
Transfer learning with XAI for
robust malware and IoT network
security
Ahmad Almadhor1, Shtwai Alsubai2, Natalia Kryvinska3, Abdullah Al Hejaili4,
Belgacem Bouallegue5, Mohamed Ayari6 & Sidra Abbas7

Malware that exploits user privacy has increased in recent decades, and this trend has been linked to
shifting international regulations, the expansion of Internet services, and the growth of electronic
commerce. Furthermore, it is very challenging to detect privacy malware that uses obfuscation as an
evasion tactic due to its behaviour, resilience, and adaptability during runtime. Forensic techniques,
such as memory dumping analysis, must be used to enable a system to identify and classify patterns
and behaviours that facilitate its eventual identification. This research developed a deep learning
model for malware classification on an obfuscated malware dataset, called the MalwareMemoryDump
dataset. It implemented transfer learning (TL) to adapt the trained model to NF-TON-IoT and
UNSW-NB15, improving intrusion detection in IoT and network traffic. We conducted extensive
experiments showing improved accuracy and efficiency in cross-domain detection scenarios. Further,
we demonstrate that transfer learning minimises training time and computational requirements
compared to training separate models from scratch. Additionally, it offers XAI-based explainability to
enhance model transparency and interoperability. We demonstrated the effectiveness of the proposed
model in handling diverse heterogeneous cybersecurity threats across memory-based malware
analysis, IoT security, and traditional network intrusion detection. The effectiveness of the proposed
methodology is evaluated using several key metrics to demonstrate its advantages over conventional
methods. Experimental findings show that the proposed framework attains 99.9% accuracy on the
MalwareMemoryDump dataset, 96% on the NF-Ton-IoT dataset and UNSW-NB15 datasets. Because of
its innovative methodology and ability to generalise datasets, the model is a highly effective approach
that outperforms many of the most recent malware detection and other security techniques.

Keywords  Memory dump analysis, Transfer learning, Intrusion detection system, Deep neural networks,
Shapley additive explanations, Malware attacks

In the digital world, individuals have an unalienable right to privacy, which must be protected by laws and
technological advancements1. These include regulations for secure processing, archiving, and retention of
sensitive data, such as the General Data Protection Regulation (GDPR) in Europe and the Health Insurance
Portability and Accountability Act (HIPAA) in the United States2. However, these legal actions have been
significantly diminished by specialised spyware that targets victims’ privacy, either directly or through agents
who have the authority to manage their private data3. According to4, the three primary malware kinds with
various families that currently threaten user privacy are Trojan horses, ransomware, and spyware. Spyware is a
type of malware that poses the greatest harm to user privacy, as it eavesdrops and snoops to gather information5.
The ability of ransomware to create command and control connections to an attacker’s computer system, allowing
it to take data before encrypting it, is one of its distinctive features6. Trojan horse malware can then produce
backdoors, which enable it to deceive the user by appearing to be a genuine application and spy and steal data7.

1Department of Computer Engineering and Networks, College of Computer and Information Sciences, Jouf
University, Sakaka 72388, Saudi Arabia. 2College of Computer Engineering and Sciences, Prince Sattam bin
Abdulaziz University, AlKharj 16273, Saudi Arabia. 3Department of Information Management and Business
Systems, Comenius University Bratislava, Odbojárov 10, 82005 Bratislava 25, Slovakia. 4Computer Science
Department, Faculty of Computers and Information Technology, University of Tabuk, Tabuk 71491, Saudi Arabia.
5Department of Computer Engineering, College of Computer Science, King Khalid University, Abha 61421, Saudi
Arabia. 6Department of Information Technology, Faculty of Computing and Information Technology, Northern
Border University, Arar, Saudi Arabia. 7Department of Computer Engineering, COMSATS University Islamabad,
Sahiwal Campus, Sahiwal 57000, Pakistan. email: natalia.kryvinska@uniba.sk; sidraabbas@ieee.org

OPEN

Scientific Reports | (2025) 15:26971 1| https://doi.org/10.1038/s41598-025-12404-w

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-12404-w&domain=pdf&date_stamp=2025-7-24

Cyberattacks using these three forms of privacy viruses may have evolved in response to the expansion of
online services and electronic commerce8. Despite differences in their architecture and methods, the majority
of modern families of specialized spyware, ransomware, and Trojan horses have a single feature in common:
once a legitimate operating system process launches them, security controls are unlikely to catch them until the
malware has completed, either completely or partially, its target9. This is primarily due to their avoidance strategy
of obfuscation. There is currently no uniform and clear method to identify and comprehend the tendencies and
behaviours of obfuscated privacy malware at runtime, and the majority of privacy malware detection strategies
focus on detecting non-obfuscated privacy malware4,10.

As shown in Fig. 11, when obfuscated privacy malware violates a system, memory dumping and analysis can
identify particular patterns and behaviours that the system activities encounter in order to create a classifier for
obfuscated privacy malware. Several features can be used to differentiate and even classify the various kinds of
obfuscated privacy malware by family. These variables include the variety of sockets designed for communication
to remote places, the number of mutexes and semaphores utilized, and the number of handlers the operating
system opened in response to a procedure request. Lashkari et al.11, and Mu et al.12 contributions provide an
extensive overview of this process. However, based on the patterns and behaviours of the many families and classes
of obfuscated privacy malware, conventional programming techniques are unable to determine a generalisation.
As a result, machine learning (ML) techniques, especially DNNs, are widely used to analyze camouflaged privacy
spyware. Consequently, this study suggests a TL method for categorising obfuscated privacy malware that can
attain comparable metrics by applying advanced strategies suggested by prior studies.

Research motivation
Malicious software that utilises obfuscation as a primary method of evading security measures at runtime
includes programs that conceal their features, capabilities, and activities. Detecting obfuscated malware is
extremely difficult since it is immune to signature-based methods employed by security controls such as antivirus
applications, IDS, and intrusion protection system engines13. Lower detection metrics are obtained against this
resistance as opposed to malware that is not obfuscated. Furthermore, it becomes more challenging to identify

Fig. 1.  Memory dumping analysis.

Scientific Reports | (2025) 15:26971 2| https://doi.org/10.1038/s41598-025-12404-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

patterns and behaviours for recognition due to the hardiness and polymorphism of this kind of malware, which
allows it to change and show itself in many ways after being activated1. Furthermore, multiclass classification
with obfuscated malware is particularly challenging, as it makes it difficult to create characteristics that allow for
a distinct division of malware into multiple families and categories14. Understanding the family and category of
privacy malware is necessary to implement efficient security controls and countermeasures and to comprehend
the nature of an attack15.

Although obfuscation is a technique that many malware types can use to evade detection, the majority of
specialised privacy malware makes extensive use of it, which has a greater impact on users and organisations than
malware designed to target other security principles, such as the availability or integrity of the information16.
This is due to its unpredictable patterns and actions, which are intentionally designed to facilitate theft,
snooping, and the extraction of private information, ultimately leading to data leaks9. Several methods have been
proposed for gathering data that is necessary for the subsequent identification and categorisation of obfuscated
privacy malware. Domain Generation Algorithms (DGA) analysis17, command and control sequence pattern
detection18, and DNS pattern analysis for malware hosting19 are some examples. However, memory dumping
analysis is the most intriguing9 since it enables the analysis of post-mortem scenarios, providing information
about the key features and actions of the virus after it has completed its full attack process4.

The objective of this research endeavour is to create a sophisticated malware detection system with enhanced
accuracy and interpretability by utilising transfer learning and SHAP. To guarantee data integrity, the method
begins by preparing malware memory dump datasets. In order to optimise the parameters and produce SHAP
values for explainability, a DNN is first trained on MalwareMemoryDump data. While including SHAP-based
feature extraction, the pre-trained model is improved using new datasets (NF-TON-IoT and UNSW-NB15).
A fully connected layer and softmax activation enhances the classification process. For obfuscated malware
families, this two-step approach increases detection accuracy while maintaining transparency. By evaluating its
effectiveness against existing methods, this work contributes to the development of a scalable and interpretable
malware detection system.

Research contribution
This research enables more accurate and efficient detection of obfuscated malware attacks. The following is a list
of the main scientific discoveries and contributions.

