environments.

The ASD-FIC framework is structured into three phases that simplify the development of artificial intelligence 
models for ASD detection. The implementation of these stages improves the identification of Autism through 
facial image analysis. Figure 1 provides an overview of the ASD-FIC framework. The framework consists of three 
main phases: data collection and preprocessing, model training and Evaluation, and model interpretation. In the 
initial stage, image data from both autistic and non-autistic individuals are collected and preprocessed through 
resizing and standardization techniques. Subsequently, the dataset is partitioned into subsets for training (1268 
samples), validation (50 samples), and testing (150 samples). To increase data diversity and improve model 
robustness, augmentation strategies such as flipping, rotation, shifting, and zooming are implemented.

In the subsequent stage, the framework leverages pre-trained architectures including VGG19, VGGFace, 
MobileNet, VGG16, and InceptionV3 for the development of a deep learning architecture. Fine-tuning of 
configuration parameters is performed to optimize performance, followed by evaluation utilizing the validation 
and test datasets. This phase results in a trained deep neural network capable of classifying individuals as autistic 
or non-autistic with high accuracy. In the final phase (Phase 3), the trained models are interpreted using the 
LIME. By loading an image, the model identifies key features and regions of interest (ROI), highlighting areas that 
support or contradict the prediction. Regions supporting the prediction are marked in red, while contradictory 
regions are marked in green, ensuring transparency and insight into the model’s decision-making process.

The pretrained models
As shown in Fig. 1, this study uses five pre-trained models to detect autism through facial images, specifically 
VGG16, VGG19, InceptionV3, and VGGFace, and Mobilenets. These models demonstrate strong performance 
in image and face recognition tasks and are therefore appropriate for the identification of autism. This section 
provides a brief summary of each model and its role in autism detection. VGG16 and VGG19 are deep 
convolutional neural networks developed by the Visual Geometry Group, characterized by 16 and 19 layers, 
respectively. They are recognized for their ease of evaluation and exceptional capabilities in image classification. 
The VGG16 and VGG19 models are utilized in the detection of autism by analyzing images of individuals’ facial 
expressions or activities that may indicate autism markers37. VGGFace is a model developed by the VGG team 
that specializes in face identification. The model, trained on a large dataset of faces, can detect minor differences 
in facial position, direction, and eyes, which are essential for establishing social contact and may be impaired in 
children with autism38.
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InceptionV3 is a member of the Inception family, and is well-known for its improved depth and efficiency 
compared to the earlier model. Because it uses reduced convolution filters and multiple scale feature extraction, 
it can handle very complex images very well. In the identification of autism, InceptionV3 analyzes image features 
by considering various characteristics associated with autism in children, with a particular focus on facial 
expressions39. MobileNet is intended to be a low resource model, it is well suited for mobile and, in general, 
embedded environments. Due to the flexibility involved, it could be a perfect model for live detection of autism, 
much more in developing nations. This model is capable of detecting behavior and facial cues anywhere and 
hence promoting a practical approach in identifying children with autism40. These pre-trained models are 
further refined using autism-specific datasets to identify patterns and features associated with autism spectrum 
disorders (ASD) for early detection and screening.

Interpretation with LIME
Local Interpretable Model-agnostic Explanations (LIME) developed by Marco Ribeiro in 201641. It helps to 
interpret the assumptions made by any classifier by creating a simple and understandable model based on a 
particular prediction. This approach ensures that the explanation is clear and true to the original model. 
Algorithm  1 outlines the steps involved in applying the LIME algorithm to interpret the VGG19 model 
predictions.
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Fig. 1.  The proposed ASD-FIC model for ASD disorder identification.
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Algorithm 1.  LIME interpretation for VGG19 pretrained model.

Evaluation metrics
The evaluation for the models involves the usage of a complete set of metrics where accuracy, recall, precision 
and F1 are used. Altogether, these measurements provide a multifaceted view of the models’ effectiveness in 
accurately identifying ASD from facial images, ensuring a thorough assessment of their capabilities42. The most 
commonly used evaluation metrics for predicting ASD are as follows:

•	 Accuracy: Measures the ratio of correctly predicted instances (both true positives (TP) and true negatives 
(TN) to the total instances. It is useful when classes are balanced but can be misleading for imbalanced da-
tasets. 

