www.nature.com/scientificreports

scientific reports

OPEN

W) Check for updates

Transfer learning with XAl for
robust malware and loT network
security

Ahmad Almadhor?, Shtwai Alsubai?, Natalia Kryvinska3*, Abdullah Al Hejaili*,
Belgacem Bouallegue®, Mohamed Ayari® & Sidra Abbas”**

Malware that exploits user privacy has increased in recent decades, and this trend has been linked to
shifting international regulations, the expansion of Internet services, and the growth of electronic
commerce. Furthermore, it is very challenging to detect privacy malware that uses obfuscation as an
evasion tactic due to its behaviour, resilience, and adaptability during runtime. Forensic techniques,
such as memory dumping analysis, must be used to enable a system to identify and classify patterns
and behaviours that facilitate its eventual identification. This research developed a deep learning
model for malware classification on an obfuscated malware dataset, called the MalwareMemoryDump
dataset. It implemented transfer learning (TL) to adapt the trained model to NF-TON-loT and
UNSW-NB15, improving intrusion detection in IoT and network traffic. We conducted extensive
experiments showing improved accuracy and efficiency in cross-domain detection scenarios. Further,
we demonstrate that transfer learning minimises training time and computational requirements
compared to training separate models from scratch. Additionally, it offers XAl-based explainability to
enhance model transparency and interoperability. We demonstrated the effectiveness of the proposed
model in handling diverse heterogeneous cybersecurity threats across memory-based malware
analysis, loT security, and traditional network intrusion detection. The effectiveness of the proposed
methodology is evaluated using several key metrics to demonstrate its advantages over conventional
methods. Experimental findings show that the proposed framework attains 99.9% accuracy on the
MalwareMemoryDump dataset, 96% on the NF-Ton-loT dataset and UNSW-NB15 datasets. Because of
its innovative methodology and ability to generalise datasets, the model is a highly effective approach
that outperforms many of the most recent malware detection and other security techniques.

Keywords Memory dump analysis, Transfer learning, Intrusion detection system, Deep neural networks,
Shapley additive explanations, Malware attacks

In the digital world, individuals have an unalienable right to privacy, which must be protected by laws and
technological advancements!. These include regulations for secure processing, archiving, and retention of
sensitive data, such as the General Data Protection Regulation (GDPR) in Europe and the Health Insurance
Portability and Accountability Act (HIPAA) in the United States®. However, these legal actions have been
significantly diminished by specialised spyware that targets victims’ privacy, either directly or through agents
who have the authority to manage their private data®. According to?, the three primary malware kinds with
various families that currently threaten user privacy are Trojan horses, ransomware, and spyware. Spyware is a
type of malware that poses the greatest harm to user privacy, as it eavesdrops and snoops to gather information®.
The ability of ransomware to create command and control connections to an attacker’s computer system, allowing
it to take data before encrypting it, is one of its distinctive features®. Trojan horse malware can then produce
backdoors, which enable it to deceive the user by appearing to be a genuine application and spy and steal data’.

1Department of Computer Engineering and Networks, College of Computer and Information Sciences, Jouf
University, Sakaka 72388, Saudi Arabia. 2College of Computer Engineering and Sciences, Prince Sattam bin
Abdulaziz University, AlKharj 16273, Saudi Arabia. *Department of Information Management and Business
Systems, Comenius University Bratislava, Odbojérov 10, 82005 Bratislava 25, Slovakia. “Computer Science
Department, Faculty of Computers and Information Technology, University of Tabuk, Tabuk 71491, Saudi Arabia.
Department of Computer Engineering, College of Computer Science, King Khalid University, Abha 61421, Saudi
Arabia. ®Department of Information Technology, Faculty of Computing and Information Technology, Northern
Border University, Arar, Saudi Arabia. ’Department of Computer Engineering, COMSATS University Islamabad,
Sahiwal Campus, Sahiwal 57000, Pakistan. “‘email: natalia.kryvinska@uniba.sk; sidraabbas@ieee.org

Scientific Reports| (2025) 15:26971 | https://doi.org/10.1038/s41598-025-12404-w nature portfolio

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-12404-w&domain=pdf&date_stamp=2025-7-24

www.nature.com/scientificreports/

Cyberattacks using these three forms of privacy viruses may have evolved in response to the expansion of
online services and electronic commerce®. Despite differences in their architecture and methods, the majority
of modern families of specialized spyware, ransomware, and Trojan horses have a single feature in common:
once a legitimate operating system process launches them, security controls are unlikely to catch them until the
malware has completed, either completely or partially, its target’. This is primarily due to their avoidance strategy
of obfuscation. There is currently no uniform and clear method to identify and comprehend the tendencies and
behaviours of obfuscated privacy malware at runtime, and the majority of privacy malware detection strategies
focus on detecting non-obfuscated privacy malware®1°.