•	 Obfuscated Malware Classification and Transfer Learning for IDS – Developed a deep learning model for mal-
ware classification and implemented Transfer Learning (TL) to adapt the trained model to NF-TON-IoT and
UNSW-NB15, improving intrusion detection in IoT and network traffic.

•	 Reduced Computational Cost– Demonstrated that transfer learning minimizes training time and computa-
tional requirements compared to training separate models from scratch.

•	 Explainability and Transparency- Provide XAI-based explainability on improving model transparency and
interoperability.

•	 Generalisation Across Cybersecurity Domains – Demonstrated the effectiveness of the proposed model in han-
dling diverse heterogeneous cybersecurity threats across memory-based malware analysis, IoT security, and
traditional network intrusion detection.

•	 Cross-Dataset Threat Detection – Conducted extensive experiments showing improved accuracy and efficien-
cy in cross-domain detection scenarios.

Organization
The notions used throughout the paper are shown in Table 1. The following part provides further structure for
the paper. Section “Related work” provides background related to obfuscated malware detection. In section
“Proposed methodology”, the suggested approach is explained. In section “Experimental results and analysis”, the
efficiency of the proposed method is assessed and compared with the baseline techniques. Section “Conclusion”
concludes the entire paper and contains recommendations for future research.

Related work
The increasing complexity of obfuscated malware presents a constant challenge to cybersecurity, posing a
significant obstacle to maintaining digital security. With an emphasis on memory analysis and the growing
significance of machine learning (ML) approaches, this literature review examines both classic and recent
studies in the field of malware detection. This study critically assesses current models, identifies their inherent
limits, and assesses their success rates to investigate this emerging concern. This analysis highlights the need for
contemporary detection methods that can address more elusive cyber threats while also illuminating the current
state of cybersecurity defences.

Obfuscated malware background
According to the authors in20,21, the notion of “obfuscated malware” describes a substantial category of online
threats that fall outside the purview of conventional detection techniques in the constantly evolving area of
cybersecurity. These extremely talented adversaries attempt to conceal their true identities and activities within
the vast world of online operations by employing evasion techniques with unparalleled skill. Obfuscated malware
accomplishes this using a variety of obfuscation techniques that challenge standard signature-based detection
algorithms, such as code encryption and polymorphic behaviour. In the study22, the researchers explore that
memory dumps are a vital battlefield for revealing the covert operations of obfuscated malware in the field of
cybersecurity research. In essence, a memory dump is an impression that shows the complex information stored
in a computer’s random-access memory (RAM) at a particular point in time. This transient archive becomes

Scientific Reports | (2025) 15:26971 3| https://doi.org/10.1038/s41598-025-12404-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

an invaluable resource for malware research, providing unmatched insights into how processes and programs
behave during runtime. Being aware of RAM’s instability, obfuscated malware deliberately hides in memory
to capitalise on the constantly evolving digital landscape. Since these hostile entities frequently masquerade
as legitimate processes, it becomes challenging to distinguish between benign and malicious activity, making
memory dump analysis a delicate art. Finding these evil actors and comprehending the complex transformations
they carry out within the boundaries of volatile memory are both difficult tasks. By navigating the complexities of
memory dumps, researchers can interpret the behavioural patterns of obfuscated malware, thereby overcoming
the limitations of conventional detection techniques. The importance of memory dump analysis continues to
grow as digital threats become increasingly complex, necessitating creative and flexible strategies to enhance
cybersecurity defences23.

Machine and deep learning techniques
Authors in24 proposed a straightforward and reasonably priced method for detecting obfuscated malware
through memory dump analysis and a range of machine learning techniques. This work utilises the CIC-
MalMem-2022 dataset, which is designed to simulate real-world scenarios and evaluate memory-based
obfuscated malware detection. They assess the potential for machine learning (ML) algorithms to detect
malware hidden in memory dumps. The results show that the XGBoost classifier outperformed the others in
malware detection and classification, achieving an accuracy of 0.88 on the original data. Authors in25 present
an ML-based, lightweight, obfuscated malware detection. Only five features extracted from memory dumps are
used in the extreme gradient boost-based suggested method, which achieves a detection accuracy of more than
99%. Recursive feature elimination was used to choose these five features based on their relative relevance. The

Abbreviation Description

AI Artificial Intelligence

ANN Artificial Neural Network

APT Advanced Persistent Threat

NB Naive Bayes

CNN Convolutional Neural Network

CWT Continuous Wavelet Transform

DDAD Data-Driven Anomaly Detection

DDoS Distributed Denial of Services

DL Deep Learning

DNN Deep Neural Network

DoS Denial of Services

DT Decision Tree

EDA Exploratory Data Analysis

FALC Federated Averaging Learning Classifier

GRU Gated Recurrent Unit

GDPR General Data Protection Regulation

HPC Hardware Performance Counter

HADRL Hierarchical Adversarial

HIPAA Health Insurance Portability and Accountability Act

IoT Internet of Things

ISD Intrusion Detection System

KNN K-Nearest Neighbour

LSTM Long Short Term Memory

ML Machine Learning

NB Naive Bayes

NIDS Network Intrusion Detection System

PARNet Attention Pyramid Network

RAM Random Access Memory

RF Random Forest

RNN Recurrent Neural Network

RT Random Tree

SVM Support Vector Machine

SHAP Shapley Additive Explanations

SMOTE Synthetic Minority Oversampling Technique

TL Transfer Learning

Table 1.  Abbreviations list.

Scientific Reports | (2025) 15:26971 4| https://doi.org/10.1038/s41598-025-12404-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

study’s assessment showed that the system could identify malware instances in as little as 0.413 μs. SHAP were
used to describe the model. The authors in1 provide three classifiers for obfuscated privacy malware that were
trained on the CIC-MalMem-2022 dataset using logistic regression (LR). In these solutions, malicious samples
are separated from benign ones using a binary classifier. Trojans, spyware, ransomware, and benign samples are
further separated from obfuscated privacy malware using a multiclass classifier. A more advanced multiclass
classifier is able to separate benign samples from fifteen different families of obfuscated privacy malware. The
study employed a unique deep neural network (DNN) in conjunction with several traditional ML techniques to
develop multiclass classifiers. According to the study’s findings, DNN outperforms conventional ML techniques
and yields significant statistical improvements in certain parameters.

Authors in26 evaluated the effectiveness of machine learning techniques in detecting obfuscated malware
using the CIC-MalMem-2022 dataset. Among the algorithms assessed are J-48 (C4.5), Random Tree (RT),
Random Forest (RF), Naive Bayes (NB), and XGBoost. RF, J-48, and XGBoost are effective in achieving high
accuracy rates across a range of classification tasks, as indicated by experimental results. Although NB performs
competitively as well, it struggles with multiclass classification and unbalanced datasets. The study’s findings,
which achieved a 99.9% accuracy rate for binary classification, emphasise the significance of using cutting-
edge ML approaches to improve obfuscated malware detection abilities and provide insightful information to
researchers and cybersecurity practitioners. The author of the study27 presents MeMalDet, an innovative memory-
based malware detection technique. It utilises deep autoencoders and stacked ensemble learning. The authors
propose an improved dataset with temporal features (temporal data split) to give more accurate evaluations of
memory-based malware detection techniques. To avoid human feature engineering, MeMalDet utilises deep
autoencoders to extract optimal features from memory dumps. Then, extremely accurate malware detection is
performed using a stacked ensemble. MeMalDet can successfully detect obfuscated malware under temporal
splits, as demonstrated by extensive tests on our enhanced large-scale public dataset. Modern memory analysis-
based malware detection methods are greatly outperformed by the study, which achieved up to 98.82% accuracy
and 98.72% F1-score in identifying previously observed advanced obfuscated malware. In research4, the author
enhances the development of VolMemLyzer, one of the most recent memory feature extractors for learning
systems, by employing a stacked ensemble ML model to target hidden and obfuscated malware. This enables the
development of a framework for effectively identifying malware. To assess and validate this method, a specific
malware memory dataset (MalMemAnalysis2022) was developed, with a focus on closely replicating real-world
obfuscated malware. The results show that using memory feature engineering, the proposed method can rapidly
detect hidden and obfuscated malware with accuracy and F1-Score of 99.00% and 99.02%, respectively.

