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The rapid adoption of Federated Learning (FL) in privacy-sensitive domains such as healthcare, 
IoT, and smart cities underscores its potential to enable collaborative machine learning without 
compromising data ownership. However, conventional FL frameworks face several critical challenges: 
high computational overhead on edge devices, significant communication latency due to frequent 
model updates, vulnerability to model and data poisoning attacks, and limited privacy-preserving 
mechanisms that expose systems to inference risks. These issues hinder the scalability, efficiency, and 
trustworthiness of FL in real-world, large-scale deployments—particularly in domains like Electronic 
Health Records (EHR) management, where data sensitivity is paramount. To address these challenges, 
this paper introduces the Enhanced Privacy-Preserving Blockchain-Enabled Federated Learning 
(EPP-BCFL) framework, which integrates blockchain with hybrid privacy mechanisms and intelligent 
aggregation strategies. The architecture comprises three layers: (1) an Edge Nodes Layer for on-
device learning; (2) a Federated Aggregation Layer using Secure Multi-Party Computation (SMPC) 
and Differential Privacy (DP); and (3) a Blockchain Layer with a lightweight PoS + BFT consensus 
mechanism. Experimental evaluation on CIFAR-10 demonstrates 95.2% accuracy, a 43% reduction 
in communication latency, a 37% decrease in computational cost, and robust defense against data/
model poisoning and adversarial attacks. Attack resilience improved accuracy from 72.5 to 93.2%, 
while privacy budget tuning achieved 90.3% accuracy at ε = 1.0. Compared to state-of-the-art models, 
EPP-BCFL exhibits superior performance in terms of security, scalability, and support for edge device 
heterogeneity, validating its applicability in secure EHR management.
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The growing digitization of healthcare systems has led to a rapid transformation in the way Electronic Health 
Records (EHRs) are stored, managed, and shared. EHRs play a critical role in modern healthcare by facilitating 
seamless communication between healthcare providers, improving diagnostic accuracy, enabling personalized 
treatment, and enhancing the efficiency of patient care. However, the sensitive nature of EHRs makes them 
highly susceptible to security breaches, unauthorized access, and adversarial attacks. Conventional centralized 
healthcare data management systems pose significant privacy risks due to their vulnerability to cyber threats, 
data breaches, and single points of failure1–4. To overcome these limitations, the integration of blockchain 
technology with Federated Learning (FL) and Edge Analytics is proposed, forming a robust, scalable, and 
privacy-preserving framework for intelligent healthcare data management.

Foundation technologies
Blockchain: The foundation of this work relies on blockchain technology to provide a decentralized and 
immutable record for securely verifying model updates. By leveraging cryptographic techniques and consensus 
mechanisms, blockchain ensures that all participants in the healthcare ecosystem can trust the integrity and 
authenticity of data without relying on a central authority. It also facilitates secure multi-party computation 
(SMPC), homomorphic encryption, and smart contracts to enforce access control and ensure compliance with 
privacy regulations such as HIPAA and GDPR5–8.
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Federated Learning (FL): Federated Learning (FL) facilitates collaborative model training across multiple 
healthcare organizations without sharing raw patient data. Each node trains a local model on-site, and only 
encrypted model updates are transmitted through the blockchain network for secure aggregation. This approach 
preserves data locality and enhances privacy by preventing centralized data collection, thereby reducing the risks 
associated with data exposure and compliance violations9–12.

Edge Analytics: To address the latency and computational overhead of traditional cloud-based federated 
learning (FL), edge analytics is employed. Edge devices, such as Internet of Medical Things (IoMT) sensors and 
local servers, perform real-time data preprocessing, anomaly detection, and feature extraction at the data source. 
This approach minimizes the volume of transmitted data, reduces bandwidth usage, and accelerates decision-
making, thereby enhancing system responsiveness and energy efficiency13–16.

Problem statement
Federated Learning (FL) has emerged as a promising paradigm for privacy-preserving collaborative model 
training across distributed healthcare institutions. However, its practical deployment in Electronic Health 
Record (EHR) systems faces critical challenges such as high computational overhead, communication 
latency, and susceptibility to data and model poisoning attacks. Furthermore, existing Blockchain-FL (BCFL) 
frameworks often suffer from limited privacy mechanisms, inadequate handling of non-IID healthcare data, 
and inefficient consensus protocols that hinder scalability and trust. These constraints significantly affect the 
reliability, security, and efficiency of FL in real-world medical environments. Addressing these concerns requires 
an integrated solution that combines edge intelligence, robust privacy techniques, and lightweight yet secure 
blockchain mechanisms tailored to the unique demands of EHR management.

While Blockchain-Enabled Federated Learning (BCFL) frameworks offer decentralized privacy-preserving 
solutions for Electronic Health Records (EHR), several underexplored areas persist. First, most current models are 
not designed to effectively handle heterogeneous and multi-modal healthcare data, limiting their applicability in 
real-world EHR systems. Second, the integration of vertical federated learning (VFL) into BCFL remains largely 
unexamined, despite its relevance for cross-institutional analytics where feature spaces differ. Third, adaptive 
aggregation mechanisms capable of adjusting to data quality, trust levels, and non-IID distributions are rarely 
implemented, which hinders fairness and robustness in global model training. Fourth, consensus mechanisms 
like PoW or basic PoS lack sufficient optimization for resource-constrained edge environments, resulting in 
scalability and energy inefficiencies. Fifth, existing frameworks often overlook real-time edge intelligence for 
anomaly detection and do not incorporate incentive structures to promote sustained participation. Addressing 
these deficiencies, rather than reiterating known challenges, is critical to advancing the practical deployment of 
secure, scalable, and efficient BCFL frameworks for sensitive domains like healthcare.

Proposed solution
To address these multifaceted challenges, this study introduces the Enhanced Privacy-Preserving Blockchain-
Enabled Federated Learning (EPP-BCFL) framework that integrates:

Hybrid privacy mechanisms: Combining Secure Multi-Party Computation (SMPC) and Differential Privacy 
to achieve strong privacy guarantees while maintaining computational efficiency.

Lightweight consensus with security: A novel PoS + Byzantine Fault Tolerance (BFT) mechanism that provides 
energy-efficient consensus with robust security against malicious actors.

Intelligent edge analytics: Real-time processing and anomaly detection capabilities at the data source to 
minimize latency and improve system responsiveness.

Adaptive Aggregation Mechanisms: Dynamic weighting strategies that account for data quality, distribution 
heterogeneity, and node trustworthiness.

Framework architecture and novelty
The EPP-BCFL framework features a three-layer architecture that ensures comprehensive security and efficiency:

Edge nodes layer: Client devices perform local model training while retaining raw data, implementing 
privacy-preserving techniques at the source.

Federated model aggregation layer: Securely aggregates encrypted updates using hybrid privacy mechanisms 
and intelligent filtering.

Blockchain network layer: Ensures tamper-proof auditability and trust through optimized consensus 
mechanisms.

The key innovation lies in the Adaptive Model Aggregation (AMA), which dynamically adjusts model 
aggregation strategies based on:

	a.	 Trust level and historical performance of participating nodes.
	b.	 Quality and representativeness of local data contributions.
	c.	 Computational capacity and reliability of edge devices.
	d.	 Real-time anomaly detection results.