As shown in Fig. 1!, when obfuscated privacy malware violates a system, memory dumping and analysis can
identify particular patterns and behaviours that the system activities encounter in order to create a classifier for
obfuscated privacy malware. Several features can be used to differentiate and even classify the various kinds of
obfuscated privacy malware by family. These variables include the variety of sockets designed for communication
to remote places, the number of mutexes and semaphores utilized, and the number of handlers the operating
system opened in response to a procedure request. Lashkari et al.!!, and Mu et al.!? contributions provide an
extensive overview of this process. However, based on the patterns and behaviours of the many families and classes
of obfuscated privacy malware, conventional programming techniques are unable to determine a generalisation.
As a result, machine learning (ML) techniques, especially DNNs, are widely used to analyze camouflaged privacy
spyware. Consequently, this study suggests a TL method for categorising obfuscated privacy malware that can
attain comparable metrics by applying advanced strategies suggested by prior studies.

Research motivation

Malicious software that utilises obfuscation as a primary method of evading security measures at runtime
includes programs that conceal their features, capabilities, and activities. Detecting obfuscated malware is
extremely difficult since it is immune to signature-based methods employed by security controls such as antivirus
applications, IDS, and intrusion protection system engines'®. Lower detection metrics are obtained against this
resistance as opposed to malware that is not obfuscated. Furthermore, it becomes more challenging to identify

Memory
dumping

System crashed because of the
obfuscated privacy malware

Memory dumping
analysis

A
L R

Behaviors Patterns
L)
T

MalwareMemoryDump
Dataset

v v

[Deep Neural Network] [Transfer Learning]

Fig. 1. Memory dumping analysis.

Scientific Reports |

(2025) 15:26971 | https://doi.org/10.1038/s41598-025-12404-w nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

patterns and behaviours for recognition due to the hardiness and polymorphism of this kind of malware, which
allows it to change and show itself in many ways after being activated!. Furthermore, multiclass classification
with obfuscated malware is particularly challenging, as it makes it difficult to create characteristics that allow for
a distinct division of malware into multiple families and categories'®. Understanding the family and category of
privacy malware is necessary to implement efficient security controls and countermeasures and to comprehend
the nature of an attack'.

Although obfuscation is a technique that many malware types can use to evade detection, the majority of
specialised privacy malware makes extensive use of it, which has a greater impact on users and organisations than
malware designed to target other security principles, such as the availability or integrity of the information'.
This is due to its unpredictable patterns and actions, which are intentionally designed to facilitate theft,
snooping, and the extraction of private information, ultimately leading to data leaks’. Several methods have been
proposed for gathering data that is necessary for the subsequent identification and categorisation of obfuscated
privacy malware. Domain Generation Algorithms (DGA) analysis'’, command and control sequence pattern
detection!®, and DNS pattern analysis for malware hosting!® are some examples. However, memory dumping
analysis is the most intriguing? since it enables the analysis of post-mortem scenarios, providing information
about the key features and actions of the virus after it has completed its full attack process®.

The objective of this research endeavour is to create a sophisticated malware detection system with enhanced
accuracy and interpretability by utilising transfer learning and SHAP. To guarantee data integrity, the method
begins by preparing malware memory dump datasets. In order to optimise the parameters and produce SHAP
values for explainability, a DNN is first trained on MalwareMemoryDump data. While including SHAP-based
feature extraction, the pre-trained model is improved using new datasets (NF-TON-IoT and UNSW-NBI15).
A fully connected layer and softmax activation enhances the classification process. For obfuscated malware
families, this two-step approach increases detection accuracy while maintaining transparency. By evaluating its
effectiveness against existing methods, this work contributes to the development of a scalable and interpretable
malware detection system.

Research contribution
This research enables more accurate and efficient detection of obfuscated malware attacks. The following is a list
of the main scientific discoveries and contributions.

o Obfuscated Malware Classification and Transfer Learning for IDS — Developed a deep learning model for mal-
ware classification and implemented Transfer Learning (TL) to adapt the trained model to NF-TON-IoT and
UNSW-NBI15, improving intrusion detection in IoT and network traffic.

o Reduced Computational Cost- Demonstrated that transfer learning minimizes training time and computa-
tional requirements compared to training separate models from scratch.

o Explainability and Transparency- Provide XAl-based explainability on improving model transparency and
interoperability.

o Generalisation Across Cybersecurity Domains — Demonstrated the effectiveness of the proposed model in han-
dling diverse heterogeneous cybersecurity threats across memory-based malware analysis, IoT security, and
traditional network intrusion detection.

o Cross-Dataset Threat Detection — Conducted extensive experiments showing improved accuracy and efficien-
cy in cross-domain detection scenarios.

Organization

The notions used throughout the paper are shown in Table 1. The following part provides further structure for
the paper. Section “Related work” provides background related to obfuscated malware detection. In section
“Proposed methodology”, the suggested approach is explained. In section “Experimental results and analysis”, the
efficiency of the proposed method is assessed and compared with the baseline techniques. Section “Conclusion”
concludes the entire paper and contains recommendations for future research.