	
Accuracy = T P + T N

T P + T N + F P + F N
� (1)

•	 Recall: The proportion of correctly called positive cases with regards to the total actual positive cases. This is 
a measure of how well the model covers all the ground; valuable where overlooking a case is expensive. 

	
Recall = T P

T P + F N
� (2)

•	 Precision: The ratio of true positive predictions to total predicted positives. Indicates how many of the pre-
dicted positives are correct. 

	
Precision = T P

T P + F P
� (3)
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•	 F1: The harmonic mean of precision and recall. This is particularly useful for unbalanced data sets where it is 
difficult to balance the two metrics and at the same time achieve high precision and recall. 

	
F1 Score = 2 × Precision × Recall

Precision + Recall
� (4)

•	 Confusion Matrix: A matrix that summarizes prediction results by class, detailing TP, TN, FP, and FN as 
shown in Table 2. It provides a comprehensive view of model performance.

Experimental results and discussion
Datasets
This study utilizes the dataset named “Facial Image Data Set for Children with Autism” (Kaggle ASD dataset)43 
for experimental purposes. This dataset represents a binary classification problem consisting of face images of 
both autistic and non-autistic children. It contains 1,468 images for each class, ensuring a balanced representation 
of autistic and non-autistic children in the training set. Figure 2 presents sample images from this dataset.

The dataset is partitioned into two subsets: 90% of the images are allocated for training and validation, where 
they are utilized for model optimization, including validation and fine-tuning of weights and parameters. The 
remaining 10% is used for evaluating the model’s performance and generalization ability, as presented in Table 3.

Fig. 2.  Sample facial feature images from Kaggle ASD dataset.

 

Predicted positive Predicted negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Table 2.  Confusion Matrix.
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Experimental setup
These experiments were conducted by using various Python libraries and hardware devices. Table 4 presents 
the essential requirements for designing the ADS. The model was configured to run for 100 epochs with a batch 
size of 32. To prevent overfitting and optimize training time, an early stopping strategy was applied, halting the 
training after 28 epochs.

Results using the pre-trained models
This section describes the results of experiments conducted to detect autism spectrum disorders (ASD). In these 
experiments, we used five pre-trained deep learning models (VGG16, VGG19, InceptionV3, VGGFaces and 
MobileNet) to diagnose ASD. These models were trained and validated on two datasets to find the features 
that could help distinguish between the children with autism and those without based on their faces. Figure 3 
illustrates the confusion matrix resulting from the training of the VGG19 model on the ASD Kaggle dataset.

Table 5 presents the results of five pre-trained models employed to classify facial feature images of children 
with autism from the Kaggle ASD dataset. VGG19 demonstrates superior performance compared to the other 
models.

From Table 5, for each reported performance metric (accuracy, precision, recall, and F1-score), 95% confidence 
intervals were calculated based on repeated stratified sampling. These intervals were used to provide a more 
nuanced understanding of the models’ consistency and generalization capability. Pairwise comparisons between 
the top-performing model (VGG19) and other architectures were conducted using paired t-tests and McNemar’s 

Fig. 3.  Confusion matrix of VGG19 model using ASD dataset.

 

Parameter Value

Dense layer 128,64

Global max pooling layer size 3 × 3
Output classification layer Softmax

Activation function Sigmoid

Optimizer ADAM

Learning Rate 0.0001

Number of epochs 100

Batch Size 32

Table 4.  The parameters used in the pre-trained CNN models.

 

Class Train (86%) Validation (4%) Test (10%) Total

Autistic 1268 50 150 1468

Non Autistic 1268 50 150 1468

Total 2536 100 300 2936

Table 3.  Splitting of facial features images for ASD dataset.
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test to assess classification consistency. These tests were applied to predictions generated from multiple runs (n = 
10) using randomized test splits, and the observed performance improvements were confirmed to be statistically 
significant (p< 0.05).

The results of pre-trained models using data augmentation
Data augmentation is a significant technique for enhancing the accuracy and robustness of deep learning 
models, including pre-trained models, through the artificial augmenting of training datasets. This mitigates 
overfitting and enhances the model’s capacity to generalize to novel and unfamiliar data. This study implemented 
the following improvements: (1) Rotation Range: Images are randomly rotated within a range of 20 degrees. (2) 
Width and Height Offset: Random horizontal and vertical offsets are applied within 20% of the total width and 
height. (3) Zoom range: A zoom range of 0.1 is applied to images. (4) Horizontal Flip: 50% chance to flip images 
horizontally during training. Additionally, the images were rescaled by a factor of 1/255 to normalize pixel 
values, following standard practice when working with pre-trained models like VGG19.

