Table 2 Model configuration for each method.

From: Enhancing frozen histological section images using permanent-section-guided deep learning with nuclei attention

Parameters

CycleGAN

CycleGAN with Attention UNET & Resnet

SAN (ours)

Image Input (pixels)

256 × 256 × 3

256 × 256 × 3

256 × 256 × 3

Batch Size

1

1

1

Epochs

10

6

5

Generator

Vanilla

Attention-UNET

Attention-UNET

Discriminator

Patch-GAN

Resnet-18

Resnet-18

Learning Rate

\(\:1\bullet\:{10}^{-4}\)

Generator: \(\:1\bullet\:{10}^{-4}\)

Discriminator: \(\:1\bullet\:{10}^{-5}\)

Generator: \(\:1\bullet\:{10}^{-3}\)

Discriminator: \(\:1\bullet\:{10}^{-4}\)

\(\:{\varvec{\lambda\:}}_{\varvec{G}\varvec{A}\varvec{N}}\)

1

1

1

\(\:{\varvec{\lambda\:}}_{\varvec{c}\varvec{y}\varvec{c}\varvec{l}\varvec{e}}\)

10

10

100

\(\:{\varvec{\lambda\:}}_{\varvec{s}\varvec{e}\varvec{g}}\)

0

0

1.0