Related work

The increasing complexity of obfuscated malware presents a constant challenge to cybersecurity, posing a
significant obstacle to maintaining digital security. With an emphasis on memory analysis and the growing
significance of machine learning (ML) approaches, this literature review examines both classic and recent
studies in the field of malware detection. This study critically assesses current models, identifies their inherent
limits, and assesses their success rates to investigate this emerging concern. This analysis highlights the need for
contemporary detection methods that can address more elusive cyber threats while also illuminating the current
state of cybersecurity defences.

Obfuscated malware background

According to the authors in?*2!, the notion of “obfuscated malware” describes a substantial category of online
threats that fall outside the purview of conventional detection techniques in the constantly evolving area of
cybersecurity. These extremely talented adversaries attempt to conceal their true identities and activities within
the vast world of online operations by employing evasion techniques with unparalleled skill. Obfuscated malware
accomplishes this using a variety of obfuscation techniques that challenge standard signature-based detection
algorithms, such as code encryption and polymorphic behaviour. In the study?®?, the researchers explore that
memory dumps are a vital battlefield for revealing the covert operations of obfuscated malware in the field of
cybersecurity research. In essence, a memory dump is an impression that shows the complex information stored
in a computer’s random-access memory (RAM) at a particular point in time. This transient archive becomes

Scientific Reports |

(2025) 15:26971 | https://doi.org/10.1038/s41598-025-12404-w nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Abbreviation | Description

Al Artificial Intelligence

ANN Artificial Neural Network

APT Advanced Persistent Threat

NB Naive Bayes

CNN Convolutional Neural Network
CWT Continuous Wavelet Transform
DDAD Data-Driven Anomaly Detection
DDoS Distributed Denial of Services

DL Deep Learning

DNN Deep Neural Network

DoS Denial of Services

DT Decision Tree

EDA Exploratory Data Analysis

FALC Federated Averaging Learning Classifier
GRU Gated Recurrent Unit

GDPR General Data Protection Regulation
HPC Hardware Performance Counter
HADRL Hierarchical Adversarial

HIPAA Health Insurance Portability and Accountability Act
IoT Internet of Things

ISD Intrusion Detection System

KNN K-Nearest Neighbour

LSTM Long Short Term Memory

ML Machine Learning

NB Naive Bayes

NIDS Network Intrusion Detection System
PARNet Attention Pyramid Network

RAM Random Access Memory

RF Random Forest

RNN Recurrent Neural Network

RT Random Tree

SVM Support Vector Machine

SHAP Shapley Additive Explanations
SMOTE Synthetic Minority Oversampling Technique
TL Transfer Learning

Table 1. Abbreviations list.

an invaluable resource for malware research, providing unmatched insights into how processes and programs
behave during runtime. Being aware of RAM’s instability, obfuscated malware deliberately hides in memory
to capitalise on the constantly evolving digital landscape. Since these hostile entities frequently masquerade
as legitimate processes, it becomes challenging to distinguish between benign and malicious activity, making
memory dump analysis a delicate art. Finding these evil actors and comprehending the complex transformations
they carry out within the boundaries of volatile memory are both difficult tasks. By navigating the complexities of
memory dumps, researchers can interpret the behavioural patterns of obfuscated malware, thereby overcoming
the limitations of conventional detection techniques. The importance of memory dump analysis continues to
grow as digital threats become increasingly complex, necessitating creative and flexible strategies to enhance

cybersecurity defences®.

Machine and deep learning techniques

Authors in** proposed a straightforward and reasonably priced method for detecting obfuscated malware
through memory dump analysis and a range of machine learning techniques. This work utilises the CIC-
MalMem-2022 dataset, which is designed to simulate real-world scenarios and evaluate memory-based
obfuscated malware detection. They assess the potential for machine learning (ML) algorithms to detect
malware hidden in memory dumps. The results show that the XGBoost classifier outperformed the others in
malware detection and classification, achieving an accuracy of 0.88 on the original data. Authors in*® present
an ML-based, lightweight, obfuscated malware detection. Only five features extracted from memory dumps are
used in the extreme gradient boost-based suggested method, which achieves a detection accuracy of more than
99%. Recursive feature elimination was used to choose these five features based on their relative relevance. The

Scientific Reports |

(2025) 15:26971 | https://doi.org/10.1038/s41598-025-12404-w nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

study’s assessment showed that the system could identify malware instances in as little as 0.413 ps. SHAP were
used to describe the model. The authors in! provide three classifiers for obfuscated privacy malware that were
trained on the CIC-MalMem-2022 dataset using logistic regression (LR). In these solutions, malicious samples
are separated from benign ones using a binary classifier. Trojans, spyware, ransomware, and benign samples are
further separated from obfuscated privacy malware using a multiclass classifier. A more advanced multiclass
classifier is able to separate benign samples from fifteen different families of obfuscated privacy malware. The
study employed a unique deep neural network (DNN) in conjunction with several traditional ML techniques to
develop multiclass classifiers. According to the study’s findings, DNN outperforms conventional ML techniques
and yields significant statistical improvements in certain parameters.