Batch Size and Shuffle Configuration: Optimizing batch size and shuffle settings can improve convergence, 
especially for medical datasets that may be unbalanced or limited in size. To maintain consistency in training 
and ensure reproducibility, batch size was set to 10 and mixing was set to False. The configuration of training 
hyperparameters is crucial for optimizing VGG19 in the context of ASD diagnosis. The following hyperparameters 
have been modified: (1) Steps per Epoch: The number of steps per epoch was modified to 150. This means that in 
each epoch, the model will process 150 batches of data. (2) Number of Epochs: The model was trained for a total 
of 100 epochs. Training for this many epochs allows the model ample time to learn from the dataset, gradually 
minimizing the loss and improving the performance.

Experimental results using data augmentation
This section presents the performance evaluation of the pre-trained models using the post-augmentation 
datasets. The following figures and table illustrate the outcomes of enhancing the pre-trained DL models through 
data augmentation. Figure 4 shows sample results for the VGG19 model, and Table 6 shows the corresponding 
confusion matrix. It shows that the trained model misclassified 4 out of 134 images of people with and without 
autism, yielding positives and false negatives.

Predicted 
value

True value 0 1

0 137 1

1 4 130

Table 6.  Confusion matrix of VGG19 model after argumentation.

 

Fig. 4.  Samples of VGG19 model’s results using the augmented Kaggle ASD dataset.

 

Metric VGG16 VGG19 InceptionV3 VGGFaces MobileNet

Accuracy (%) 89.36 94.88 91.85 93 74

Precision (%) 89.72 92.85 90.82 96 78

Recall (%) 90.77 92.85 90 90 66

F1 Score 90.2 92.85 90.8 93 71

Table 5.  Testing results of the pretrained deep learning models using Kaggle ASD dataset.
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Table 7 shows the performance results of pre-trained models after data augmentation and hyperparameter 
configuration. The table shows that the VGG19 model is better than the VGG16, InceptionV3, and VGGFace 
models. Due to the poor performance of the MobileNet model, its results after applying data augmentation are 
not reported because the improvements were considered insufficient for further analysis. Notably, the results of 
MobileNet model are not included in the table because the improvements observed after applying augmentation 
were poor and not sufficient for further analysis.

Although the MobileNet model offers computational efficiency, its architecture optimized for mobile 
environments demonstrated limited representational capacity for the facial features relevant to ASD detection 
in our dataset. Specifically, it yielded suboptimal recall and F1-scores in initial trials and exhibited unstable 
training behavior despite tuning. While data augmentation usually helps improve model performance, 
MobileNet’s shallow structure and reduced number of parameters limited its ability to learn meaningful features. 
In some cases, augmented images introduced artificial patterns that further confused the model, leading to 
poor results40,44. Because diagnostic accuracy is the focus of this study, MobileNet was not included in the final 
evaluation.

XAI results
The explainability of VGG19-based autism recognition was assessed in order to provide insights into the “black-
box” nature of DL models. Figure 5 illustrates the pre-trained model explainability of VGG19 using the LIME 
method. The first column of this figure presents the original images. The second column overlays the regions of 
the image that contributed the most to the model’s prediction, highlighted with yellow boundaries. The third 
column highlights the areas in green and red, representing positive (supporting the prediction) and negative 
(contradicting the prediction) contributions to the model’s decision. Across the rows, the highlighted regions 
in the second and third columns align with typical facial recognition cues. The visualizations suggest that the 
model places significant weight on specific facial regions, such as the eyes and mouth. If the model consistently 
ignores certain features or emphasizes irrelevant ones, it could indicate potential biases in how the model was 
trained.

In addition, we incorporated a quantitative consistency evaluation of LIME explanations across predictions. 
We computed the overlap between salient regions identified by LIME for correctly classified ASD and non-ASD 
samples. Using the Intersection-over-Union (IoU) metric applied to the top-k most influential superpixels, we 
observed that the VGG19 model consistently emphasized similar facial regions (e.g., around the eyes and mouth) 
across different instances within the same class. This pattern supports the hypothesis that the model relies on 
semantically meaningful features for classification. We evaluated the stability of LIME outputs by running LIME 
on the same input multiple times (n = 5) with different random seeds. The resulting importance maps showed 
a high degree of reproducibility, with mean IoU scores exceeding 0.80, indicating strong internal consistency 
of the interpretability mechanism under model-level stochasticity. Additionally, we qualitatively validated 
that the regions highlighted by LIME align with known facial markers associated with ASD, as documented 
in the literature. This cross-validation provides further support for the interpretability of our model from a 
clinical perspective. Figure 6 shows the IoU results used to assess the consistency of LIME explanations across 
predictions.