In28, the authors proposed BotDefender, an integrated system designed to defend against botnet attacks.
BotDefender prevents botnet attacks by combining a machine-learning technique with a proposed network
traffic analyzer. A live botnet attack strategy is designed and developed to assess BotDefender’s performance.
Throughout the live test, BotDefender attains a 100% overall accuracy rate and filters out 99.8% of the botnet
traffic. In29, the authors introduced PhiUSIIL, a system for detecting phishing URLs that use incremental
learning and similarity indexes. However, squatting, combo squatting, homograph, Punycode, homophone,
zero-width characters, and other visual similarity-based attacks can each be successfully identified with the use
of the similarity index. When using a fully incremental training technique, PhiUSIIL achieved an accuracy of
99.24%; when using a pre-training approach, it achieved an accuracy of 99.79%.

Although obfuscated malware detection has advanced significantly, several research gaps remain that limit
the efficacy and generalizability of current methods. Numerous studies primarily focus on specific datasets,
such as network traffic captures or memory dumps, which may not accurately reflect the obfuscation strategies
employed in the real world. The suggested models’ ability to adapt to evolving malware threats and changing attack
tactics is challenged by this dataset’s dependency. Furthermore, although deep learning and machine learning
models have proven to be highly accurate in controlled environments, little is known about their resilience to
adversarial attacks and evasion strategies. Practical implementation in resource-constrained contexts is difficult
since several studies emphasize detection performance without providing a thorough review of computing
efficiency. Furthermore, the use of existing works in cybersecurity operations, where interpretability is crucial
for threat analysis and response, is limited because they often prioritise model correctness over explainability.
The summary of the existing literature is provided in Table 2.

Proposed methodology
In this section, a transfer learning model for detecting obfuscated malware is described. The description begins
by providing an overview of the data collection and system model preparation before moving on to the DL
and TL models, which are used to classify malware attacks. Figure 2 and Algorithm 1 present an extensive
malware detection methodology based on transfer learning and SHAP (SHapley Additive exPlanations) values
for model interpretability. Data preprocessing, which includes handling missing values, normalization to scale
features appropriately, and label encoding to convert categorical labels into numerical form, is the initial step in
processing a malicious memory dump dataset. This process cleans and prepares the dataset for model training.
In the first step, a Deep Neural Network (DNN) model is trained using this preprocessed data to establish
an initial knowledge of malware features. The learned model weights are then preserved for transfer learning.
Furthermore, SHAP values are determined to provide explainability by identifying the most significant features
influencing the model’s predictions, and two datasets, NF-TON-IoT and UNSW-NB15, are added for further
evaluation. In the transfer learning phase, the knowledge of the pre-trained DNN model is applied to detect
malware attacks more accurately. NF-TON-IoT and UNSW-NB15 datasets are used to fine-tune the model in the
target domain, while the original DNN model was trained on general malware data in the source domain. The
pre-trained model and preprocessed data with SHAP features constitute the source domain, while new datasets
that undergo similar preprocessing and SHAP analysis are included in the target domain. By using the pre-

Scientific Reports | (2025) 15:26971 5| https://doi.org/10.1038/s41598-025-12404-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

trained weights as an initial base, the learnt information is transferred, enabling the model to adapt and further
develop its malware classification abilities. The pre-trained DNN model is then enhanced with a fully linked
layer to improve classification using an entire transfer learning architecture. The model’s outputs are transformed
into probability distributions across the malware and benign classes using a softmax activation function. The
final classifications, indicating whether a sample is malicious or benign, are generated by matching the source
and target labels to their respective datasets. The model benefits from existing knowledge while adapting to
new datasets through this two-stage process, which comprises initial training and transfer learning. By adding
SHAP values at every stage of the procedure, model transparency is improved, and malware detection decisions
become easier to comprehend.

Refs. Focus Dataset Findings & results Limitations

20 Graph Neural Networks (GNN) for obfuscated
malware detection

Custom dataset based on
malware graph structures

Achieved 94.3% accuracy in detecting
obfuscated malware

Requires large labeled datasets;
computationally expensive

21 Impact of obfuscation on malware detection
techniques

Multiple malware datasets,
including public repositories

Showed significant drop in detection
accuracy for traditional methods

Lack of a proposed mitigation
strategy; limited real-world testing

22 Smart memory forensics for Windows malware
detection

Memory dumps from
Windows devices

Demonstrated 92% accuracy using memory
analysis techniques

Focuses only on Windows devices;
lacks comparison with other OS

23 Machine learning for obfuscated malware
detection in memory dumps

Public and synthetic memory
dump datasets

Improved detection rates compared to
traditional heuristics

May suffer from adversarial attacks;
requires frequent retraining

24 Real-world obfuscated malware detection through
memory analysis

Memory snapshots of real-
world malware samples

Achieved over 90% detection accuracy in
various scenarios

Performance may vary with unseen
malware samples; potential overfitting

25 Explainable AI for obfuscated malware detection Lightweight memory-based
dataset

XMal model achieved competitive results
with lower resource consumption

Limited interpretability for complex
obfuscation techniques

1 Privacy-focused malware detection via memory
dumping analysis

Large-scale memory dump
dataset

Effective classification with minimal false
positives

High computational cost; privacy
concerns with memory analysis

26 Malware detection using machine learning models Various malware repositories Compared multiple ML models, with deep
learning achieving the highest accuracy

Feature selection requires refinement;
high false positive rate

27 Deep autoencoders for malware detection using
memory analysis

Temporal evaluation-based
dataset

Stacked ensemble model achieved over 95%
accuracy

Model performance depends on
proper hyperparameter tuning

4 Memory feature engineering for obfuscated
malware detection

Experimental dataset
from controlled memory
environments

Demonstrated effective feature engineering
for malware detection

Requires extensive feature extraction;
high dependency on dataset quality

Table 2.  Summary of related work on obfuscated malware detection.

Scientific Reports | (2025) 15:26971 6| https://doi.org/10.1038/s41598-025-12404-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Fig. 2.  Proposed architecture for obfuscated malware detection.

Scientific Reports | (2025) 15:26971 7| https://doi.org/10.1038/s41598-025-12404-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Algorithm 1.  Malware Detection using Transfer Learning

Data description
This study uses three datasets: MalwareMemoryDump, NF-TON-IoT and UNSW-NB15 datasets for obfuscated
malware detection.

MalwareMemoryDump dataset
Obfuscated malware is a type of malicious software that deliberately conceals itself to avoid detection and
expulsion; it can be identified from the memory dump of the infected device. The obfuscated malware dataset
was specifically designed to evaluate the efficacy of methods for detecting obfuscated malware using memory
analysis, and it includes common malware categories such as Trojan Horses, ransomware, and spyware to resemble
real-world scenarios. Testing the effectiveness of obfuscated malware detection systems can be performed with
a well-balanced sample set. To ensure accuracy and prevent the memory dumps from revealing any indications

Scientific Reports | (2025) 15:26971 8| https://doi.org/10.1038/s41598-025-12404-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

of the dumping process, the dataset operates in debug mode during the memory dump procedure. With the
balanced dataset, 50% of memory dumps are malicious, and 50% are benign. Table 3 describes the malware
families. The set contains 58,596 records, comprising 29,298 malicious and 29,298 benign records.

NF-TON-IoT dataset
An adaptation of the ToN-IoT dataset based on NetFlow, the NF-ToN-IoT dataset, is intended especially for
assessing cybersecurity applications in Internet of Things (IoT) network environments [​h​t​t​p​s​:​​/​/​r​e​s​e​​a​r​c​h​.​u​​n​s​w​.​
e​d​​u​.​a​u​/​​p​r​o​j​e​c​​t​s​/​t​o​n​​i​o​t​-​d​a​​t​a​s​e​t​s]. It records network traffic as NetFlow records, which provide a simplified but
useful representation of network flows, as opposed to full packet captures. Its structure renders it suitable for
cybersecurity research, particularly in the fields of intrusion detection, malware analysis, and threat intelligence.
The dataset encompasses a wide range of Iot devices and protocols, providing a realistic simulation of Iot
network traffic, as shown in Table 4. One of the main characteristics of the NF-ToN-IoT dataset is its thorough
attack classification, which covers threats such as DoS, DDoS, Man-in-the-Middle (MITM), injection attacks,
password attacks, ransomware, scanning, and cross-site scripting (XSS). With a total of 1,379,274 data flows, the
dataset contains 270,279 benign flows (19.6%) and 1,108,995 attack flows (80.4%), making it sufficiently large
for training and assessing DL models.