Authors in?® evaluated the effectiveness of machine learning techniques in detecting obfuscated malware
using the CIC-MalMem-2022 dataset. Among the algorithms assessed are J-48 (C4.5), Random Tree (RT),
Random Forest (RF), Naive Bayes (NB), and XGBoost. RE, J-48, and XGBoost are effective in achieving high
accuracy rates across a range of classification tasks, as indicated by experimental results. Although NB performs
competitively as well, it struggles with multiclass classification and unbalanced datasets. The study’s findings,
which achieved a 99.9% accuracy rate for binary classification, emphasise the significance of using cutting-
edge ML approaches to improve obfuscated malware detection abilities and provide insightful information to
researchers and cybersecurity practitioners. The author of the study?’ presents MeMalDet, an innovative memory-
based malware detection technique. It utilises deep autoencoders and stacked ensemble learning. The authors
propose an improved dataset with temporal features (temporal data split) to give more accurate evaluations of
memory-based malware detection techniques. To avoid human feature engineering, MeMalDet utilises deep
autoencoders to extract optimal features from memory dumps. Then, extremely accurate malware detection is
performed using a stacked ensemble. MeMalDet can successfully detect obfuscated malware under temporal
splits, as demonstrated by extensive tests on our enhanced large-scale public dataset. Modern memory analysis-
based malware detection methods are greatly outperformed by the study, which achieved up to 98.82% accuracy
and 98.72% F1-score in identifying previously observed advanced obfuscated malware. In research?, the author
enhances the development of VolMemLyzer, one of the most recent memory feature extractors for learning
systems, by employing a stacked ensemble ML model to target hidden and obfuscated malware. This enables the
development of a framework for effectively identifying malware. To assess and validate this method, a specific
malware memory dataset (MalMemAnalysis2022) was developed, with a focus on closely replicating real-world
obfuscated malware. The results show that using memory feature engineering, the proposed method can rapidly
detect hidden and obfuscated malware with accuracy and F1-Score of 99.00% and 99.02%, respectively.

In?8, the authors proposed BotDefender, an integrated system designed to defend against botnet attacks.
BotDefender prevents botnet attacks by combining a machine-learning technique with a proposed network
traffic analyzer. A live botnet attack strategy is designed and developed to assess BotDefender’s performance.
Throughout the live test, BotDefender attains a 100% overall accuracy rate and filters out 99.8% of the botnet
traffic. In?, the authors introduced PhiUSIIL, a system for detecting phishing URLs that use incremental
learning and similarity indexes. However, squatting, combo squatting, homograph, Punycode, homophone,
zero-width characters, and other visual similarity-based attacks can each be successfully identified with the use
of the similarity index. When using a fully incremental training technique, PhiUSIIL achieved an accuracy of
99.24%; when using a pre-training approach, it achieved an accuracy of 99.79%.

Although obfuscated malware detection has advanced significantly, several research gaps remain that limit
the efficacy and generalizability of current methods. Numerous studies primarily focus on specific datasets,
such as network traffic captures or memory dumps, which may not accurately reflect the obfuscation strategies
employed in the real world. The suggested models’ ability to adapt to evolving malware threats and changing attack
tactics is challenged by this dataset’s dependency. Furthermore, although deep learning and machine learning
models have proven to be highly accurate in controlled environments, little is known about their resilience to
adversarial attacks and evasion strategies. Practical implementation in resource-constrained contexts is difficult
since several studies emphasize detection performance without providing a thorough review of computing
efficiency. Furthermore, the use of existing works in cybersecurity operations, where interpretability is crucial
for threat analysis and response, is limited because they often prioritise model correctness over explainability.
The summary of the existing literature is provided in Table 2.

Proposed methodology

In this section, a transfer learning model for detecting obfuscated malware is described. The description begins
by providing an overview of the data collection and system model preparation before moving on to the DL
and TL models, which are used to classify malware attacks. Figure 2 and Algorithm 1 present an extensive
malware detection methodology based on transfer learning and SHAP (SHapley Additive exPlanations) values
for model interpretability. Data preprocessing, which includes handling missing values, normalization to scale
features appropriately, and label encoding to convert categorical labels into numerical form, is the initial step in
processing a malicious memory dump dataset. This process cleans and prepares the dataset for model training.
In the first step, a Deep Neural Network (DNN) model is trained using this preprocessed data to establish
an initial knowledge of malware features. The learned model weights are then preserved for transfer learning.
Furthermore, SHAP values are determined to provide explainability by identifying the most significant features
influencing the model’s predictions, and two datasets, NF-TON-IoT and UNSW-NBI15, are added for further
evaluation. In the transfer learning phase, the knowledge of the pre-trained DNN model is applied to detect
malware attacks more accurately. NF-TON-IoT and UNSW-NB15 datasets are used to fine-tune the model in the
target domain, while the original DNN model was trained on general malware data in the source domain. The
pre-trained model and preprocessed data with SHAP features constitute the source domain, while new datasets
that undergo similar preprocessing and SHAP analysis are included in the target domain. By using the pre-

Scientific Reports |

(2025) 15:26971 | https://doi.org/10.1038/s41598-025-12404-w nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Refs.