Comparison with state-of-the-art models
Thus, to compare the performance of the proposed model with the recent work presented in11,18,20,45–48, the 
comparison of various deep learning models used for diagnosing ASD using Kaggle ASD data set in terms of 
accuracy is presented in this section. Table 8 presents a comparative analysis of various models used for autism 
spectrum disorder (ASD) diagnosis, highlighting their performance in terms of accuracy. The studies reviewed 
utilized different deep learning architectures, primarily MobileNet and Xception, applied to the Kaggle ASD 
dataset. Among the published works, the highest accuracy of 95% was achieved by the MobileNet model in20, 
while other implementations reported accuracies ranging from 87 to 92%. Notably, the proposed model, based 
on VGG19 with augmentation and parameter configuration, outperformed all previous approaches, achieving 
an accuracy of 98.2%. These findings suggest that leveraging data augmentation and optimized configurations 
can enhance classification performance in ASD diagnosis. MobileNet model also demonstrated high accuracy 
87–95% in different studies. The relative trends in accuracy indicate that there could be more tuning strategies 
or methods like the augmentation technique to enhance its performance beyond what has been achieved with or 
without Denoising Autoencoders. However, despite the usually high speed of operation, MobileNet’s accuracy is 
lower than that of Xception and some additional methods.

Metric VGG16 VGG19 InceptionV3 VGGFace

Accuracy 85.33 98.21 81 85.33

Precision 82.716 99.28 82.2916 83.54

Recall 89.33 97.16 79 88

F1 Score 85.897 98.20 80.61 85.71

Table 7.  The performance of the pretrained DL models after data augmentation and hyperparameters 
configuration.
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Conclusion
This study presents a robust and optimized deep learning framework for the identification of ASD exclusively 
from facial images. This paper introduces a highly efficient and optimized deep learning system designed to 
identify ASD solely from facial images. To tackle the challenges involved, the framework leverages pre-trained 
CNN models like VGG16, VGG19, InceptionV3, VGGFace, and MobileNet, along with techniques such as data 
augmentation and XAI methods LIME. After extensive testing, the system achieved an impressive accuracy of 
98.2% using the VGG19 model, surpassing previous approaches as well as many modern techniques. They have 
tested the model and the system yielded 98.2% accuracy to the VGG19, which outperforms previous methods 
as well many of the modern one. Key contributions include the development of a scalable, non-invasive, 
and interpretable diagnostic tool, the integration of advanced augmentation techniques to enhance model 
generalizability, and the implementation of XAI to improve transparency and trustworthiness in predictions. 
Future improvements could include incorporating multimodal data (such as behavioral or genetic information) 
to enhance the model’s predictive power, as well as exploring interpretability methods to make the model’s 
decisions more transparent and actionable for clinicians. This study highlights the limitations of using the Kaggle 
ASD facial dataset, noting its lack of demographic diversity across age groups, ethnicities, and environmental 

Fig. 5.  Samples of LIME explaination of VGG19-based autism recognition. Positive contributions are 
highlighted in green (supports ASD/NASD) while Negative contributions can be shown in red (contradicting 
the prediction).
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conditions, which may hinder the model’s robustness and generalizability in real-world clinical settings. To 
address these issues, future research should incorporate more diverse facial datasets, including various age ranges, 
ethnic backgrounds, and imaging environments. Additionally, employing domain-adaptive techniques like 
cross-dataset validation and fine-tuning can mitigate bias and improve generalizability. Integrating multimodal 
data–such as eye-tracking, behavioral assessments, and genetic markers–through early or late fusion strategies is 
also recommended to enhance model performance and clinical applicability.

Data availability
Dataset used in this study is publicly available in [Autistic Children Facial Dataset] at ​h​t​t​p​s​:​​/​/​w​w​w​.​​k​a​g​g​l​e​​.​c​o​m​/​
d​​a​t​a​s​e​​t​s​/​i​m​r​​a​n​k​h​a​n​​7​7​/​a​u​t​​i​s​t​i​c​​-​c​h​i​l​d​​r​e​n​-​f​a​​c​i​a​l​-​d​​a​t​a​-​s​e​t.