This adaptive approach ensures better convergence, improved fairness in model training, and enhanced resilience 
against adversarial attacks.

Key contributions
The main contributions of this work include:
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•	 Integration of Secure Multi-Party Computation (SMPC) and Differential Privacy to balance strong privacy 
protection with computational efficiency. The framework achieved 95.2% accuracy with low communication 
overhead while defending against re-identification and inference attacks.

•	 Development of an energy-efficient consensus mechanism that maintains Byzantine fault tolerance and 
achieves up to 43% reduction in network latency and 37% reduction in computational cost compared to 
baseline FL models.

•	 Design of a dynamic aggregation strategy that optimizes global model updates based on trustworthiness, data 
quality, and device capability, contributing to faster convergence (from 20 to 10 epochs) and robustness to 
non-IID data.

•	 Deployment of real-time anomaly detection and intrusion detection systems at the edge, reducing the average 
security response time to ~ 2.3 s, significantly outperforming baseline systems (~ 7 s).

•	 Integration of ZKP for tamper-proof model verification without exposing raw data, ensuring verifiable con-
tributions from edge devices and enhancing trust in federated environments.

•	 The system maintained high accuracy (within 1.2% deviation) across a spectrum of edge devices (server, 
laptop, IoT device), validating robustness in resource-constrained environments.

One of the key advantages of EPP-BCFL is its ability to support secure and adaptive model updates by 
utilizing blockchain-enabled smart contracts that automate and enforce privacy-preserving policies. These 
smart contracts facilitate secure authentication, dynamic access control, and transparent reward mechanisms 
for healthcare institutions contributing to the federated learning process. This ensures that all participating 
entities comply with data privacy regulations while maintaining interoperability across different healthcare 
systems17–20. The proposed EPP-BCFL framework enhances security by integrating Zero-Knowledge Proofs 
(ZKPs) for model verification, allowing healthcare institutions to confirm the integrity of federated learning 
updates without revealing sensitive patient data. This ensures that malicious entities cannot present poisoned 
models or manipulate training updates, thereby strengthening the overall security of the federated ecosystem. 
Additionally, the incorporation of Differential Privacy (DP) techniques ensures that individual patient records 
remain indistinguishable from aggregated data, mitigating the risk of re-identification attacks. The adoption 
of edge-driven anomaly detection further enhances the security of EPP-BCFL by identifying unusual access 
patterns, suspicious behaviour, and adversarial intrusions in real time. By leveraging machine learning-based 
intrusion detection systems (IDS) at the edge, healthcare organizations can proactively detect and mitigate 
security threats before they compromise the integrity of Electronic Health Records (EHRs). The experimental 
evaluation of EPP-BCFL demonstrates significant improvements in model accuracy, security, and computational 
efficiency compared to traditional federated learning and blockchain-based EHR management approaches. The 
proposed system achieves an average model accuracy of 98.72%, outperforming existing models such as PPFL, 
FLBM-IoT, and STPC-FL, while reducing network latency by 43% and computational costs by 37%.

Related work
Federated Learning (FL) has emerged as a promising paradigm for decentralized machine learning, enabling 
multiple devices or nodes to collaboratively train a shared model without exposing their local data. This approach 
inherently preserves data privacy and ensures compliance with data protection regulations21,22.

Zhao et al.23 proposed an incentive mechanism between a base station (BS) and several mobile devices (MDs), 
modeled as a Stackelberg game. In this game, the BS first determines the total reward to be distributed among 
the MDs, after which each MD decides its number of local iterations based on its utility function. Furthermore, 
closed-form expressions for the optimal reward function of the BS and the optimal number of local iterations for 
the MDs are derived. Finally, numerical results validate the effectiveness of the proposed scheme.

Zhang et al.24 proposed a secure federated learning (FL) scheme named LSFL to ensure Byzantine robustness 
while preserving privacy in FL. However, in this work, we demonstrate that LSFL fails to uphold the claimed 
privacy guarantees. Specifically, we show that the secure Byzantine robustness procedure of LSFL exposes 
significant information about all participant models and data to a semi-honest server, thereby compromising 
privacy. We further analyze the root cause of this security issue and propose a recommendation to prevent such 
privacy breaches in LSFL.

Sun et al.25 proposed a fine-grained training strategy for federated learning to accelerate its convergence 
rate in MEC environments with dynamic communities. Based on multi-agent reinforcement learning, the 
proposed scheme allows each edge node to adaptively adjust its training strategy specifically aggregation 
timing and frequency according to network dynamics, while cooperating with other nodes to improve the 
overall convergence of federated learning. To further accommodate the dynamic nature of MEC communities, 
we propose a meta-learning-based scheme in which new nodes can learn from existing nodes and rapidly 
perform scene migration, thereby further accelerating the convergence of federated learning. Numerical results 
demonstrate that the proposed framework outperforms existing benchmarks in terms of convergence speed, 
learning accuracy, and resource consumption.

Hu et al.26 propose a novel data management approach to address privacy and security concerns in joint 
hydrocarbon explorations. Federated learning facilitates the analysis of multiple datasets without requiring data 
sharing, thereby protecting the private information of different companies involved in a virtual joint venture. 
The inference of petroleum reservoirs in karst stratigraphy is used as a case study. A federated learning-based 
enterprise data management framework is proposed to virtually integrate information from various organizations. 
The key contributions of this work are summarized as follows: (1) A method for karst identification and inference 
is introduced, utilizing neural networks to recognize the size of petroleum reservoirs in different karst regions. 
(2) A federated learning algorithm is employed to virtually aggregate data samples from different companies. 
(3) The performance of the proposed privacy-preserving integration model is compared with that of individual/
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local deep learning models. The results demonstrate that the proposed approach significantly improves the 
accuracy of petroleum reservoir exploration.

Table  1 provides a comprehensive comparative analysis of recent studies on blockchain-based federated 
learning (BCFL) and privacy-preserving FL frameworks.

The studies in this review highlight key contributions such as enhanced data security, privacy protection 
through homomorphic encryption and zero-knowledge proofs, and improved trust and auditability using 
blockchain. However, these studies face common limitations, including computational and communication 
overhead, scalability challenges, and a lack of effective incentive mechanisms. Some models, such as those by 
Chang et al. and Cao et al., improved data integrity but introduced delays due to blockchain consensus mechanisms. 
Others, like Mahato et al. and Alqahtani et al., enhanced privacy but suffered from high encryption complexity. 
Several works also failed to address data heterogeneity and adversarial threats. Overall, while the integration of 
blockchain enhances security and decentralization in federated learning, trade-offs in performance, efficiency, 
and scalability remain significant hurdles for real-world deployment in resource-constrained and dynamic 
environments such as IoT, healthcare, and smart cities. Recent advancements in privacy-preserving frameworks 
for edge and UAV-based systems have proposed innovative methods to safeguard user data while maintaining 
system efficiency. One study introduced a lightweight biometric privacy framework in UAV delivery systems 
using edge computing, demonstrating reduced latency and improved user confidentiality. Another work focused 
on privacy-preserving location data collection in intelligent edge systems, highlighting adaptive data handling 
techniques to ensure minimal exposure of sensitive information. Blockchain integration has also been explored 
in self-sovereign identity frameworks for UAV platforms, enabling decentralized and secure authentication 
mechanisms. Several frameworks extended this idea by implementing federated learning in UAV ecosystems, 
emphasizing both data protection and scalability. Notably, a mobile cluster-based federated learning model was 
introduced for highly dynamic environments, showing improved model convergence in mobile edge scenarios. 
These works collectively contribute to a growing body of research that enhances data security, integrity, and 
operational efficiency in edge-based and federated learning systems for real-time and mobile applications27–33.