Focus

Dataset

Findings & results

Limitations

20

Graph Neural Networks (GNN) for obfuscated
malware detection

Custom dataset based on
malware graph structures

Achieved 94.3% accuracy in detecting
obfuscated malware

Requires large labeled datasets;
computationally expensive

21

Impact of obfuscation on malware detection
techniques

Multiple malware datasets,
including public repositories

Showed significant drop in detection
accuracy for traditional methods

Lack of a proposed mitigation
strategy; limited real-world testing

22

Smart memory forensics for Windows malware
detection

Memory dumps from
Windows devices

Demonstrated 92% accuracy using memory
analysis techniques

Focuses only on Windows devices;
lacks comparison with other OS

23

Machine learning for obfuscated malware
detection in memory dumps

Public and synthetic memory
dump datasets

Improved detection rates compared to
traditional heuristics

May suffer from adversarial attacks;
requires frequent retraining

24

Real-world obfuscated malware detection through
memory analysis

Memory snapshots of real-
world malware samples

Achieved over 90% detection accuracy in
various scenarios

Performance may vary with unseen
malware samples; potential overfitting

25

Explainable AI for obfuscated malware detection

Lightweight memory-based
dataset

XMal model achieved competitive results
with lower resource consumption

Limited interpretability for complex
obfuscation techniques

Privacy-focused malware detection via memory
dumping analysis

Large-scale memory dump
dataset

Effective classification with minimal false
positives

High computational cost; privacy
concerns with memory analysis

26

Malware detection using machine learning models

Various malware repositories

Compared multiple ML models, with deep
learning achieving the highest accuracy

Feature selection requires refinement;
high false positive rate

Deep autoencoders for malware detection using
memory analysis

Temporal evaluation-based
dataset

Stacked ensemble model achieved over 95%
accuracy

Model performance depends on
proper hyperparameter tuning

Memory feature engineering for obfuscated
malware detection

Experimental dataset
from controlled memory
environments

Demonstrated effective feature engineering
for malware detection

Requires extensive feature extraction;
high dependency on dataset quality

Table 2. Summary of related work on obfuscated malware detection.

trained weights as an initial base, the learnt information is transferred, enabling the model to adapt and further
develop its malware classification abilities. The pre-trained DNN model is then enhanced with a fully linked
layer to improve classification using an entire transfer learning architecture. The model’s outputs are transformed
into probability distributions across the malware and benign classes using a softmax activation function. The
final classifications, indicating whether a sample is malicious or benign, are generated by matching the source
and target labels to their respective datasets. The model benefits from existing knowledge while adapting to
new datasets through this two-stage process, which comprises initial training and transfer learning. By adding
SHAP values at every stage of the procedure, model transparency is improved, and malware detection decisions
become easier to comprehend.

Scientific Reports |

(2025) 15:26971 | https://doi.org/10.1038/s41598-025-12404-w nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Data Preprocessing

Check Missing

LR — D 'a
values 1110101 Normalzation
- *
Malware]]] . E n Preprocessed Data
Memory Dump — — — ==K
Dataset :
Label .
- e
Train Deep - i
r:::umele P g s TER & Preserve model
Netowrk - oy o weights
Model : o

Load preprocessed
NF-TON-IoT and
UNSW-NB15
Datasets

Apply SHAP for
Explainability

A
4 -

-

j!
i
J

H

1
!

pierdidanedd

| —————r 44
o4

AP v (gt o el Ut

Apply Transfer Learning for K B /

Mmalware attacks detection |

/ Pre-Trained Model [Fully Connested Layer |

Souroe\
Labels
Sourc_e Source Data
Domain (Pretrained data Malware
M +sHaP NGV IR® 5 > > - Attacks
features) (Benign or
Malware)
& L - J
L— » ﬁ
= Transfer Learning

\} J\ | Fully Connested Layer | Target
) W Labels

Target Data \ P

Target (Pretrained data Attacks

Domain *SHAP NEEVIEel L L (Benign or]
\ features) Matware)/

Fig. 2. Proposed architecture for obfuscated malware detection.

Scientific Reports| (2025) 15:26971 | https://doi.org/10.1038/s41598-025-12404-w nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

—- = =
N =2

—_
(5]

33:
34:

35:
36:
37:
38:

39:
40:

: Input: Source Dataset Dy c., Target Datasets Dygyge; (NF-TON-IOT, UNSW-NB15)
: Output: Malware classification y € {Benign, Malware }

: Preprocessing(D)

: D < clean(D) Handle missing values
X X%” Normalize features

: y < encode(y) Encode labels

: Return X,y

. Initial Training(X,y)
: Build Neural Network Model:

fo = Sequential([Dense(128, ReLU), Dropout(0.3),
Dense(64, ReLU), Dropout(0.3), Dense(1, Sigmoid)])

: Compile model using Adam optimizer and binary cross-entropy loss:

N
Z(.3) =~y X Dilog(9) + (1 -y)log(1-5)]
6;=6_1—n gj’% where:
my = PBim—1+(1—P1)Ve L
vi = Bovi1 + (1= B2)(Vo-2)?