Received: 22 April 2025; Accepted: 14 July 2025

References
	 1.	 Carr, T. Autism Diagnostic Observation Schedule 349–356 (Springer, 2013).
	 2.	 Kim, S. H., Hus, V. & Lord, C. Autism Diagnostic Interview-Revised 345–349 (Springer, 2013).
	 3.	 Anjum, J., Hia, N. A., Waziha, A. & Kalpoma, K. A. Deep learning-based feature extraction from children’s facial images for autism 

spectrum disorder detection. in Proceedings of the Cognitive Models and Artificial Intelligence Conference, AICCONF ’24, 155–159, 
https://doi.org/10.1145/3660853.3660888 (ACM, 2024).

	 4.	 Thabtah, F. Machine learning in autistic spectrum disorder behavioral research: A review and ways forward. Inform. Health Social 
Care 44, 278–297. https://doi.org/10.1080/17538157.2017.1399132 (2018).

	 5.	 Ma, R. et al. Autism spectrum disorder classification with interpretability in children based on structural mri features extracted 
using contrastive variational autoencoder. Big Data Mining Analyt. 7, 781–793. https://doi.org/10.26599/bdma.2024.9020004 
(2024).

	 6.	 Ram Arumugam, S., Ganesh Karuppasamy, S., Gowr, S., Manoj, O. & Kalaivani, K. A deep convolutional neural network based 
detection system for autism spectrum disorder in facial images. in 2021 Fifth International Conference on I-SMAC (IoT in Social, 
Mobile, Analytics and Cloud) (I-SMAC), 1255–1259, https://doi.org/10.1109/i-smac52330.2021.9641046 (IEEE, 2021).

	 7.	 Sellamuthu, S. & Rose, S. Enhanced special needs assessment: A multimodal approach for autism prediction. IEEE Access 12, 
121688–121699. https://doi.org/10.1109/access.2024.3453440 (2024).

	 8.	 Alzubaidi, L. et al. Review of deep learning: Concepts, cnn architectures, challenges, applications, future directions. J. Big Data. 
https://doi.org/10.1186/s40537-021-00444-8 (2021).

	 9.	 Ahmad, I. et al. Autism spectrum disorder detection using facial images: A performance comparison of pretrained convolutional 
neural networks. Healthc. Technol. Lett. 11, 227–239. https://doi.org/10.1049/htl2.12073 (2024).

	10.	 Reddy, P. & J, A. Diagnosis of autism in children using deep learning techniques by analyzing facial features. in RAiSE-2023, 
RAiSE-2023, 198, https://doi.org/10.3390/engproc2023059198 (MDPI, 2024).

Ref. Year Model Dataset Accuracy
48 2021 MobileNet-V1 Kaggle ASD dataset 92%
18 2022 Xception Kaggle ASD dataset 91%
20 2022 MobileNet Kaggle ASD dataset 95%
47 2022 Xception Kaggle ASD dataset 92%
45 2022 MobileNet Kaggle ASD dataset 87%
46 2023 MobileNet Kaggle ASD dataset 92%

The proposed model – VGG19 (Augmentation with parameters configuration ) 98.2%

Table 8.  Significant results of ASD diagnosis against with some related published work.

 

Fig. 6.  IOU scores for LIME explanation consistency.

 

Scientific Reports |        (2025) 15:26682 13| https://doi.org/10.1038/s41598-025-11847-5

www.nature.com/scientificreports/

https://www.kaggle.com/datasets/imrankhan77/autistic-children-facial-data-set
https://www.kaggle.com/datasets/imrankhan77/autistic-children-facial-data-set
https://doi.org/10.1145/3660853.3660888
https://doi.org/10.1080/17538157.2017.1399132
https://doi.org/10.26599/bdma.2024.9020004
https://doi.org/10.1109/i-smac52330.2021.9641046
https://doi.org/10.1109/access.2024.3453440
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1049/htl2.12073
https://doi.org/10.3390/engproc2023059198
http://www.nature.com/scientificreports


	11.	 Alam, M. S. et al. Efficient deep learning-based data-centric approach for autism spectrum disorder diagnosis from facial images 
using explainable ai. Technologies 11, 115. https://doi.org/10.3390/technologies11050115 (2023).