	 UNSW-NB15 Dataset
The well-known UNSW-NB15 benchmark dataset for NIDS was developed by the University of New South Wales
(UNSW) Cyber Security Lab [​h​t​t​p​s​:​​​/​​/​r​e​s​e​a​r​c​​h​.​u​n​s​​w​.​e​​​d​u​.​​a​​u​/​p​r​o​j​​e​​c​t​s​/​u​​​n​s​w​-​​​n​b​1​5​-​d​a​t​a​s​e​t]. Numerous modern
attack methods, including worms, shellcodes, reconnaissance, backdoors, fuzzers, exploits, denial of service
(DoS), and generic attacks, are included in the dataset in Table 5. The dataset is highly relevant for research and
practical applications, as these attack types are typical of real-world cybersecurity threats. Both hostile and benign
traffic were recorded by UNSW-NB15, which was developed in a practical but controlled network environment.
The dataset is available in two formats: CSV, which provides a structured and preprocessed version suitable for
machine learning applications, and PCAP (Packet Capture), which preserves detailed network traffic data for
in-depth analysis. To facilitate supervised learning techniques, each network flow is labelled to indicate whether
it constitutes an attack or typical traffic. The dataset contains approximately 2,576,118 records, comprising both
normal and malicious traffic.

Attribute Details

Dataset type NetFlow-based IoT Security Dataset

Total data flows 1,379,274

Benign flows 270,279 (19.6%)

Attack flows 1,108,995 (80.4%)

Attack categories DoS, DDoS, MITM, Injection, Password Attacks, Ransomware, Scanning, XSS

IoT devices Various IoT devices and protocols

Application areas Intrusion Detection, Malware Analysis, Threat Intelligence

Data format NetFlow records (network flow summary)

Table 4.  NF-ToN-IoT dataset overview.

Malware type Infectious file Instances

Trojan Horse

Zeus 195

Emotet 196

Refroso 200

Scar 200

Reconyc 157

Spyware

180Solutions 200

Coolwebsearch 200

Gator 200

Transponder 241

TIBS 141

Ransomware

Conti 200

MAZE 195

Pysa 171

Ako 200

Shade 220

Table 3.  Distribution of infection types and their instances.

Scientific Reports | (2025) 15:26971 9| https://doi.org/10.1038/s41598-025-12404-w

www.nature.com/scientificreports/

https://research.unsw.edu.au/projects/toniot-datasets
https://research.unsw.edu.au/projects/toniot-datasets
https://research.unsw.edu.au/projects/unsw-nb15-dataset
http://www.nature.com/scientificreports

Data preprocessing
Data preprocessing is a crucial step in processing raw data for ML and DL models. Normalisation, standardisation,
and categorical variable encoding are methods for processing data. Robust model training can be achieved by
handling inconsistent data with resampling techniques or class weight adjustments. Data cleaning involves
removing duplicates, correcting outliers, and imputation, which is the process of filling in missing values. The
data used in this study were standardised using the min-max scaling technique. In this study, We used the
isnull().sum() function, which counts the number of missing values per feature, to first determine whether null
values were present in each column in order to evaluate the dataset’s completeness. After that, we only showed
the columns with null values, which made it easy to recognise particular elements that needed improvement.
Furthermore, to provide a general understanding of the data quality, we computed and displayed the total
number of null values throughout the entire dataset.

Data Scaling: The suggested method begins with data normalisation. This data-scaling process ensures that
the weighted total stays within the initial work’s bounds. Slow convergence and inadequate network training
might result from unnormalized input. On the other hand, adding more data makes the merging process simpler
and makes the data dimensionless. The following is the definition of the min-max scaling strategy (Eq. 1), which
scales the data from 0 to 1.

	
Dscaled = D − Dmin

Dmax − Dmin
� (1)

The initial value from the database is D, the highest value is Dmax, the minimum value used in the scaling
method is Dmin, and the scaled data is Dscaled.

Shapley additive explanations
Shapley Additive Explanations (SHAP), a prevalent interpretability technique in ML, describe the way each
feature affects a model’s predictions. The cornerstone of cooperative game theory is the Shapley values,
which divide each feature’s contribution to the final prediction equally. SHAP calculates the average marginal
contribution of a feature by taking into account all potential feature combinations. The SHAP value of a feature
xi can be determined mathematically in the manner described below in Eq. 2:

	
ϕi =

∑
S⊆F \{i}

|F |!
|S|!(|F | − |S| − 1)! [f(S ∪ {i}) − f(S)]� (2)

The model’s output when only the features in S are considered is denoted by f(S), while F represents the complete
feature set and S represents a subset of features. SHAP values provide a suitable statistic of feature significance
and explainability by calculating each feature’s contribution to the model’s output. This is particularly useful
in cybersecurity applications such as malware detection, where understanding the reasons behind a model’s
classification of a sample as malicious can increase confidence and facilitate threat analysis. For this reason,
this study uses the SHAP for malware detection. Figure 3 represents the top-selected features based on SHAP
values. A feature does not affect the prediction for that particular instance if its SHAP value is 0. A single instance
from the dataset is represented by each dot on the plot; the colour of the dots indicates the feature value for that
instance, which is blue for low values and red for high values. For the NF-TON-IoT dataset, “Attack,” the most
significant feature influencing the model’s output, is critical in identifying the nature or existence of attacks
and has a strong positive impact when its value is high (Fig. 3a). As the ′L4_DST_P ORT feature shows,
larger Layer 4 destination port values typically have a positive effect, whereas smaller values frequently cause a
negative effect. This implies that particular network behaviours are closely associated with particular destination
ports. P ROT OCOL, ′L4_SRC_P ORT , ′T CP_F LAGS’, ′L7_P ROT O, and a number of flow-related
metrics, including ′OUT_BY T ES, ′OUT_P KT S, ′F LOW_DURAT ION_MILLISECONDS,
′IN_P KT S, and ′IN_BY T ES, are additional significant features. These features, which specify the number
of bytes and packets transmitted and received, as well as the length of the network flow, also affect the model’s
predictions to differing degrees. However, for the UNSW-NB15 dataset in Fig. 3b , the top features influencing
the model’s output are different from those in NF-TON-IoT. ′ct_state_ttl (Count of connections with the
same state and destination address), swin (Source window size), and dttl (Destination Time-To-Live) are some

Attribute Details

Dataset name UNSW-NB15

Developed by University of New South Wales (UNSW) Cyber Security Lab

Total records 2,576,118

Traffic type Normal and Malicious

Attack categories Worms, Shellcode, Reconnaissance, Backdoors, Fuzzers, Exploits, DoS, Generic

Environment Realistic but Controlled Network

Data formats PCAP (Raw Traffic), CSV (Preprocessed Features)

Labelling Each network flow is labelled as an attack or normal traffic

Table 5.  UNSW-NB15 dataset overview.

Scientific Reports | (2025) 15:26971 10| https://doi.org/10.1038/s41598-025-12404-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

of the noteworthy features. Additional important features include ′ct_dst_src_ltm (count of connections
with the same source and destination address), state (connection state), tcprtt (TCP round-trip time),
sintpkt (standard deviation of inter-packet arrival time), and service (network service on the destination port).

Deep neural network
Deep neural networks (DNNs) are artificial neural networks (ANNs) with numerous hidden layers between
the input and output layers. Due to its ability to identify complex patterns in data, it is widely utilised in various
cybersecurity applications, including virus detection. The following elements comprise a standard DNN: The
feature vectors obtained from malware memory dumps are transferred to the input layer. Hidden layers contain
the number of neuronal layers where feature extraction and transformation happen. Activation functions
represent intricate interactions and add non-linearity. The output layer generates the final categorization
outcome, such as malware vs benign. A deep neural network can be represented mathematically in Eqs. 3 and 4:

	 Z(l) = W (l)A(l−1) + b(l) � (3)

	 A(l) = f(Z(l)) � (4)

A set of weights and biases is applied to the input from the previous layer by each layer, with the layer number
denoted by the index l. At layer l, the weighted sum of inputs is represented as Z(l). This is calculated by taking
the activation values A(l − 1) from the previous layer, the weight matrix W(l), and a bias term b(l). Next, Z(l)
is subjected to the activation function f(·), which adds non-linearity and allows the model to learn intricate
patterns. To enable the neural network to learn complex correlations within the data, this iterative process is
carried out across multiple hidden layers until the final output is produced. The architecture of the deep neural
network is illustrated in Fig. 4.