A My 0, — Vr
mt - I_Bfa Vt I_Bé

: Initialize EarlyStopping on validation loss: stop if there is no improvement for p = 3 epochs
: fore=1to E do

Train model fg on training set using batch size = 32

Evaluate model on validation set and compute LEV“Z)

if Lﬁ”‘” has not improved for p consecutive epochs then
Stop training and restore the best weights
end if

: end for

: Compute SHAP values S = SHAP(fy,X)

: Return fy«, S

: Transfer Learning(fo+, D;arger)

: Preprocess Dygrger

. Extract SHAP features Syarger = SHAP(fo+, Xiarger)
: Fine-tune model:

M
0 0 = argming ﬁ Zlg(fﬂ (Xlarget,j)aymrget,j)
=

Add fully connected layer hy(z) where z = fg(X)
Apply softmax:
. 5 (2)
p(y‘X) - Z:eh¢(zk)
Return Adapted Model for 4
Malware Classification(fo/ ¢, Xpew)
Predict Malware:
$ = argmaxy p(y[Xyew)
Return Label € {Benign, Malware}

Algorithm 1. Malware Detection using Transfer Learning

Data description
This study uses three datasets: MalwareMemoryDump, NF-TON-IoT and UNSW-NB15 datasets for obfuscated
malware detection.

MalwareMemoryDump dataset

Obfuscated malware is a type of malicious software that deliberately conceals itself to avoid detection and
expulsion; it can be identified from the memory dump of the infected device. The obfuscated malware dataset
was specifically designed to evaluate the efficacy of methods for detecting obfuscated malware using memory
analysis, and it includes common malware categories such as Trojan Horses, ransomware, and spyware to resemble
real-world scenarios. Testing the effectiveness of obfuscated malware detection systems can be performed with
a well-balanced sample set. To ensure accuracy and prevent the memory dumps from revealing any indications

Scientific Reports| (2025) 15:26971 | https://doi.org/10.1038/s41598-025-12404-w nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Malware type | Infectious file | Instances

Zeus 195
Emotet 196
Trojan Horse | Refroso 200
Scar 200
Reconyc 157

180Solutions 200

Coolwebsearch | 200

Spyware Gator 200
Transponder 241
TIBS 141
Conti 200
MAZE 195
Ransomware | Pysa 171
Ako 200
Shade 220

Table 3. Distribution of infection types and their instances.

Attribute Details

Dataset type NetFlow-based IoT Security Dataset
Total data flows 1,379,274

Benign flows 270,279 (19.6%)

Attack flows 1,108,995 (80.4%)

Attack categories | DoS, DDoS, MITM, Injection, Password Attacks, Ransomware, Scanning, XSS

IoT devices Various IoT devices and protocols

Application areas | Intrusion Detection, Malware Analysis, Threat Intelligence

Data format NetFlow records (network flow summary)

Table 4. NF-ToN-IoT dataset overview.

of the dumping process, the dataset operates in debug mode during the memory dump procedure. With the
balanced dataset, 50% of memory dumps are malicious, and 50% are benign. Table 3 describes the malware
families. The set contains 58,596 records, comprising 29,298 malicious and 29,298 benign records.

NF-TON-IoT dataset

An adaptation of the ToN-IoT dataset based on NetFlow, the NF-ToN-IoT dataset, is intended especially for
assessing cybersecurity applications in Internet of Things (IoT) network environments [https://research.unsw.
edu.au/projects/toniot-datasets]. It records network traffic as NetFlow records, which provide a simplified but
useful representation of network flows, as opposed to full packet captures. Its structure renders it suitable for
cybersecurity research, particularly in the fields of intrusion detection, malware analysis, and threat intelligence.
The dataset encompasses a wide range of Iot devices and protocols, providing a realistic simulation of Iot
network traffic, as shown in Table 4. One of the main characteristics of the NF-ToN-IoT dataset is its thorough
attack classification, which covers threats such as DoS, DDoS, Man-in-the-Middle (MITM), injection attacks,
password attacks, ransomware, scanning, and cross-site scripting (XSS). With a total of 1,379,274 data flows, the
dataset contains 270,279 benign flows (19.6%) and 1,108,995 attack flows (80.4%), making it sufficiently large
for training and assessing DL models.

UNSW-NB15 Dataset

The well-known UNSW-NB15 benchmark dataset for NIDS was developed by the University of New South Wales
(UNSW) Cyber Security Lab [https://research.unsw.edu.au/projects/unsw-nb15-dataset]. Numerous modern
attack methods, including worms, shellcodes, reconnaissance, backdoors, fuzzers, exploits, denial of service
(DoS), and generic attacks, are included in the dataset in Table 5. The dataset is highly relevant for research and
practical applications, as these attack types are typical of real-world cybersecurity threats. Both hostile and benign
traffic were recorded by UNSW-NB15, which was developed in a practical but controlled network environment.
The dataset is available in two formats: CSV, which provides a structured and preprocessed version suitable for
machine learning applications, and PCAP (Packet Capture), which preserves detailed network traffic data for
in-depth analysis. To facilitate supervised learning techniques, each network flow is labelled to indicate whether
it constitutes an attack or typical traffic. The dataset contains approximately 2,576,118 records, comprising both
normal and malicious traffic.