Wang et al.34 proposed a reliable anomaly detection strategy for IIoT using federated learning. Specifically, 
they applied the federated learning technique to build a universal anomaly detection model, with each local 
model trained using a deep reinforcement learning (DRL) algorithm. Since local datasets are not shared during 
federated learning, the risk of privacy leakage is reduced. Additionally, by introducing the concepts of privacy 
leakage degree and action relation into the anomaly detection design, the detection accuracy is significantly 
improved. Validation experiments indicate that the proposed strategy achieves high throughput, low latency, 
and high anomaly detection accuracy while preserving privacy in various IIoT scenarios.

Wang et al.35 proposed a blockchain-based secure data aggregation strategy, namely BSDA (Blockchain-based 
Secure Data Aggregation), for edge computing-enabled IoT. Specifically, to restrict task receivers i.e., mobile data 
collectors (MDCs) from freely searching and accepting tasks, the block header is integrated with a security label 

Authors Application/Focus Problem Addressed Key Contribution Limitations

Chang et al. (2021) Smart Healthcare Privacy and model integrity Secure FL using blockchain; improved 
accuracy

High computational/communication overhead; 
scalability concerns

Ren et al. (2024) Edge Computing Model aggregation efficiency Scalable blockchain-enabled FL for edge 
nodes

Trade-off between security and efficiency; high 
energy consumption

Cao et al. (2023) On-device FL Decentralization without 
central authorities

DAG-based blockchain FL with improved 
transparency Blockchain consistency, storage overhead

Mahato et al. (2024) Privacy-preserving FL Adversarial protection Homomorphic encryption integration High computational cost, latency

Zhang et al. (2023) Fairness in FL Bias in federated models ZKP-enhanced fairness and verification High computational cost, communication 
bottlenecks

Jiang et al. (2021) Secure participation 
in FL Unauthorized participation Membership proof techniques for secure 

device authentication Computational overhead, sybil attacks not addressed

Alqahtani et al. 
(2024) IoT Networks Secure transmission Homomorphic encryption with optical 

fiber High encryption complexity, poor key management

Wang et al. (2024) Healthcare FL Incremental data integration Blockchain-enabled data sharing Storage redundancy, lack of incentive mechanism

Jia et al. (2024) Multi-task FL Simultaneous training of 
multiple tasks

Blockchain-supported concurrent model 
training

Performance inconsistency due to data 
heterogeneity

Guduri et al. (2023) EHR security Cross-hospital FL privacy Blockchain-secured EHR sharing Inefficient for real-time applications due to overhead

Badr et al. (2023) Smart Grids Energy forecasting privacy FL-enabled prediction with privacy High communication cost, transaction delays

Abdulla et al. (2024) Smart Cities Energy consumption 
prediction Adaptive FL for energy demand Inefficient under dynamic fluctuations, storage 

issues

Joyce et al. (2024) Smart City Regulations Regulatory compliance Analysis of data sharing vs. protection Lacks implementation framework

Li et al. (2023) IoV (Internet of 
Vehicles) Task allocation and privacy Matching mechanism for FL tasks Vulnerable to adversarial attacks, no incentive 

mechanism

Zhao et al. (2023) Energy-Efficient FL Energy-performance 
trade-off Stackelberg game-based optimization High computational complexity

Wu et al. (2023) Lightweight FL Security vulnerabilities Threat analysis of FL models No mitigation strategies proposed

Hu et al. (2023) Industrial IoT Privacy-preserving FL in 
hydrocarbon exploration FL model for IIoT privacy No real-world deployment results

Table 1.  Summary of Blockchain-based federated learning (BCFL) Literature.
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that includes the task’s security level (SL) and completion requirements. Accordingly, new block generation rules 
are developed to enhance system performance in terms of throughput and transaction latency. Furthermore, 
BSDA decomposes both sensitive tasks and task receivers into groups to prevent privacy disclosure. Additionally, 
a deep reinforcement learning method, the improved self-adaptive double bootstrapped deep deterministic 
policy gradient (IDDPG), is developed to design energy-efficient MDC routes under the constraint that the 
SLs of MDCs must be higher than those of the data aggregation tasks. Simulation results indicate that: (1) 
as a privacy-preserving strategy, BSDA achieves high throughput and low transaction latency, and (2) BSDA 
outperforms certain contemporary strategies in terms of aggregation ratio and energy cost.

G. Wang et al.36 proposed a heterogeneous blockchain-based Hierarchical Trust Evaluation strategy, named 
BHTE, utilizing federated deep learning technology for 5G-ITS. Specifically, the trust levels of ITS users and task 
distributors are evaluated using federated deep learning, and hierarchical incentive mechanisms are designed 
to ensure reasonable and fair rewards and punishments. Moreover, the trust information of ITS users and task 
distributors is stored on heterogeneous and hierarchical blockchains for verification. Extensive experimental 
results show that: (i) the proposed BHTE achieves reasonable and fair trust evaluations for both ITS users and 
task distributors; (ii) BHTE performs excellently, with high system throughput and low latency.

Moreover, many BCFL frameworks adopt consensus mechanisms such as PoW or standard PoS, which 
either introduce high latency or compromise decentralization, making them unsuitable for real-time healthcare 
applications. Additionally, most approaches notably lack incentive mechanisms to ensure continued participation 
of edge nodes.

Research gap
Despite the progress in integrating federated learning and blockchain for healthcare applications, several critical 
research gaps persist that limit their practical deployment in real-world scenarios. One major gap is the lack of 
comprehensive support for heterogeneous Electronic Health Record (EHR) data, as most existing frameworks 
are designed around homogeneous, structured, or tabular data, failing to accommodate the multi-modal and 
hierarchical nature of clinical datasets, which often include a mix of images, time-series signals, unstructured 
notes, and lab results. Another underexplored area is the integration of vertical federated learning (VFL) in 
healthcare contexts, where different institutions may hold different features about the same patients—making 
VFL a more natural and privacy-aware fit for collaborative analytics. However, existing blockchain-FL models 
rarely incorporate VFL principles, thereby missing opportunities to enable secure cross-silo collaboration. 
Furthermore, current solutions fall short in addressing the challenges of cross-institutional coordination, 
particularly in environments with complex data governance rules, regulatory requirements, and varying 
resource constraints. Most approaches assume isolated participants with similar capabilities and overlook the 
dynamic, policy-driven interactions that are typical across healthcare organizations. To bridge these gaps, the 
proposed Enhanced Privacy-Preserving Blockchain-Enabled Federated Learning (EPP-BCFL) framework is 
designed with a layered architecture that supports diverse data formats at the edge level, employs robust privacy-
preserving mechanisms like homomorphic encryption and differential privacy, and utilizes an adaptive model 
aggregation strategy to handle non-IID, modality-diverse data. Additionally, EPP-BCFL is architected to be 
compatible with VFL principles and scalable across institutional boundaries, enabling secure, decentralized, 
and collaborative learning without the need for centralized orchestration. This positions EPP-BCFL as a holistic 
solution for overcoming the current limitations in blockchain-based federated healthcare analytics.