Transfer learning
Transfer learning is the process of applying a model that has been trained on one task to another that is comparable
but distinct. Instead of building a DNN from scratch and modifying it for a new use or domain, this method
utilises pre-trained models, which are often developed using large datasets. The primary motivations for transfer
learning are the utilisation of learned models or components from the source task to enhance performance
on the target task, reduce the need for large datasets, and conserve computing time and resources30. There are
several important steps in the TL process represented in Fig. 5.

Before learning features, a base model is selected, which is a pre-trained model trained on a source task using
a source dataset Ds (Eq. 5).

	
min

θs

Ls (Ms(xs; θs), ys)� (5)

(a) (b)

Fig. 3.  Feature selection based on shapley additive explanations. (a) Top feature selected for NF-TON-IoT
dataset. (b) Top feature selected for UNSW-NB15 dataset

Scientific Reports | (2025) 15:26971 11| https://doi.org/10.1038/s41598-025-12404-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Fig. 5.  Transfer learning architecture.

Fig. 4.  Architecture of deep neural network model.

Scientific Reports | (2025) 15:26971 12| https://doi.org/10.1038/s41598-025-12404-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

This is the process of minimizing the loss function Ls for the source model Ms given the labels ys, model
parameters θs, and input data xs. The pre-trained layers Fs have frozen weights θs, which means they do not
change (Eq. 6).

	
∂Lt

∂t
= 0� (6)

Only the new layers (target-specific layers) with weights θt are updated (Eq. 7).

	
θt ← θt − η · ∂Lt

∂θt
� (7)

where η is the learning rate, while θt is updated, the weights of some or all of the pre-trained layers are unfrozen.

	
θ ← θ − η · ∂Lt

∂θ
� (8)

where θ includes both pre-trained and new parameters, the source and target tasks can be combined into the
overall optimization objective for transfer learning (Eq. 8).

	 Ltotal = λ · Ls + (1 − λ) · Lt� (9)

In Eq. 9 Ls is the source task loss, Lt is the target task loss, and λ is the weighting factor (which regulates the
balance between the source and target loss).

Transfer learning with a deep neural network (DNN) involves transferring knowledge from a source domain
to a target domain using pre-trained models. On a source dataset Ds, a DNN model Ms is first trained to
learn feature representations by minimizing a source loss function Ls(θs). The target domain then uses the
lower layers of Ms, which extract generic features fs = gs(x; θbase

s). These layers are then frozen. In order to
minimize the target loss Lt(θ_t), a new model Mt is then constructed by appending trainable task-specific
layers ht to the frozen base and trained on a target dataset Dt. The summary of transfer learning architecture is
illustrated in Table 6.

Experimental results and analysis
The performance of the framework is assessed using a variety of assessment criteria, experimental results
are examined and reviewed, and data gathered for this study are interpreted. These factors provide crucial
information about the model’s performance. Table 7 lists all the tools and equipment used in the experiments,
along with a detailed comparison between creating a DL model from scratch and applying TL on Iot datasets.
Both approaches were used with Google Colab, the same computer environment that includes an NVIDIA

Aspect From scratch (Memory_Forensic) Transfer learning (NF_TON_IOT / UNSW-NB15)

Hardware Google Colab (NVIDIA Tesla T4 GPU, 16GB RAM) Same (Colab environment reused)

Training time ∼45–60 seconds for 10 epochs ∼30–45 seconds for 20 epochs with frozen layers

Inference time ∼2.5 ms/sample (using .predict() on test set) ∼1.2 ms/sample (due to fewer trainable parameters)

Memory usage ∼800MB GPU memory (from TensorFlow Profiler) ∼500MB GPU memory (smaller input and frozen base)

Trainable parameters ∼1,000–2,000 (all layers trainable) ∼500–800 (most layers frozen)

Efficiency gain from TL Not applicable (baseline) ∼35–40% reduction in memory & training time

Model size 4-layer dense NN Reused base + minor new layers (efficient)

Conclusion Baseline full training Reduced cost via frozen weights, smaller input size

Table 7.  Experimental setup and computational cost evaluation.

Layer (type) Output shape Param #

input_layer_1 (InputLayer) (None, 10) 0

dense_3 (Dense) (None, 128) 1,408

dropout_2 (Dropout) (None, 128) 0

batch_normalization (BatchNormalization) (None, 128) 512

dropout (Dropout) (None, 128) 0

dense_1 (Dense) (None, 64) 8,256

dropout_1 (Dropout) (None, 64) 0

dense_4 (Dense) (None, 1) 65

Table 6.  Model architecture summary.

Scientific Reports | (2025) 15:26971 13| https://doi.org/10.1038/s41598-025-12404-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Tesla T4 GPU and 16GB of RAM, to ensure fair and unbiased comparisons. The Memory_Forensic dataset
requires approximately 45–60 seconds for 10 epochs of training for the model built from scratch. Conversely,
even after 20 epochs, the transfer learning method, which utilised frozen base layers, completed training in a
mere 30 to 45 seconds. The smaller number of trainable parameters and the reuse of pretrained weights, which
reduces backpropagation efforts, are responsible for this efficiency. The TL method was also preferred in terms
of inference time per sample. Due to its lighter architecture and fewer active parameters, the TL model achieved
faster inference at approximately 1.2 milliseconds per sample, whereas the scratch model required about 2.5
milliseconds per sample. Due to this, real-time anomaly detection scenarios in Iot applications are more suitable
for the TL technique. Based on TensorFlow Profiler’s memory measurements, the scratch model used roughly
800MB of GPU memory. On the other hand, since the input size was smaller and the majority of the model
layers were frozen, the TL model required only about 500 MB. In edge computing contexts, where memory
resources are frequently limited, this decrease is particularly crucial. In terms of trainable parameters, the TL
model had only 500 to 800, as most of the layers were frozen, whereas the scratch model had 1,000 to 2,000.
This decrease in parameter count directly impacts faster training and less memory usage. Transfer learning
resulted in a significant increase in efficiency. The TL configuration resulted in a 35–40% decrease in memory
use and training time, making it a suitable option for resource-conscious, lightweight deployments. In contrast,
the from-scratch model was used as a baseline with no previous modifications. Lastly, in terms of model size and
complexity, the TL-based architecture utilised a pretrained model as its base and added only a few new layers.
In contrast, the baseline model used a conventional 4-layer dense neural network. This modular and parameter-
efficient architecture further supports the usefulness and efficiency of TL in limited IoT situations.

Evaluation matrices
Accuracy is the percentage of correctly identified samples compared to the total sample size and serves as the
standard for evaluating performance. The accuracy of the model in Eq. 10 reflects the confidence in its ability to
produce accurate forecasts. It is crucial in assessing its predictive power and dependability despite its simplicity.

	
Acc = T ruepos + T rueneg

T ruepos + T rueneg + F alsepos + F alseneg
� (10)

The precision of a model or system is the degree to which it accurately predicts the positive class. This number is
correspondingly displayed in Eq. 11 to facilitate comprehension of the metric fundamental equation.

	
P re = T rueP

T rueP + F alseP
� (11)

Recall is a metric used to evaluate the performance of classification models, particularly when identifying
positive cases is crucial. It is also known as the true positive rate or sensitivity. The capacity of a model to
accurately differentiate all pertinent instances (true positives) from the actual positive cases is measured by
recall. The calculation of Eq. 12 indicates the unique advantage of this diverse perspective for an estimation.

	
Re = T rueP

T rueP + F alseN
� (12)

Since the appropriately calculated F1 score may effectively convey the essence of balanced performance, it serves
as a balance between accuracy and recall. Equation 13 provides a good description of this basic estimation
method despite its complexity.