Scientific Reports |

(2025) 15:26971 | https://doi.org/10.1038/s41598-025-12404-w nature portfolio

https://research.unsw.edu.au/projects/toniot-datasets
https://research.unsw.edu.au/projects/toniot-datasets
https://research.unsw.edu.au/projects/unsw-nb15-dataset
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Attribute Details

Dataset name UNSW-NBI15

Developed by University of New South Wales (UNSW) Cyber Security Lab
Total records 2,576,118

Traffic type Normal and Malicious

Attack categories | Worms, Shellcode, Reconnaissance, Backdoors, Fuzzers, Exploits, DoS, Generic

Environment Realistic but Controlled Network
Data formats PCAP (Raw Traffic), CSV (Preprocessed Features)
Labelling Each network flow is labelled as an attack or normal traffic

Table 5. UNSW-NB15 dataset overview.

Data preprocessing

Data preprocessing is a crucial step in processing raw data for ML and DL models. Normalisation, standardisation,
and categorical variable encoding are methods for processing data. Robust model training can be achieved by
handling inconsistent data with resampling techniques or class weight adjustments. Data cleaning involves
removing duplicates, correcting outliers, and imputation, which is the process of filling in missing values. The
data used in this study were standardised using the min-max scaling technique. In this study, We used the
isnull().sum() function, which counts the number of missing values per feature, to first determine whether null
values were present in each column in order to evaluate the dataset’s completeness. After that, we only showed
the columns with null values, which made it easy to recognise particular elements that needed improvement.
Furthermore, to provide a general understanding of the data quality, we computed and displayed the total
number of null values throughout the entire dataset.

Data Scaling: The suggested method begins with data normalisation. This data-scaling process ensures that
the weighted total stays within the initial work’s bounds. Slow convergence and inadequate network training
might result from unnormalized input. On the other hand, adding more data makes the merging process simpler
and makes the data dimensionless. The following is the definition of the min-max scaling strategy (Eq. 1), which
scales the data from 0 to 1.

D — Dmin

Dscated = =———F7— ey
seate Dmax - Dmin

The initial value from the database is D, the highest value is Dinqo, the minimum value used in the scaling
method is Dnin, and the scaled data is Dscaied.

Shapley additive explanations

Shapley Additive Explanations (SHAP), a prevalent interpretability technique in ML, describe the way each
feature affects a model’s predictions. The cornerstone of cooperative game theory is the Shapley values,
which divide each feature’s contribution to the final prediction equally. SHAP calculates the average marginal
contribution of a feature by taking into account all potential feature combinations. The SHAP value of a feature
x; can be determined mathematically in the manner described below in Eq. 2:

F|! .
i = Z |S|!(\F|‘f|\S|71)l [f(su{i}) = F(9)] (2)

SCF\{i} ’

The model’s output when only the features in S are considered is denoted by f(S), while F represents the complete
feature set and S represents a subset of features. SHAP values provide a suitable statistic of feature significance
and explainability by calculating each feature’s contribution to the model’s output. This is particularly useful
in cybersecurity applications such as malware detection, where understanding the reasons behind a model’s
classification of a sample as malicious can increase confidence and facilitate threat analysis. For this reason,
this study uses the SHAP for malware detection. Figure 3 represents the top-selected features based on SHAP
values. A feature does not affect the prediction for that particular instance if its SHAP value is 0. A single instance
from the dataset is represented by each dot on the plot; the colour of the dots indicates the feature value for that
instance, which is blue for low values and red for high values. For the NF-TON-IoT dataset, “Attack,” the most
significant feature influencing the model’s output, is critical in identifying the nature or existence of attacks
and has a strong positive impact when its value is high (Fig. 3a). As the 'L4 DST PORT feature shows,
larger Layer 4 destination port values typically have a positive effect, whereas smaller values frequently cause a
negative effect. This implies that particular network behaviours are closely associated with particular destination
ports. PROTOCOL,'L4_SRC _PORT,'TCP_FLAGS,'L7_PROTO, and a number of flow-related
metrics, including ‘OUT_BYTES, 'OUT _PKTS, 'FLOW _DURATION MILLISECONDS,
"IN _PKTS,and’"IN _BYTES,areadditional significant features. These features, which specify the number
of bytes and packets transmitted and received, as well as the length of the network flow, also affect the model’s
predictions to differing degrees. However, for the UNSW-NBI15 dataset in Fig. 3b , the top features influencing
the model’s output are different from those in NF-TON-IoT. ‘ct _state ttl (Count of connections with the
same state and destination address), swin (Source window size), and dttl (Destination Time-To-Live) are some