Proposed methodology
Blockchain-based Federated Learning (BCFL) offers a promising solution for decentralized, privacy-
preserving machine learning across multiple institutions, especially in sensitive domains like healthcare. 
However, its practical adoption is limited by several critical challenges. High computational costs from energy-
intensive consensus mechanisms like Proof-of-Work (PoW) make BCFL unsuitable for resource-constrained 
environments. Additionally, excessive communication overhead from frequent model synchronization hinders 
scalability in large networks. Existing BCFL models also struggle with non-IID data distributions, which are 
common in federated healthcare scenarios, leading to biased or suboptimal global models. Moreover, the 
absence of effective incentivization mechanisms reduces sustained and honest participation by decentralized 
nodes, undermining collaborative efforts. To address these issues, this study introduces the Efficient and 
Privacy-Preserving Blockchain-Enabled Federated Learning (EPP-BCFL) framework. The proposed system 
features a Layered Blockchain Architecture (LBA) that enhances secure and efficient communication while 
minimizing latency. To protect data privacy, it incorporates a Privacy-Preserving Model Aggregation (PPMA) 
mechanism using homomorphic encryption and differential privacy, ensuring that raw data remains local and 
resistant to inference attacks. A core innovation is the Adaptive Model Aggregation (AMA) module, which 
dynamically adjusts aggregation based on data heterogeneity, node reliability, and device capabilities, thereby 
improving model fairness, convergence, and resilience. The architecture of the EPP-BCFL framework consists 
of three primary layers:

	1.	 Edge Nodes Layer (Client Devices).
	2.	 Federated Model Aggregation Layer (FL Coordinator).
	3.	 Blockchain Network Layer (Decentralized Ledger and Security Management).

Figure 1 shows the layered blockchain architecture of the proposed EPP-BCFL framework. Each of these layers 
plays a crucial role in ensuring the efficiency, privacy, and scalability of the federated learning process.

The Efficient and Privacy-Preserving Blockchain-Enabled Federated Learning (EPP-BCFL) Framework is 
designed to address key challenges in blockchain-based federated learning (BCFL), such as high computational 
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costs, communication delays, and privacy risks. The architecture follows a tree-like structure, dividing the 
system into three primary layers: Edge Nodes Layer, Federated Model Aggregation Layer (FL Coordinator), and 
Blockchain Network Layer. Each layer is responsible for specific tasks that contribute to the scalability, security, 
and efficiency of the federated learning process. At the base of the architecture, the Edge Nodes Layer (Client 
Devices) consists of distributed client devices that generate and process local training data. These edge nodes 
apply differential privacy and homomorphic encryption to ensure that sensitive data remains protected before 
being transmitted for aggregation. This approach mitigates risks associated with data leakage while enabling 
secure federated learning. Additionally, edge nodes handle data sharing and preprocessing before forwarding 
model updates to the next layer. The Edge Nodes Layer is represented in the architecture with two components: 
one focusing on privacy-preserving techniques such as differential privacy and homomorphic encryption, and 
another responsible for data sharing and local processing. Above the Edge Nodes Layer is the Federated Model 
Aggregation Layer (FL Coordinator), which acts as an intermediary between the distributed clients and the 
blockchain network. This layer receives encrypted model updates from edge nodes and performs adaptive model 
aggregation to improve learning efficiency across non-IID (non-independent and identically distributed) data. 
The Adaptive Model Aggregation (AMA) mechanism enhances model accuracy by addressing data heterogeneity 
across different client devices.

By implementing an efficient federated model aggregation strategy, this layer ensures that model updates 
are securely combined without exposing raw data, thereby strengthening privacy and security. The Blockchain 
Network Layer is positioned at the top of the architecture, ensuring tamper-proof storage, decentralized security, 
and efficient model update verification. This layer consists of a Layered Blockchain Architecture (LBA) that 
optimizes communication overhead by distributing responsibilities across different blockchain layers.

Unlike conventional blockchain-based federated learning approaches that suffer from excessive energy 
consumption and latency, the LBA incorporates a lightweight consensus mechanism to enhance efficiency. 
This ensures that transactions, such as model updates, are verified in a decentralized yet computationally 
feasible manner. An essential feature within the Blockchain Network Layer is the incentive mechanism, which 
encourages active participation in the federated learning process. In the EPP-BCFL framework, the incentive 
mechanism is designed to reward edge nodes based on their level of participation and the quality of their 
contributions. However, the current work does not specify how these incentives are calculated or distributed. 
Future implementations may adopt blockchain-native mechanisms such as tokenomics (e.g., distributing crypto 
tokens for validated model updates) or reputation systems (e.g., tracking node reliability and accuracy over 
time). Smart contracts can automate reward distribution and ensure fair and transparent evaluation across 
all federated participants. A well-defined incentive scheme is essential for practical healthcare deployments, 
where data-sharing entities must be compensated to maintain sustained engagement and cooperation. Since 
federated learning relies on voluntary contributions from edge devices, an incentive-based approach motivates 

Fig. 1.  Layered blockchain architecture.
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participants to contribute high-quality data and model updates. Figure 2. illustrates the hierarchical flow of data 
and model updates from edge nodes to the FL coordinator and finally to the blockchain layer.

This layered approach enhances the privacy, security, and efficiency of federated learning by ensuring that 
computations are distributed effectively while maintaining robust protection mechanisms. The integration of 
privacy-preserving techniques, adaptive aggregation, lightweight blockchain consensus, and incentive-driven 
participation makes EPP-BCFL an optimized solution for blockchain-based federated learning. The structured 

Fig. 2.  Overview of the proposed work.
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division of responsibilities among layers significantly minimizes privacy risks, computational burdens, and 
communication delays, making the framework suitable for large-scale deployment.

Edge nodes layer with integrated edge analytics
To enhance local intelligence and reduce central processing overhead, the EPP-BCFL framework integrates 
edge analytics into the Edge Nodes Layer. Edge analytics refers to the ability of edge devices to perform real-
time data processing, feature extraction, and anomaly detection before participating in federated learning. Each 
device conducts localized statistical analysis and lightweight inference to identify data inconsistencies, abnormal 
patterns, or sudden drifts in distribution that could compromise training quality or signal potential adversarial 
activity.

This local intelligence improves model robustness by allowing devices to filter noisy or poisoned data and 
only forward meaningful updates. The anomaly scores are securely encrypted and transmitted alongside model 
updates for further validation by the blockchain network. Additionally, edge analytics facilitates vertical FL by 
enabling partial training across feature-siloed datasets, where different institutions may own different parts of a 
patient’s medical profile (e.g., hospital owns lab results, pharmacy owns prescriptions).

The computational overhead for edge analytics is minimized using efficient statistical methods (e.g., Z-score, 
PCA) and shallow inference models. These methods add negligible cost (O(M)) relative to deep model training, 
making edge analytics suitable even for resource-constrained IoT devices.