	12.	 Gaddala, L. K. et al. Autism spectrum disorder detection using facial images and deep convolutional neural networks. Revue 
d’Intelligence Artificielle 37, 801–806. https://doi.org/10.18280/ria.370329 (2023).

	13.	 Zhu, F.-L. et al. A multimodal machine learning system in early screening for toddlers with autism spectrum disorders based on 
the response to name. Front. Psychiatry. https://doi.org/10.3389/fpsyt.2023.1039293 (2023).

	14.	 Li, B. et al. A facial affect analysis system for autism spectrum disorder. in 2019 IEEE International Conference on Image Processing 
(ICIP), 4549–4553, https://doi.org/10.1109/icip.2019.8803604 (IEEE, 2019).

	15.	 Cao, X. et al. Vitasd: Robust vision transformer baselines for autism spectrum disorder facial diagnosis. in ICASSP 2023 - 2023 
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1–5, ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​i​c​a​s​s​p​4​9​3​5​7​.​2​0​2​3​
.​1​0​0​9​4​6​8​4​​​​ (IEEE, 2023).

	16.	 Singh, A., Laroia, M., Rawat, A. & Seeja, K. R. Facial Feature Analysis for Autism Detection Using Deep Learning, 539–551 (Springer 
Nature Singapore, 2023).

	17.	 Elshoky, B. R. G., Younis, E. M. G., Ali, A. A. & Ibrahim, O. A. S. Comparing automated and non-automated machine learning for 
autism spectrum disorders classification using facial images. ETRI J. 44, 613–623. https://doi.org/10.4218/etrij.2021-0097 (2022).

	18.	 Alsaade, F. W. & Alzahrani, M. S. Classification and detection of autism spectrum disorder based on deep learning algorithms. 
Comput. Intell. Neurosci. 1–10, 2022. https://doi.org/10.1155/2022/8709145 (2022).

	19.	 Gehdu, B. K., Gray, K. L. H. & Cook, R. Impaired grouping of ambient facial images in autism. Sci. Rep. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​3​8​/​s​4​
1​5​9​8​-​0​2​2​-​1​0​6​3​0​-​0​​​​ (2022).

	20.	 Ahmed, Z. A. T. et al. Facial features detection system to identify children with autism spectrum disorder: Deep learning models. 
Comput. Math. Methods Med. 1–9, 2022. https://doi.org/10.1155/2022/3941049 (2022).

	21.	 Hosseini, M.-P., Beary, M., Hadsell, A., Messersmith, R. & Soltanian-Zadeh, H. Retracted: Deep learning for autism diagnosis and 
facial analysis in children. Front. Comput. Neurosc. https://doi.org/10.3389/fncom.2021.789998 (2022).

	22.	 Lu, A. & Perkowski, M. Deep learning approach for screening autism spectrum disorder in children with facial images and analysis 
of ethnoracial factors in model development and application. Brain Sci. 11, 1446. https://doi.org/10.3390/brainsci11111446 (2021).

	23.	 Eldin Rashed, A. E., Bahgat, W. M., Ahmed, A., Ahmed Farrag, T. & Mansour Atwa, A. E. Efficient machine learning models across 
multiple datasets for autism spectrum disorder diagnoses. Biomed. Signal Process. Control 100, 106949. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​b​
s​p​c​.​2​0​2​4​.​1​0​6​9​4​9​​​​ (2025).

	24.	 Khan, K. & Katarya, R. Machine learning techniques for autism spectrum disorder: current trends and future directions. in 2023 
4th international conference on innovative trends in information technology (ICITIIT), 1–7 (IEEE, 2023).

	25.	 Sethi, A., Khan, K., Katarya, R. & Yingthawornsuk, T. Empirical evaluation of machine learning techniques for autism spectrum 
disorder. in 2024 12th International Electrical Engineering Congress (iEECON), 1–5 (IEEE, 2024).

	26.	 Hossain, M. D., Kabir, M. A., Anwar, A. & Islam, M. Z. Detecting autism spectrum disorder using machine learning techniques: 
An experimental analysis on toddler, child, adolescent and adult datasets. Health Inform. Sci. Syst. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​0​7​/​s​1​3​7​5​
5​-​0​2​1​-​0​0​1​4​5​-​9​​​​ (2021).