	
F 1 − score = 2 × P re + Re

P re + Re
� (13)

Table 8 displays the classification performance of a Deep Neural Network (DNN) model for the identification
of obfuscated malware. Malicious samples are likely represented by class 1, and benign samples by class 0. The
model obtained a precision of 0.99 for each class, indicating that 99% of the anticipated positive samples were
accurate. The model correctly identified 99% of the real positive cases, as indicated by the recall of 0.99. A well-
balanced performance is demonstrated by the F1-score, which gives a harmonic mean of precision and recall,
which is likewise 0.99 for both classes. There were 5801 Class 0 samples and 5919 Class 1 samples in the dataset,
indicating an essentially even distribution. The model’s total accuracy is 99%, which indicates that 11720 out of

Class Precision Recall F1-score Support

0 0.99 0.99 0.99 5801

1 0.99 0.99 0.99 5919

Accuracy 0.99 11720

Macro Avg 0.99 0.99 0.99 11720

Weighted Avg 0.99 0.99 0.99 11720

Table 8.  DNN model results for obfuscated malware detection.

Scientific Reports | (2025) 15:26971 14| https://doi.org/10.1038/s41598-025-12404-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

11720 cases were properly identified. Furthermore, all measures show similar performance independent of class
size, with the macro average, which computes the average for each class equally, producing values of 0.99.

Table 9 demonstrates the outcomes of the transfer learning on the NF-ToN-IoT dataset for the identification
of obfuscated malware. Class 0 exhibits favourable performance metrics: a recall of 0.99 implies the model
correctly recognized 99% of the actual benign occurrences, while a precision of 0.93 suggests that 93% of the
samples predicted as benign were, in fact, benign with an F1-score of 0.96, which maintains a balance between
recall and precision. The dataset contained a total of 192,225 samples for this class. Class 1 had a precision of
0.99, indicating that almost all the malicious samples predicted were accurate. With a recall of 0.93, it was able
to identify 93% of all malicious instances. It demonstrated strong performance with an F1-score of 0.96, similar
to Class 0. 191,593 occurrences were identified in this class. Overall, the model performed effectively, properly
classifying a substantial portion of the 383,818 samples with an accuracy of 96%.

Table 10 demonstrates the results of transfer learning on the UNSW-NB15 dataset for identifying obfuscated
malware. Class 0, which stands for apparently benign samples, had a precision of 1.00. The F1-score, which
balances precision and recall, was 0.96, and the recall was 0.92, which indicates that 92% of real benign incidents
were properly identified. There were a total of 9,072 benign samples (support). The precision for Class 1, which
probably consists of dangerous or obfuscated malware samples, was 0.92, which means that 92% of the samples
that were predicted to be malicious were correct. The model effectively detected every fraudulent instance, as
evidenced by the recall of 1.00 and the high F1-score of 0.96. There were 9061 samples in this class. The accuracy
of the overall model performance was 0.96, meaning that 96% of the 18,133 samples in total were properly
identified. Precision, recall, and F1-score values of 0.96 were obtained by the macro average, which considers
both classes equally regardless of size, indicating consistently satisfactory results across both classes.

Figure 6 compares the effectiveness of two models, a Transfer Learning model and a DNN model, by
identifying malware that has been disguised across three distinct datasets. Figure 6a illustrates the training and
validation curves of a DNN model, which is probably employed as the basis for malware detection. While the
validation accuracy shows a similar pattern but remains somewhat lower, it shows reasonable generalisation
with no overfitting. In contrast, the training accuracy increases significantly over the initial few epochs and
maintains around 99.8%. The training and validation loss values decrease sharply in the early epochs before
stabilising at very low levels, demonstrating effective learning with few errors. The DNN model’s exceptional
overall performance, characterised by high accuracy and minimal loss, makes it an effective choice for malware
detection. The performance of the Transfer Learning model on the NF-ToN-IoT dataset, which is intended
for malware analysis and most likely includes network traffic data from IoT devices, is shown in Fig. 6b . This
approach utilises previously acquired data from a larger malware dataset to facilitate the identification of
malware. After roughly 10 epochs, the training accuracy rises quickly to almost 100%, indicating efficient and
rapid learning. Substantial generalization is demonstrated by the validation accuracy, which similarly shows a
consistent rise and plateaus over 98%. The practicality of the model in identifying malware patterns is further
supported by the quick decline and stabilization of both training and validation loss values at very low levels.
This demonstrates Transfer Learning’s tremendous efficacy on the NF-ToN-IoT dataset, where it achieved nearly
flawless accuracy, making it exceedingly useful for malware detection in IoT environments.

Figure 6c evaluates the effectiveness of the TL model on the UNSW-NB15 dataset, a well-known benchmark
dataset that contains network traffic data with a range of attack scenarios, including malware. The training
accuracy increases steadily and reaches about 88% after 7 epochs. The validation accuracy approximately follows
this trend. In the initial epochs, the training and validation loss levels similarly rapidly decrease before levelling
off. The loss values remain slightly higher than those of the NF-ToN-IoT dataset, though, which may indicate
that the UNSW-NB15 dataset has more intricate patterns or that the pre-trained features are more difficult
to transfer. The accuracy of the TL model is marginally lower than that of the NF-ToN-IoT dataset despite its

Classes Precision Recall F1-score Support

0 1.00 0.92 0.96 9072

1 0.92 1.00 0.96 9061

Accuracy 0.96 18133

Macro Avg 0.96 0.96 0.96 18133

Weighted Avg 0.96 0.96 0.96 18133

Table 10.  Transfer learning results on UNSW-NB15 dataset.

Classes Precision Recall F1-score Support

0 0.93 0.99 0.96 192225

1 0.99 0.93 0.96 191593

Accuracy 0.96 383818

Macro Avg 0.96 0.96 0.96 383818

Weighted Avg 0.96 0.96 0.96 383818

Table 9.  Transfer learning results on NF-ToN-IoT dataset.

Scientific Reports | (2025) 15:26971 15| https://doi.org/10.1038/s41598-025-12404-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

excellent performance. This suggests that obfuscated malware detection in this dataset is more difficult and
might require additional fine-tuning or domain-specific feature extraction.

Table 11 provides the performance of a Fully Connected Neural Network (FCNN). Figure 7 compares two
different neural network models for detecting malware that has been obscured. Figure 7a displays the training
and validation curve for a FCNN. The validation accuracy has a similar pattern, levelling off at a slightly lower

(a)

(b)

(c)

Fig. 6.  Graphical visualisation of accuracy and loss curve for obfuscated malware detection. (a) Training and
validation curve of DNN model. (b) Transfer learning model training and validation curve on NF-ToN-IoT
dataset. (c) Transfer learning model training and validation curve on UNSW-NB15 dataset.

Scientific Reports | (2025) 15:26971 16| https://doi.org/10.1038/s41598-025-12404-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

value of 0.70, while the training accuracy rises quickly in the initial few epochs before settling at 0.74. The
noticeable difference between training and validation accuracy suggests some overfitting, indicating that the
model performs better on the training data than on unseen data. The training loss, which decreases sharply in
the initial epochs before gradually declining to less than 0.55, and the validation loss, which also decreases but
plateaus at a higher value, both indicate the presence of overfitting. Overall, the fully connected neural network
exhibits indications of overfitting, which may restrict its capacity for generalization, even though it attains a
respectable accuracy of about 70%.

Table 12 demonstrates the performance of the hybrid CNN-DNN model. Similarly, in Fig. 7b , the training
and validation curve of a CNN-DNN hybrid model is illustrated. CNNs are especially adept at extracting
features from structured data, while DNNs excel at learning complex patterns. The training accuracy increases
dramatically and reaches a higher plateau of about 0.78 when compared to the fully linked model. Meanwhile, the
validation accuracy also increases gradually and reaches a maximum of 0.74. There seems to be less overfitting in
this model, as evidenced by the reduced difference between training and validation accuracy compared to Fig. 7a
. Further evidence of enhanced performance and superior generalization is provided by the training loss (blue
line), which drops quickly and reaches a lower value than the fully linked model, and the validation loss (orange
line), which likewise drops and plateaus at a lower level.