The edge nodes represent user devices or IoT sensors that collect real-time data and participate in federated 
learning. These nodes locally train machine learning models on their private data and send encrypted model 
updates to the Federated Model Aggregation Layer without sharing raw data. Each edge node i trains a local 
model on its private dataset Di​, using a loss function L. The local model update follows:

	 θ t+1
i = θ t

i − η ∇ Li(θ t
i, Di)

where,
θ t

i  is the model parameter at iteration t.
η  is the learning rate.
Li

(
θ t

i, Di

)
 is the gradient computed based on the local dataset Di

To preserve privacy, edge nodes use differential privacy (DP) by adding controlled noise ξ to model updates:

	 θ t+1
i = θ t

i − η ∇ Li(θ t
i, Di) + ξ

where ξ ∼ N(0, σ 2) ensures privacy by masking individual contributions.
The EPP-BCFL framework incorporates several key features that strengthen the efficiency and security of 

federated learning in decentralized environments. Local model training is performed independently at each 
edge node, where deep learning models are trained using private, device-specific data without sharing raw 
information. To ensure the secure transmission of model updates, homomorphic encryption is applied before 
any data leaves the local node, allowing computations to be performed on encrypted data while preserving 
confidentiality. Additionally, an adaptive training mechanism is employed, which dynamically adjusts training 
frequency and node participation based on the computational capacity and resource availability of each 
device. This ensures balanced workload distribution, energy efficiency, and sustained participation across a 
heterogeneous network of edge devices.

Federated model aggregation layer (FL coordinator)
This layer acts as a central entity that gathers model apprises from various edge nodes, aggregates them, and 
updates the global model. Unlike traditional federated learning, which depends on a centralized server, this 
layer leverages a distributed blockchain network for improved security and resilience. The global model update 
is performed by aggregating model updates from N edge devices using Federated Averaging (FedAvg):

	
θ t+1 =

∑
N
i−1

|Di|∑
N
j−1|Dj |

θ t+1
i

where:

•	 |Di| is the number of training samples at node i, ensuring weighted aggregation based on data contribution.

The EPP-BCFL framework incorporates a robust model aggregation layer that enhances security, fairness, and 
efficiency in federated learning through three key mechanisms. First, the Privacy-Preserving Model Aggregation 
(PPMA) module employs secure multi-party computation (SMPC) and differential privacy to ensure that local 
model updates remain confidential. These techniques prevent adversaries from reconstructing or exploiting raw 
data, even if encrypted updates are intercepted during transmission. Second, the Adaptive Model Aggregation 
(AMA) mechanism dynamically adjusts the weight of each node’s contribution to the global model based on 
factors such as data quality, diversity, and representativeness. This helps to prevent bias in the learning process 
by granting greater influence to nodes with more valuable or balanced datasets, thereby improving the overall 
generalizability of the model. Third, the integration of blockchain technology guarantees data integrity and 
trust among participants. Each model update’s hash is stored on the blockchain, creating a tamper-proof and 
auditable trail of contributions. Additionally, smart contracts are employed to govern the aggregation process, 
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enforcing rules that promote fairness, transparency, and verifiability without centralized control. Together, these 
mechanisms significantly enhance the scalability, security, and robustness of the federated learning system while 
ensuring efficient and privacy-preserving model convergence across diverse and distributed environments.

Blockchain network layer (decentralized ledger and security management)
The proposed EPP-BCFL framework incorporates several key functions to enhance the security, efficiency, 
and reliability of federated learning in decentralized healthcare environments. One of its core functionalities is 
decentralized model update storage, where each local model update is hashed and recorded on the blockchain. 
This ensures an immutable audit trail, eliminating the possibility of tampering and protecting the global 
model from poisoning attacks. In addition to preserving integrity, the system offers strong security against 
adversarial behaviors. Smart contracts are employed to validate the authenticity and consistency of updates from 
participating edge nodes before they are included in the aggregation process. This validation step, combined 
with a Byzantine Fault Tolerance (BFT) mechanism, ensures that the system remains robust even when some 
nodes behave maliciously or are compromised. To further enhance operational efficiency, the framework adopts 
a hybrid Proof-of-Stake (PoS) and BFT consensus protocol.

Each participating node i generates an update θ t+1
i  and computes a cryptographic hash:

	 Hi = Hash
(
θ t+1

i

)

where Hi is stored on the blockchain ledger for verification.
The probability Pi of a node i being chosen as a validator depends on its stake Si relative to the total stake 

in the network Stotal:

	
Pi = Si

Stotal

This ensures fairness and reduces centralization risks.
For consensus to be achieved, more than 2/3 of nodes must agree on the same model update:

	

∑
N
i=1I (Vi = Hi) >

2N

3

where Vi represents the validator’s decision and I(.)is an indicator function that checks if the update matches 
the stored hash.
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Algorithm 1.  EPP-BCFL Framework.

Lightweight PoS-BFT mechanism
The EPP-BCFL framework employs a lightweight Proof-of-Stake Byzantine Fault Tolerance (PoS-BFT) 
consensus protocol to achieve secure, efficient model update verification. Unlike traditional PoS-BFT protocols 
that require high computational and communication costs, this approach introduces two optimizations. First, 
the use of a reduced validator set—a small subset k ≪ N selected based on node stake and recent activity—
minimizes communication overhead and improves processing speed without compromising decentralization. 
Second, the optimized BFT threshold achieves consensus when more than 2/3 of the selected validators agree 
on an update, thereby maintaining Byzantine fault tolerance with significantly fewer consensus messages. This 
lightweight structure is well-suited for edge environments, reducing latency and ensuring the cryptographic 
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verification complexity remains O(1) per update, while overall consensus complexity is reduced to O(k²), which 
is computationally manageable for small k (e.g., 5 or 7).

In the proposed PoS + BFT hybrid consensus mechanism, the stake of each validator node is quantified based 
on a composite trust score that incorporates both historical participation metrics (e.g., uptime, accuracy in 
model updates) and a predefined token-based stake. This ensures a balanced selection process that discourages 
malicious behavior while maintaining decentralization. To mitigate the risk of centralization, we introduce a cap 
on the maximum allowable stake contribution from any single entity.

Regarding fault tolerance, the hybrid model inherits the safety property of BFT, which can tolerate up to 
f = ⌊ (n − 1)/3⌋ . Byzantine nodes out of n total nodes. However, if the proportion of malicious nodes exceeds 
1/3, the system initiates a fallback mechanism that includes:

•	 temporary suspension of consensus,
•	 triggering an external audit via a secondary consensus layer with higher trust nodes,
•	 and stake redistribution penalties to deter collusion.

The Efficient Privacy-Preserving Blockchain-based Federated Learning (EPP-BCFL) Framework enhances 
security, efficiency, and privacy in federated learning by integrating blockchain technology into the model 
training process. It begins with local training at edge nodes—such as user devices or IoT sensors—where 
models are trained using private data without sharing raw inputs. Each node generates a cryptographic hash 
of its model update, encrypts it, and transmits it to the Federated Model Aggregation Layer, while the hash is 
stored on the blockchain to ensure integrity. A Proof-of-Stake (PoS) mechanism selects validator nodes based 
on their stake, providing energy-efficient consensus. Validators verify updates by matching them with stored 
hashes, and if at least two-thirds agree, the update is accepted through Byzantine Fault Tolerance (BFT) and 
recorded on the ledger. Verified updates are then aggregated using a weighted averaging method that accounts 
for data distribution, and the global model is securely stored and distributed to edge nodes for the next training 
round. This decentralized approach removes the risks of centralized aggregation, ensures tamper-proof auditing, 
and defends against model poisoning attacks. With optimized complexity (PoS: O(N), hash verification: O(1), 
aggregation: O(N)), EPP-BCFL is scalable and robust for real-world federated learning scenarios.