	27.	 Jha, A., Khan, K. & Katarya, R. Diagnosis support model for autism spectrum disorder using neuroimaging data and xception. in 
2023 International Conference on Electrical, Electronics, Communication and Computers (ELEXCOM), 1–6 (IEEE, 2023).

	28.	 Hosseini, M.-P., Beary, M., Hadsell, A., Messersmith, R. & Soltanian-Zadeh, H. Retracted: Deep learning for autism diagnosis and 
facial analysis in children. Front. Comput. Neurosci. 15, 789998 (2022).

	29.	 Atlam, E.-S. et al. Easdm: Explainable autism spectrum disorder model based on deep learning. J. Disability Res. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​5​7​1​9​7​/​j​d​r​-​2​0​2​4​-​0​0​0​3​​​​ (2024).

	30.	 Uddin, M. Z. et al. Deep learning with image-based autism spectrum disorder analysis: A systematic review. Eng. Appl. Artif. Intell. 
127, 107185. https://doi.org/10.1016/j.engappai.2023.107185 (2024).

	31.	 Atlam, E.-S. et al. Explainable artificial intelligence systems for predicting mental health problems in autistics. Alexandria Eng. J. 
117, 376–390 (2025).

	32.	 Almars, A. M., Gad, I. & Atlam, E.-S. Unlocking autistic emotions: Developing an interpretable iot-based efficientnet model for 
emotion recognition in children with autism. Neural Comput. Appl. 1–20 (2025).

	33.	 Gutierrez, R., Garcia-Ortiz, J. & Villegas-Ch, W. Multimodal ai techniques for pain detection: Integrating facial gesture and 
paralanguage analysis. Front. Comput. Sci. https://doi.org/10.3389/fcomp.2024.1424935 (2024).

	34.	 Zhu, F.-L. et al. A multimodal machine learning system in early screening for toddlers with autism spectrum disorders based on 
the response to name. Front. Psychiatry 14, 1039293 (2023).

	35.	 Sholikah, R. W., Ginasrdi, R. V. H., Nugroho, S. L. C., Ghozali, K. & Indrawanti, A. S. Real-time facial expression recognition to 
enhance emotional intelligence in autism. Procedia Comput. Sci. 234, 222–229. https://doi.org/10.1016/j.procs.2024.02.169 (2024).

	36.	 Khosla, Y., Ramachandra, P. & Chaitra, N. Detection of autistic individuals using facial images and deep learning. in 2021 IEEE 
International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS), 1–5, ​h​t​t​p​s​:​/​/​d​o​i​.​o​
r​g​/​1​0​.​1​1​0​9​/​c​s​i​t​s​s​5​4​2​3​8​.​2​0​2​1​.​9​6​8​3​2​0​5​​​​ (IEEE, 2021).

	37.	 Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 
(2014).

	38.	 Parkhi, O., Vedaldi, A. & Zisserman, A. Deep face recognition. in BMVC 2015-Proceedings of the British Machine Vision Conference 
2015 (British Machine Vision Association, 2015).

	39.	 Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. Rethinking the inception architecture for computer vision. in Proceedings 
of the IEEE conference on computer vision and pattern recognition, 2818–2826 (2016).

	40.	 Howard, A. G. et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint 
arXiv:1704.04861 (2017).

	41.	 Marco Tulio Ribeiro, C. G., Sameer Singh. Why should i trust you? in Proceedings of the 22nd ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining, 1255–1259, https://doi.org/10.1145/2939672.2939778 (ACM, 2016).

	42.	 Powers, D. M. W. Evaluation: From precision, recall, and f-measure to roc, informedness, markedness, and correlation. J. Machine 
Learning Technol. https://doi.org/10.48550/arXiv.2010.16061 (2011).

	43.	 Khan, I. Autistic children facial dataset., ​h​t​t​p​s​:​​​/​​/​w​w​​w​.​k​a​g​g​l​​e​.​c​​o​m​​/​d​a​t​a​s​​e​​t​s​/​i​​m​r​a​n​k​h​​a​​n​7​7​/​​a​u​t​i​s​​​t​i​c​-​c​h​​i​l​​d​r​e​n​​-​f​a​​c​i​​a​l​​-​d​a​t​a​-​s​e​t (2024). 
(accessed on Nov. 06, 2024.).

	44.	 Shorten, C. & Khoshgoftaar, T. M. A survey on image data augmentation for deep learning. J. Big Data 6, 1–48 (2019).
	45.	 Mujeeb Rahman, K. K. & Subashini, M. M. Identification of autism in children using static facial features and deep neural networks. 