Findings and discussion
For detecting obfuscated malware, the proposed transfer learning-based deep neural network (DNN) model
demonstrates a balance between detection performance and processing efficiency. Using feature preprocessing
techniques like min-max scaling and normalisation, a multi-layered deep neural network was optimised during
the initial model training on the MalwareMemoryDump dataset. The transfer learning phase utilises pre-trained
model weights rather than developing a new model from scratch, which significantly reduces training time
and computational overhead. Using the newly acquired feature representations from the source dataset, the
pre-trained DNN is refined in this phase using the NF-TON-IoT and UNSW-NB15 datasets. In fine-tuning,
lower-level layers are frozen to preserve overall malware features, while higher-level layers are adjusted to
capture dataset-specific patterns. The model can more effectively generalize to hidden malware samples due

Epoch Accuracy Loss Val accuracy Val loss

1 0.5840 0.7105 0.6870 0.5473

2 0.6877 0.6003 0.6849 0.5035

3 0.7147 0.5584 0.6890 0.4797

4 0.7236 0.5399 0.7362 0.4633

5 0.7357 0.5263 0.7338 0.4495

6 0.7454 0.5116 0.7186 0.4409

7 0.7486 0.5108 0.7181 0.4330

8 0.7522 0.5012 0.7180 0.4270

9 0.7534 0.4981 0.7184 0.4223

10 0.7544 0.4946 0.7184 0.4171

11 0.7567 0.4885 0.7188 0.4139

12 0.7566 0.4867 0.7192 0.4101

13 0.7566 0.4828 0.7196 0.4071

14 0.7594 0.4807 0.7198 0.4039

15 0.7623 0.4735 0.7204 0.4006

16 0.7631 0.4723 0.7211 0.3983

17 0.7605 0.4721 0.7218 0.3958

18 0.7645 0.4680 0.7221 0.3933

19 0.7644 0.4654 0.7225 0.3906

20 0.7669 0.4637 0.7234 0.3880

21 0.7625 0.4641 0.7238 0.3858

22 0.7623 0.4658 0.7241 0.3842

23 0.7667 0.4597 0.7250 0.3820

24 0.7648 0.4585 0.7265 0.3801

25 0.7664 0.4533 0.7291 0.3783

26 0.7664 0.4593 0.7320 0.3762

27 0.7656 0.4530 0.7338 0.3753

28 0.7706 0.4456 0.7428 0.3729

29 0.7695 0.4485 0.7433 0.3715

30 0.7667 0.4510 0.7432 0.3686

Table 11.  Training and validation performance per epochs for fully connected neural network.

Scientific Reports | (2025) 15:26971 17| https://doi.org/10.1038/s41598-025-12404-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

to this method, which also ensures knowledge retention across datasets. The incorporation of SHAP (Shapley
Additive Explanations) values, which improve interpretability by measuring feature importance in classification
decisions, significantly influences the model’s complexity. By iteratively assessing feature contributions to
prediction probability, SHAP values are calculated, giving cybersecurity analysts insight into which features of
a malware sample are the most significant for categorization. However, because many altered instances of the
dataset must be created to compute individual feature attributions, this interpretability method incurs additional
processing costs.

The architecture also incorporates fully connected layers, following transfer learning, which enhances feature
fusion and decision-making. By producing probability distributions across binary classes, the final softmax
activation function establishes whether a sample is malware or benign. Overfitting risks are mitigated by batch
normalisation and dropout layers, but adjusting hyperparameters remains challenging. Model performance

(a)

(b)

Fig. 7.  Accuracy and loss curve for obfuscated malware detection. (a) Training and validation curve of fully
connected neural net model. (b) Hybrid model (CNN and DNN) training and validation curve on.

Scientific Reports | (2025) 15:26971 18| https://doi.org/10.1038/s41598-025-12404-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

must be balanced with the avoidance of unnecessary computational load by selecting the optimal learning rates
(0.0001), dropout ratios, and layer designs. Despite the model’s ability to detect obfuscated malware, problems
still arise, especially when using smaller or unbalanced datasets. Biased categorisation outcomes could result
from the model’s inability to identify representative patterns in malware families with notably smaller sample
sizes. To enhance the model’s resilience to evolving obfuscation strategies, future studies should explore data
augmentation methodologies, ensemble learning approaches, and adversarial training techniques.

The findings demonstrate that the proposed framework is highly applicable to real-world cybersecurity
systems, particularly in security operations and forensic malware investigations. The high detection accuracy of
obfuscated malware indicates that this framework may be incorporated into security solutions, including cloud-
based malware detection platforms, antivirus engines, and intrusion detection systems (IDS). The interpretability
of SHAP values, which provides human-readable justifications for classification decisions, enhances confidence
in AI-driven security technologies. However, additional testing on dynamic malware samples and continuous
model changes to accommodate evolving threats are necessary for real-world deployment. Additionally, to ensure
real-time applicability in cloud and business security situations, it will be essential to optimise the computational
efficiency of SHAP calculations.

Conclusion
This study employed TL and SHAP interpretability techniques to develop an effective deep learning-based
system for detecting privacy-intrusive and obfuscated malware. Compared to traditional signature-based
methods, which frequently struggle to detect complex or hidden malware behaviours, the proposed method
demonstrated strong generalisation by initially training a DNN on the MalwareMemoryDump dataset and then
fine-tuning it on two real-world cybersecurity datasets, NF-TON-Iot and UNSW-NB15. The model’s capability
to identify subtle malware indicators was improved by the incorporation of TL, which enabled the model to
retain and adapt learnt information from memory dumps to various network traffic patterns. SHAP was also
incorporated to provide insight into the model’s decision-making process and identify the key components that
significantly impacted categorisation outcomes. Along with making the model more transparent, this improved
accountability and confidence in security systems driven by AI. The enhanced performance of the suggested

Epoch Accuracy Loss Val Accuracy Val Loss

1 0.5974 0.6754 0.6815 0.5597

2 0.6914 0.5856 0.6810 0.5064

3 0.7059 0.5495 0.6792 0.4789

4 0.7203 0.5237 0.7254 0.4518

5 0.7387 0.5104 0.7184 0.4327

6 0.7471 0.4956 0.7188 0.4183

7 0.7551 0.4806 0.7182 0.4110

8 0.7596 0.4749 0.7192 0.4027

9 0.7618 0.4695 0.7199 0.3983

10 0.7625 0.4629 0.7208 0.3942

11 0.7615 0.4620 0.7212 0.3897

12 0.7653 0.4583 0.7217 0.3890

13 0.7665 0.4542 0.7282 0.3838

14 0.7657 0.4523 0.7294 0.3823

15 0.7685 0.4507 0.7317 0.3794

16 0.7723 0.4448 0.7336 0.3760

17 0.7712 0.4443 0.7340 0.3757

18 0.7719 0.4413 0.7350 0.3734

19 0.7736 0.4424 0.7370 0.3701

20 0.7742 0.4392 0.7377 0.3687

21 0.7724 0.4384 0.7377 0.3692

22 0.7736 0.4361 0.7382 0.3685

23 0.7747 0.4365 0.7398 0.3650

24 0.7735 0.4337 0.7399 0.3639

25 0.7763 0.4348 0.7408 0.3607

26 0.7762 0.4318 0.7414 0.3600

27 0.7749 0.4299 0.7415 0.3592

28 0.7737 0.4296 0.7415 0.3581

29 0.7754 0.4270 0.7416 0.3589

30 0.7776 0.4288 0.7430 0.3544

Table 12.  Training and validation accuracy and loss per epoch for hybrid model.

Scientific Reports | (2025) 15:26971 19| https://doi.org/10.1038/s41598-025-12404-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

framework over current detection techniques was validated by experimental evaluation. The model’s remarkable
96% accuracy on the UNSW-NB15 and on the NF-TON-IoT dataset demonstrate its resilience and versatility in
a variety of attack scenarios. Overall, this study provides a scalable, interpretable, and highly accurate approach
to modern malware detection, particularly when addressing obfuscated and evasive attacks.

Future studies should incorporate more real-world datasets into the proposed model to further validate its
resistance to different virus types. Additionally, evaluating hybrid deep learning models may improve feature
extraction and classification performance. Another option is to create adaptive models that can identify malware
in real time, thereby expediting reaction times to emerging threats. Additionally, federated learning integration
might enable cooperative malware detection across disparate platforms while protecting user privacy. Finally,
to improve the transparency of malware categorisation, further explainability techniques, such as LIME or
attention mechanisms, could be incorporated into the interpretability framework.

Data availability
All data generated or analyzed during this study are included in this published article.

Received: 14 March 2025; Accepted: 16 July 2025

References
	 1.	 Cevallos-Salas, D., Grijalva, F., Estrada-Jiménez, J., Benítez, D. & Andrade, R. Obfuscated privacy malware classifiers based on

memory dumping analysis. IEEE Access (2024).
	 2.	 Essefi, I., Rahmouni, H. B., Solomonides, T. & Ladeb, M. F. Hipaa controlled patient information exchange and traceability in clinical

processes. In 2022 IEEE 9th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications
(SETIT), 452–460 (IEEE, 2022).