Time complexity analysis
The most computationally intensive phase is the local model training at each edge node, which involves training 
a neural network on private data. This results in a complexity of O(N × E × D × M), accounting for 
multiple epochs across all edge nodes. The cryptographic hash computation and encryption add an additional 
O(N × M) cost.

In the validator selection phase using Proof-of-Stake (PoS), each validator computes a selection probability, 
which is a linear operation, resulting in a time complexity of O(N). The selected validators proceed to the 
Byzantine Fault Tolerance (BFT) verification stage, where hash verification and inter-validator communication 
are performed. This contributes an additional O(kM + k2) time complexity, with k representing the number 
of validator nodes.

The global model aggregation phase requires weighted averaging of model updates from all participating 
nodes, incurring a complexity of O(N × M). Finally, distribution of the global model back to the edge nodes 
also requires O(N × M) time. Summing all stages, the overall time complexity of the EPP-BCFL framework can 
be represented as:

	 O(N × E × D × M + kM + k2)

This complexity indicates that the framework scales linearly with the number of nodes and dataset size during 
local training, and quadratically with the number of validators in the BFT phase. However, since k is typically 
small and constant (e.g., k = 5), the quadratic term has a minimal impact on scalability. Thus, the framework 
remains computationally efficient and well-suited for distributed, privacy-preserving federated learning 
environments.

Sequence of applying differential privacy (DP) and homomorphic encryption (HE)
In our proposed framework, Differential Privacy (DP) is applied prior to Homomorphic Encryption (HE) at the 
edge nodes. This ensures that noise introduced for privacy preservation does not interfere with the encryption or 
decryption process. Specifically, DP perturbation is added to model updates or gradients, and the differentially 
private data is subsequently encrypted using HE before transmission, preserving both privacy and encryption 
integrity.

Coordination across heterogeneous edge devices
To manage heterogeneous edge environments, we implement an asynchronous training strategy coordinated by 
a centralized federated controller. Edge devices operate independently according to their computational capacity, 
with local training schedules dynamically adjusted. The controller adopts an adaptive aggregation mechanism 
that collects updates within a flexible time window and employs a learning rate adaptation scheme to ensure 
convergence across non-IID and variably available clients.

Privacy preservation and secure aggregation module
In our proposed EPP-BCFL framework, Differential Privacy is applied at the edge node level before the generation 
of ZKPs. The local model gradients or parameters are first perturbed using DP (adding continuous noise), and 
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then these perturbed values are discretized (e.g., fixed-point or scaled integers) to ensure compatibility with 
integer-based ZKP schemes. This discretization preserves the DP guarantees within a bounded precision range 
and allows the subsequent ZKP protocols implemented using efficient zk-SNARKs to verify the integrity of the 
model updates without accessing raw data.

Results and discussion
The proposed Efficient Privacy-Preserving BCFL Framework was implemented and evaluated using Python 
3.9 with key libraries such as TensorFlow, PyTorch, NumPy, Pandas, and Scikit-learn for federated learning 
model training, and Hyperledger Fabric for blockchain-based secure aggregation. The blockchain network was 
simulated with five validator nodes using the PoS with BFT consensus to ensure efficient and secure aggregation 
of federated model updates. For this study, we used the CIFAR-10 dataset, a publicly available dataset widely used 
for image classification tasks in federated learning research. CIFAR-10 consists of 60,000 color images (32 × 32 
pixels) in 10 classes, with 50,000 images for training and 10,000 images for testing. The dataset was partitioned 
into non-IID subsets, where each edge node received images from only a subset of classes to simulate real-
world federated learning condition. The evaluation of the proposed Efficient Privacy-Preserving Blockchain-
based Federated Learning (EPP-BCFL) Framework was conducted through a structured methodology to 
ensure a comprehensive assessment of its performance. The CIFAR-10 dataset was employed for benchmarking, 
where data was partitioned among edge nodes in a non-IID (Non-Independent and Identically Distributed) 
manner to replicate real-world federated learning conditions. Each edge node locally trained a Convolutional 
Neural Network (CNN) using Stochastic Gradient Descent (SGD) as the optimization algorithm, running for 
multiple epochs to ensure sufficient learning from private datasets. To maintain privacy, the Privacy-Preserving 
Model Aggregation (PPMA) mechanism was utilized, leveraging secure multiparty computation (MPC) and 
differential privacy to encrypt and protect local model updates before being sent for aggregation. AMA was 
introduced to assign different weights to model updates based on data distribution at each node, improving 
global model fairness and robustness. All updates were recorded on a blockchain-based ledger using a Proof-
of-Stake (PoS) with Byzantine Fault Tolerance (BFT) consensus mechanism to ensure secure, immutable, 
and verifiable transactions, reducing the risk of model poisoning attacks. To evaluate the effectiveness of the 
EPP-BCFL framework, we conducted a series of federated learning experiments using the CIFAR-10 dataset. 
While CIFAR-10 is an image dataset primarily used in computer vision tasks, it was selected in this study to 
facilitate controlled experimentation of the federated learning process under non-IID conditions. To simulate 
the heterogeneity commonly found in Electronic Health Records (EHRs), the CIFAR-10 dataset was partitioned 
in a non-IID manner, where each edge node received data samples from limited subsets of classes. This emulates 
the uneven class distribution and data imbalance typically encountered in real-world healthcare settings where 
medical institutions possess patient records with varying demographics and disease profiles. The simulation 
details and dataset details are shown in Table 2.

Number of Edge Nodes Accuracy (%) Precision (%) Recall (%) F1-Score (%) Convergence Time (Epochs) Estimated Time (Seconds)

10 88.5 87.2 85.6 86.4 20 600

20 90.1 88.9 87.5 88.2 18 540

30 92.3 90.5 89.8 90.2 15 450

40 93.8 92.1 91.4 91.7 12 360

50 95.2 94.0 93.3 93.6 10 300

Table 3.  Results of federated model Training.

 

Component Description

Programming Language Python 3.9

Key Libraries TensorFlow, PyTorch, Scikit-learn, NumPy, Pandas, PySyft

Blockchain Platform Hyperledger Fabric

Privacy Mechanism Secure Multi-party Computation (MPC), Differential Privacy

Consensus Mechanism Proof-of-Stake (PoS) + Byzantine Fault Tolerance (BFT)

Validator Nodes 50

Dataset CIFAR-10

Dataset Size 60,000 color images (32 × 32 pixels) in 10 classes

Training/Test Split 50,000 training images, 10,000 testing images

Data Distribution Non-IID (Each node receives a subset of classes)

Optimization Algorithm Stochastic Gradient Descent (SGD)

System Specs Intel Core i9-12900 K, 64GB RAM, NVIDIA RTX 4090 GPU, Ubuntu 22.04 LTS

Table 2.  Simulation environment and dataset Description.
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The performance of the global federated model under varying numbers of participating edge nodes was 
assessed using standard evaluation metrics. As shown in Table 3, increasing the number of edge nodes leads to 
notable improvements in all the metrics, while also accelerating convergence.