Brain Sci. 12, 94. https://doi.org/10.3390/brainsci12010094 (2022).
	46.	 Alkahtani, H., Aldhyani, T. H. H. & Alzahrani, M. Y. Deep learning algorithms to identify autism spectrum disorder in children-

based facial landmarks. Appl. Sci. 13, 4855. https://doi.org/10.3390/app13084855 (2023).
	47.	 Alam, M. S. et al. Empirical study of autism spectrum disorder diagnosis using facial images by improved transfer learning 

approach. Bioengineering 9, 710. https://doi.org/10.3390/bioengineering9110710 (2022).
	48.	 Akter, T. et al. Improved transfer-learning-based facial recognition framework to detect autistic children at an early stage. Brain Sci. 

11, 734. https://doi.org/10.3390/brainsci11060734 (2021).

Scientific Reports |        (2025) 15:26682 14| https://doi.org/10.1038/s41598-025-11847-5

www.nature.com/scientificreports/

https://doi.org/10.3390/technologies11050115
https://doi.org/10.18280/ria.370329
https://doi.org/10.3389/fpsyt.2023.1039293
https://doi.org/10.1109/icip.2019.8803604
https://doi.org/10.1109/icassp49357.2023.10094684
https://doi.org/10.1109/icassp49357.2023.10094684
https://doi.org/10.4218/etrij.2021-0097
https://doi.org/10.1155/2022/8709145
https://doi.org/10.1038/s41598-022-10630-0
https://doi.org/10.1038/s41598-022-10630-0
https://doi.org/10.1155/2022/3941049
https://doi.org/10.3389/fncom.2021.789998
https://doi.org/10.3390/brainsci11111446
https://doi.org/10.1016/j.bspc.2024.106949
https://doi.org/10.1016/j.bspc.2024.106949
https://doi.org/10.1007/s13755-021-00145-9
https://doi.org/10.1007/s13755-021-00145-9
https://doi.org/10.57197/jdr-2024-0003
https://doi.org/10.57197/jdr-2024-0003
https://doi.org/10.1016/j.engappai.2023.107185
https://doi.org/10.3389/fcomp.2024.1424935
https://doi.org/10.1016/j.procs.2024.02.169
https://doi.org/10.1109/csitss54238.2021.9683205
https://doi.org/10.1109/csitss54238.2021.9683205
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1704.04861
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.48550/arXiv.2010.16061
https://www.kaggle.com/datasets/imrankhan77/autistic-children-facial-data-set
https://doi.org/10.3390/brainsci12010094
https://doi.org/10.3390/app13084855
https://doi.org/10.3390/bioengineering9110710
https://doi.org/10.3390/brainsci11060734
http://www.nature.com/scientificreports


Acknowledgements
The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University, 
Arar, KSA for funding this research work through the project number “NBU-FFR-2025-159-01”.

Author contributions
E.A. and K.A. wrote the main manuscript text, and I.G. and K.A. prepared all figures. A.M.A., E.M.A., and A.A. 
developed the methodology. I.G. and K.A. conducted the formal analysis. All authors reviewed the manuscript.

Funding
Funding for this research work was provided through the project number “NBU-FFR-2025-159-01” by the 
Deanship of Scientific Research at Northern Border University, Arar, KSA.

Declarations

 Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to E.M.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025 

Scientific Reports |        (2025) 15:26682 15| https://doi.org/10.1038/s41598-025-11847-5

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Automated identification of autism spectrum disorder from facial images using explainable deep learning models
	﻿﻿Literature review
	﻿Traditional and automated machine learning for ASD detection
	﻿Deep learning with pre-trained CNN models
	﻿Explainable and interpretable AI in ASD classification
	﻿Multimodal and hybrid ASD detection approaches
	﻿Lightweight and real-time detection systems

	﻿﻿Methodology
	﻿The pretrained models
	﻿Interpretation with LIME
	﻿Evaluation metrics

	﻿﻿Experimental results and discussion
	﻿Datasets
	﻿Experimental setup
	﻿Results using the pre-trained models
	﻿The results of pre-trained models using data augmentation
	﻿Experimental results using data augmentation
	﻿XAI results
	﻿Comparison with state-of-the-art models

	﻿﻿Conclusion
	﻿References