	 3.	 Jahromi, A. N., Hashemi, S., Dehghantanha, A., Parizi, R. M. & Choo, K.-K.R. An enhanced stacked lstm method with no random
initialization for malware threat hunting in safety and time-critical systems. IEEE Trans. Emerg. Top. Comput. Intell. 4, 630–640
(2020).

	 4.	 Carrier, T., Victor, P., Tekeoglu, A. & Lashkari, A. H. Detecting obfuscated malware using memory feature engineering. In Icissp,
177–188 (2022).

	 5.	 Huseynov, H., Kourai, K., Saadawi, T. & Igbe, O. Virtual machine introspection for anomaly-based keylogger detection. In 2020
IEEE 21st International Conference on High Performance Switching and Routing (HPSR), 1–6 (IEEE, 2020).

	 6.	 Homayoun, S., Dehghantanha, A., Ahmadzadeh, M., Hashemi, S. & Khayami, R. Know abnormal, find evil: Frequent pattern
mining for ransomware threat hunting and intelligence. IEEE Trans. Emerg. Top. Comput. 8, 341–351 (2017).

	 7.	 Shukla, S., Kolhe, G., P.D, S. M. & Rafatirad, S. Stealthy malware detection using rnn-based automated localized feature extraction
and classifier. In 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), 590–597 (IEEE, 2019).

	 8.	 Lee, Y., Woo, S., Song, Y., Lee, J. & Lee, D. H. Practical vulnerability-information-sharing architecture for automotive security-risk
analysis. IEEE Access 8, 120009–120018 (2020).

	 9.	 Dener, M., Ok, G. & Orman, A. Malware detection using memory analysis data in big data environment. Appl. Sci. 12, 8604 (2022).
	10.	 Chen, C.-W., Su, C.-H., Lee, K.-W. & Bair, P.-H. Malware family classification using active learning by learning. In 2020 22nd

International Conference on Advanced Communication Technology (ICACT), 590–595 (IEEE, 2020).
	11.	 Lashkari, A. H., Li, B., Carrier, T. L. & Kaur, G. Volmemlyzer: Volatile memory analyzer for malware classification using feature

engineering. In 2021 Reconciling Data Analytics, Automation, Privacy, and Security: A Big Data Challenge (RDAAPS), 1–8 (IEEE,
2021).

	12.	 Mu, D. et al. Pomp++: Facilitating postmortem program diagnosis with value-set analysis. IEEE Trans. Softw. Eng. 47, 1929–1942
(2019).

	13.	 Xu, Y., Li, D., Li, Q. & Xu, S. Malware evasion attacks against IoT and other devices: An empirical study. Tsinghua Sci. Technol. 29,
127–142 (2023).

	14.	 Aurangzeb, S. & Aleem, M. Evaluation and classification of obfuscated android malware through deep learning using ensemble
voting mechanism. Sci. Rep. 13, 3093 (2023).

	15.	 Shafin, S. S., Karmakar, G. & Mareels, I. Obfuscated memory malware detection in resource-constrained IoT devices for smart city
applications. Sensors 23, 5348 (2023).

	16.	 Hidouri, A., Hajlaoui, N., Touati, H., Hadded, M. & Muhlethaler, P. A survey on security attacks and intrusion detection
mechanisms in named data networking. Computers 11, 186 (2022).

	17.	 Yang, L., Liu, G., Dai, Y., Wang, J. & Zhai, J. Detecting stealthy domain generation algorithms using heterogeneous deep neural
network framework. IEEE Access 8, 82876–82889 (2020).

	18.	 Setiawan, H., Putro, P. A. W., Pramadi, Y. R. et al. Comparison of lstm architecture for malware classification. In 2020 International
Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS), 93–97 (IEEE, 2020).

	19.	 Vinayakumar, R., Soman, K., Poornachandran, P., Akarsh, S. & Elhoseny, M. Improved dga domain names detection and
categorization using deep learning architectures with classical machine learning algorithms. In Cybersecurity and Secure
Information Systems: Challenges and Solutions in Smart Environments, 161–192 (Springer, 2019).

	20.	 Dang, Q.-V. Detecting obfuscated malware using graph neural networks. In International Conference on Power Engineering and
Intelligent Systems (PEIS), 15–25 (Springer, 2023).

	21.	 Gorment, N. Z., Selamat, A. & Krejcar, O. Obfuscated malware detection: Impacts on detection methods. In Asian Conference on
Intelligent Information and Database Systems, 55–66 (Springer, 2023).

	22.	 Naeem, M. R. et al. A malware detection scheme via smart memory forensics for windows devices. Mobile Inf. Syst. 2022, 9156514
(2022).

	23.	 Hossain, M. A. & Islam, M. S. Enhanced detection of obfuscated malware in memory dumps: A machine learning approach for
advanced cybersecurity. Cybersecurity 7, 16 (2024).

	24.	 Hasan, S. R. & Dhakal, A. Obfuscated malware detection: Investigating real-world scenarios through memory analysis. In 2023
IEEE International Conference on Telecommunications and Photonics (ICTP), 01–05 (IEEE, 2023).

	25.	 Alani, M. M., Mashatan, A. & Miri, A. Xmal: A lightweight memory-based explainable obfuscated-malware detector. Comput.
Secur. 133, 103409 (2023).

	26.	 Öztürk, A. & Hızal, S. Detection and analysis of malicious software using machine learning models. Sakarya Univ. J. Comput.Inf.
Sci. 7, 264–276 (2024).

	27.	 Maniriho, P., Mahmood, A. N. & Chowdhury, M. J. M. Memaldet: A memory analysis-based malware detection framework using
deep autoencoders and stacked ensemble under temporal evaluations. Comput. Secur. 142, 103864 (2024).

	28.	 Prasad, A. & Chandra, S. Botdefender: A collaborative defense framework against botnet attacks using network traffic analysis and
machine learning. Arab. J. Sci. Eng. 49, 3313–3329 (2024).

Scientific Reports | (2025) 15:26971 20| https://doi.org/10.1038/s41598-025-12404-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

	29.	 Prasad, A. & Chandra, S. Phiusiil: A diverse security profile empowered phishing url detection framework based on similarity
index and incremental learning. Comput. Secur. 136, 103545 (2024).

	30.	 Shuai Li, A., Iyengar, A., Kundu, A. & Bertino, E. Transfer learning for security: Challenges and future directions. arXiv e-prints
arXiv–2403 (2024).

Acknowledgements
The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University,
Arar, KSA for funding this research workthrough the project number “NBU-FFR-2025-2443-04”. The authors
extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for fund-
ing this work through LargeResearch Project under grant number RGP2/473/46.

Author contributions
A.A.: Conception and design of study, Analysis and/or interpretation of data, Writing—original draft, Method-
ology, Acquisition of data. S.A.: Writing—original draft, Writing—review & editing, Data Analysis, Implementa-
tion, Acquisition of data. N.K.: Writing—original draft, Supervision, Writing—review & editing, Methodology.
A.A.H.: Writing—original draft, Writing—review & editing, Methodology, Resources, Visualizations. B.B.: Writ-
ing—original draft, Writing—review & editing, Visualizations, Funding Acquisition. M.A.: Writing—original
draft, Writing—review & editing, Methodology, Funding Acquisition, Supervision, Administration. S.A.: Writ-
ing—original draft, Acquisition of data, Conceptualization, Writing—review & editing, Methodology.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to N.K. or S.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025

Scientific Reports | (2025) 15:26971 21| https://doi.org/10.1038/s41598-025-12404-w

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Transfer learning with XAI for robust malware and IoT network security
	﻿Research motivation
	﻿Research contribution
	﻿Organization
	﻿﻿Related work
	﻿Obfuscated malware background
	﻿Machine and deep learning techniques

	﻿﻿Proposed methodology
	﻿Data description
	﻿MalwareMemoryDump dataset
	﻿NF-TON-IoT dataset
	﻿	UNSW-NB15 Dataset

	﻿Data preprocessing
	﻿Shapley additive explanations
	﻿Deep neural network
	﻿Transfer learning
	﻿﻿Experimental results and analysis
	﻿Evaluation matrices
	﻿Findings and discussion

	﻿﻿Conclusion
	﻿References