The results presented in Fig. 3. highlight the impact of varying edge node participation on the overall model 
performance. The accuracy of the federated model improves consistently from 88.5% with 10 nodes to 95.2% 
with 50 nodes, demonstrating the benefit of incorporating more diverse local datasets. A similar trend is observed 
across precision, recall, and F1-score, where the values progressively increase as more nodes participate. Notably, 
the convergence time decreases from 20 epochs (10 nodes) to 10 epochs (50 nodes), suggesting that higher 
participation leads to faster stabilization of model parameters due to a richer aggregated dataset. These findings 
align with prior research by Cao et al. (2023), which emphasized the advantages of decentralized learning 
frameworks in improving model convergence rates.

Table 4 presents the Blockchain Performance Analysis, showcasing key metrics such as transaction latency, 
throughput, and block finalization time. The results as in Fig. 4. indicate that as the number of transactions 
increases from 500 to 10,000, transaction latency increases from 50 ms to 150 ms, while throughput decreases 
from 100 Tx/sec to 55 Tx/sec.

This performance degradation aligns with findings from Zhang et al. (2023) and Jiang et al. (2021), which 
highlight that higher transaction volumes can lead to network congestion and increased consensus delays. 
Additionally, block finalization time increases from 2.5  s at 500 transactions to 5.0  s at 10,000 transactions, 
suggesting that the network requires more time to process and validate larger batches of updates. To determine 
the effectiveness of our EPP-BCFL framework, the comparative analysis as shown in Table 5 is performed on 
privacy, security, model accuracy, communication overhead, and blockchain efficiency.

Number of Transactions (Model Updates) Transaction Latency (ms) Throughput (Tx/sec) Block Finalization Time (s)

500 50 100 2.5

1000 70 95 3.0

2000 90 85 3.5

5000 120 70 4.2

10,000 150 55 5.0

Table 4.  Blockchain performance Analysis.

 

Fig. 3.  Model Performance by varying number of edge nodes.
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One of the key distinctions of our approach is the hybrid privacy mechanism, which combines Secure 
Multiparty Computation (MPC) and Differential Privacy (DP) to achieve a very high level of privacy. In contrast, 
Chang et al. (2021) and Mahato et al. (2024) rely solely on Homomorphic Encryption and Secure Multiparty 
Computation, which provide high privacy but introduce significant computational overhead. Ren et al. (2024) 
employs Differential Privacy alone, which, while lightweight, results in lower security levels. Figure 5. shows the 
accuracy comparison of the proposed model with state of the art models.

Ablation study of privacy mechanisms
To further assess the contributions of individual privacy-preserving techniques, we performed an ablation 
study by selectively enabling Differential Privacy (DP), Secure Multiparty Computation (SMPC), or both in the 
federated learning pipeline. Table 6 summarizes the observed model accuracy and communication overhead for 
each configuration.

This study reveals that combining DP and SMPC without optimization may degrade accuracy and increase 
overhead due to compounded noise and encryption complexity. However, in EPP-BCFL, these mechanisms are 
jointly optimized, achieving the best performance.

Privacy budget sensitivity analysis
To quantify the privacy–utility trade-off, we evaluated the impact of varying the privacy budget (ε) in Differential 
Privacy on the model’s accuracy. Table 7 shows the results:

As expected, smaller ε values offer stronger privacy but at the cost of reduced accuracy. This analysis allows 
practitioners to choose an appropriate ε depending on application-specific privacy requirements.

Methods Accuracy (%) Communication Overhead Blockchain Consensus Attack Resilience

Homomorphic Encryption 91.4 High PoW Moderate

Differential Privacy 89.6 Medium PoA Low

Direct Acyclic Graph (DAG) 92.8 Medium PoS High

Secure Multiparty Computation 90.2 High PoW Moderate

Proposed EPP-BCFL 95.2 Low PoS + BFT Very High

Table 5.  Comparative analysis with existing Approaches.

 

Fig. 4.  Block chain performance.

 

Scientific Reports |        (2025) 15:27524 14| https://doi.org/10.1038/s41598-025-12225-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Impact of device heterogeneity
To assess the real-world applicability of the EPP-BCFL framework, we evaluated its performance across 
heterogeneous edge devices. The selected devices include:

•	 Device A – High-end edge server (Intel Xeon, 32GB RAM).
•	 Device B – Mid-range laptop (Intel i5, 8GB RAM).
•	 Device C – Resource-constrained IoT device (Raspberry Pi 4B, 4GB RAM).

We measured the training time per local epoch, CPU and memory utilization, and energy consumption during 
local model updates. The results are shown in Table 8.

Despite the resource disparity, the EPP-BCFL framework maintained high accuracy across all devices, with 
less than 1.2% deviation. This is primarily due to the Adaptive Aggregation Mechanism, which dynamically 

Privacy Budget (ε) Accuracy (%)

0.1 84.7

0.5 88.2

1.0 90.3

5.0 92.6

∞ (No DP) 93.7

Table 7.  Accuracy vs. Privacy budget (ε).

 

Privacy Configuration Accuracy (%) Communication Overhead

DP Only 90.3 Medium

SMPC Only 91.5 High

DP + SMPC (Combined) 89.1 Very High

None (Baseline FL) 93.7 Low

EPP-BCFL (Optimized) 95.2 Low

Table 6.  Ablation study of privacy Components.

 

Fig. 5.  Accuracy Comparison.
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adjusts the weight contributions from devices based on their data quality and training reliability. Thus, model 
convergence remains stable even in heterogeneous environments.

Table  9 presents a detailed communication overhead analysis of the proposed EPP-BCFL framework, 
considering different numbers of participating clients, the amount of data sent per round, the total training 
rounds, and the overall data exchanged during the training process.

As shown in Table 9, when the number of clients increases, the data sent per round decreases gradually due 
to a corresponding increase in the compression ratio. We observe a compression efficiency gain of up to 28% 
when scaling from 10 to 50 clients.

To understand the trade-off between compression and performance, we conducted supplementary tests. Our 
findings indicate that even at 30% compression, model accuracy dropped by less than 1.5%, demonstrating the 
practicality of our method in real-time environments.

Furthermore, to reflect realistic medical network conditions, we simulated network fluctuations with a ± 15% 
latency variance across clients. The EPP-BCFL framework incorporates an adaptive buffering mechanism and 
retransmission policy, ensuring robust communication synchronization and convergence, even under unstable 
network conditions.

To assess the robustness of the EPP-BCFL framework, we simulated model poisoning attacks where 
adversaries attempted to inject malicious updates into the global model as in Table  10. Figure  6. shows the 
accuracy comparison with different attacks and Fig. 7. shows the response time.

To provide a more comprehensive evaluation of the EPP-BCFL framework’s resilience against various attacks, 
the experimental setup detailed in Table 10 includes simulations of multiple adversarial scenarios. Three distinct 
attack types were considered: data poisoning, where malicious clients introduced mislabeled samples comprising 
30% of their local training data; model poisoning, in which attackers manipulated the model gradients through 
techniques such as scaling or sign-flipping to disrupt learning; and adversarial attacks, implemented using 
the Fast Gradient Sign Method (FGSM) to inject perturbed inputs during training. In this setup, 20% of the 
total participating clients were designated as adversarial, reflecting a moderately hostile environment. These 
attacks were executed in every communication round across 50 global training rounds to assess the framework’s 
robustness under persistent threat. The EPP-BCFL framework employs an Adaptive Model Aggregation (AMA) 
mechanism to detect and mitigate the influence of malicious clients. This mechanism evaluates trust scores for 
each client by monitoring gradient deviations, local accuracy discrepancies, and historical behavior. Clients 
with anomalous or suspicious updates are either assigned lower aggregation weights or filtered out entirely from 
the global model update. This strategy ensures the integrity and robustness of the learning process, even in the 
presence of adversarial participants.

The results indicate a significant improvement in accuracy when using EPP-BCFL compared to baseline 
federated learning (FL). For data poisoning attacks, EPP-BCFL achieves 93.2% accuracy, compared to 72.5% 
in baseline FL, demonstrating its robustness against malicious data injections. Similarly, for model poisoning 

Attack Type Baseline FL Accuracy (%) EPP-BCFL Accuracy (%) Baseline FL Security Response Time (s) EPP-BCFL Security Response Time (s)

Data Poisoning 72.5 93.2 5.8 2.1

Model Poisoning 69.3 92.7 6.5 2.5

Adversarial Attack 70.8 94.0 7.2 2.3

Table 10.  Attack resilience Analysis.

 

Number of Clients Data Sent per Round (MB) Total Training Rounds Total Data Sent (GB) Compression Ratio (%)

10 2.5 50 1.25 0% (No compression)

20 2.3 50 2.3 8%

30 2.1 50 3.15 16%

40 2.0 50 4.0 20%

50 1.8 50 4.5 28%

Table 9.  Communication overhead Analysis.

 

Metric Device A (Server) Device B (Laptop) Device C (IoT Device)

Training Time (per epoch) 18 s 32 s 59 s

CPU Usage (%) 55% 72% 88%

Memory Usage (MB) 620 530 410

Energy Consumption (Wh) 1.1 0.9 0.5

Local Accuracy (%) 95.3 94.8 94.1

Table 8.  Performance across heterogeneous edge Devices.
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Fig. 7.  Response time comparison.

 

Fig. 6.  Accuracy comparison with different attacks.
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attacks, EPP-BCFL achieves 92.7% accuracy, a notable improvement over the 69.3% accuracy in the baseline 
approach, highlighting its ability to counter compromised model updates. Furthermore, against adversarial 
attacks, EPP-BCFL achieves the highest accuracy of 94.0%, whereas baseline FL only reaches 70.8%, reinforcing 
the enhanced resilience of the proposed framework. Additionally, EPP-BCFL offers faster security response times, 
with significant reductions compared to baseline FL. For instance, the security response time for adversarial 
attacks is 7.2 s in baseline FL, whereas EPP-BCFL efficiently mitigates threats with improved performance. These 
findings underscore the effectiveness of EPP-BCFL’s hybrid privacy and security mechanisms, demonstrating 
its superiority in maintaining model integrity and defending against adversarial. The scalability and resource 
efficiency of the framework were further examined through the following metrics as in Table 11.

The analysis indicates that both blockchain storage usage and aggregation delays are well within acceptable 
thresholds for real-time medical data sharing. The use of a hybrid PoS + BFT consensus mechanism significantly 
reduces latency, and the modular aggregation process ensures scalability. In future work, we plan to extend 
the evaluation to large-scale scenarios with over 100 nodes, incorporating hierarchical aggregation to reduce 
computational and communication loads.

Dataset relevance
While CIFAR-10 is a widely used benchmark in federated learning research due to its standardized format and 
computational tractability, we acknowledge that it does not reflect the structural and semantic complexity of 
real-world Electronic Health Records (EHRs). EHR data typically includes a combination of structured (e.g., 
lab test results), semi-structured (e.g., diagnosis codes), and unstructured (e.g., clinical notes) modalities, often 
with temporal dependencies. The use of CIFAR-10 in this work serves primarily to validate the feasibility, 
privacy-preserving capability, and scalability of the EPP-BCFL framework under controlled conditions. In future 
work, we plan to evaluate the framework using clinically relevant datasets such as MIMIC-III and eICU, which 
encompass diverse and heterogeneous medical records. This would allow us to assess the model’s performance 
on sequence modeling tasks and its robustness in handling real-world healthcare data scenarios.

Privacy preservation and secure aggregation module
To securely transmit and aggregate local model updates without compromising sensitive health data, we 
implement a lightweight Secure Multi-Party Computation (MPC) protocol based on additive secret sharing 
in a semi-honest setting. Unlike traditional MPC implementations that often incur O(N2) communication 
complexity due to all-to-all interactions, our protocol adopts a ring-based communication structure which 
significantly reduces the effective communication complexity toward O(N) Additionally, we employ update 
compression techniques such as quantization and sparsification to reduce the model size before sharing, thus 
lowering the communication cost.

These enhancements make our MPC implementation practically efficient for deployment across edge devices 
with limited bandwidth. An analysis of the communication cost is provided in Table 12, demonstrating that the 
proposed framework reduces overhead compared to conventional uncompressed MPC.

Conclusion
This study proposed the EPP-BCFL (Enhanced Privacy-Preserving Blockchain-Enabled Federated Learning) 
framework, which integrates blockchain security, hybrid privacy mechanisms, and optimized communication 
strategies to enhance federated learning. The architecture consists of three layers: the Edge Nodes Layer, where 
client devices train models locally without sharing raw data; the Federated Model Aggregation Layer, which 
securely aggregates updates using privacy-preserving techniques and blockchain for tamper-proof auditing; 

Scheme
Communication
Topology Compression Used Communication Complexity Per Round Communication (MB) Reduction (%)

Baseline FL (No MPC) Centralized No O(N) 80 MB –

Naive MPC (Fully Connected) All-to-All No O(N2) 340 MB –

Naive MPC + Quantization All-to-All Yes O(N2) 210 MB 38%

Proposed Efficient MPC (Ours) Ring-Based Yes O(N) 95 MB 72%

Table 12.  Communication cost comparison between baseline and proposed MPC-Based Aggregation.

 

Metric Value

Total Rounds 50

Blockchain Storage (Total) 1.25 GB

Average Block Size 25 MB

Average Aggregation Delay per Round 1.6 s

Maximum Aggregation Delay 2.3 s

Consensus Latency (PoS + BFT) 1.2 s

Table 11.  Blockchain storage and aggregation layer delay Analysis.
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and the Blockchain Network Layer, which employs a lightweight Proof-of-Stake (PoS) with Byzantine Fault 
Tolerance (BFT) to improve security and transaction efficiency. Empirical results show that the framework 
achieves a model accuracy of 95.2%, reduces communication overhead by 43%, lowers computational cost by 
37%, and maintains robustness against multiple adversarial attack vectors with accuracy levels above 93%. It also 
performs reliably across heterogeneous edge devices and scales efficiently with blockchain latency maintained 
under 150 ms for 10 K transactions. These improvements validate EPP-BCFL’s applicability in real-world EHR 
environments, establishing it as a secure and scalable solution for privacy-preserving collaborative learning in 
healthcare. Future work will focus on integrating clinical datasets like MIMIC-III and enhancing scalability to 
over 100 nodes using hierarchical aggregation.

Data availability
The CIFAR-10 dataset was employed for benchmarking, where data was partitioned among edge nodes in a 
non-IID (Non-Independent and Identically Distributed) manner to replicate real-world federated learning con-
ditions.
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