Scientific Reports |

(2025) 15:26971 | https://doi.org/10.1038/s41598-025-12404-w nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

FLOW_DURATION_MILLISECONDS

| High
dttl Bl - Y P
swin -“P.. e o Peefdlian .
High ct_state_ttl =33y spaue .
ct_dst_src_ltm o IBE Zieo Bowo
Attack e ¢ - _elst_sre T
dwin . .‘..-.-.*...
L4 _DST_PORT ‘4" oo ct_dst_sport_Itm B
. .
PROTOCOL -+- Eate B
sttl Py .*
L4_SRC_PORT + o - . .
TCP_FLAGS {- E teprtt cmepany - 5
g sinpkt - - -*- %
U‘PROTO + q\:-,J service d - . &
OUT BYTES | i ct_srv_src i
rate -—4...
OUT_PKTS |- o s
' synack -
dmean Qo=
IN_PKTS l . ;
- is_sm_ips_ports .e o’
IN_BYTES l ct_dst_ltm - pls
ackdat 4
T T T T T Low
-04 02 00 02 04 — L — - — — i
SHAP value (impact on model output) " i i s onmmodons .
(2) (b)

Fig. 3. Feature selection based on shapley additive explanations. (a) Top feature selected for NF-TON-IoT
dataset. (b) Top feature selected for UNSW-NB15 dataset

of the noteworthy features. Additional important features include ‘ct _dst _src_ltm (count of connections
with the same source and destination address), state (connection state), tcprtt (TCP round-trip time),
sintpkt (standard deviation of inter-packet arrival time), and service (network service on the destination port).

Deep neural network

Deep neural networks (DNNGs) are artificial neural networks (ANNs) with numerous hidden layers between
the input and output layers. Due to its ability to identify complex patterns in data, it is widely utilised in various
cybersecurity applications, including virus detection. The following elements comprise a standard DNN: The
feature vectors obtained from malware memory dumps are transferred to the input layer. Hidden layers contain
the number of neuronal layers where feature extraction and transformation happen. Activation functions
represent intricate interactions and add non-linearity. The output layer generates the final categorization
outcome, such as malware vs benign. A deep neural network can be represented mathematically in Eqgs. 3 and 4:

70 — A1) |0 3)

AL — f(Z(l)) (4)

A set of weights and biases is applied to the input from the previous layer by each layer, with the layer number
denoted by the index . At layer I, the weighted sum of inputs is represented as Z(I). This is calculated by taking
the activation values A(! — 1) from the previous layer, the weight matrix W(J), and a bias term b(l). Next, Z(I)
is subjected to the activation function f(-), which adds non-linearity and allows the model to learn intricate
patterns. To enable the neural network to learn complex correlations within the data, this iterative process is
carried out across multiple hidden layers until the final output is produced. The architecture of the deep neural
network is illustrated in Fig. 4.

Transfer learning
Transfer learning is the process of applying a model that has been trained on one task to another that is comparable
but distinct. Instead of building a DNN from scratch and modifying it for a new use or domain, this method
utilises pre-trained models, which are often developed using large datasets. The primary motivations for transfer
learning are the utilisation of learned models or components from the source task to enhance performance
on the target task, reduce the need for large datasets, and conserve computing time and resources®. There are
several important steps in the TL process represented in Fig. 5.

Before learning features, a base model is selected, which is a pre-trained model trained on a source task using
a source dataset D, (Eq. 5).

r%in[,s (MS(xS§95)7yS) (5)

Scientific Reports |

(2025) 15:26971

| https://doi.org/10.1038/s41598-025-12404-w nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Binary Classification
(Benign or Malware)

— () \ Simoi

Relu
Activation Function

Fig. 4. Architecture of deep neural network model.

Transfer Learned Knowledge

Fig. 5. Transfer learning architecture.

Scientific Reports| (2025) 15:26971 | https://doi.org/10.1038/s41598-025-12404-w nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Layer (type) Output shape | Param #
None, 10) 0
None, 128) 1,408
None, 128) 0
None, 128) 512
None, 128) 0
None, 64) 8,256
None, 64) 0
None, 1) 65

input_layer_I (InputLayer)
dense_3 (Dense)

dropout_2 (Dropout)

batch_normalization (BatchNormalization)

dropout (Dropout)

dense_1 (Dense)

dropout_1 (Dropout)

(
(
(
(
(
(
(
(

dense_4 (Dense)

Table 6. Model architecture summary.

Aspect From scratch (Memory_Forensic) Transfer learning (NF_TON_IOT / UNSW-NB15)
Hardware Google Colab (NVIDIA Tesla T4 GPU, 16GB RAM) | Same (Colab environment reused)

Training time ~45-60 seconds for 10 epochs ~30-45 seconds for 20 epochs with frozen layers
Inference time ~2.5 ms/sample (using . predict () ontestset) | ~1.2 ms/sample (due to fewer trainable parameters)
Memory usage ~800MB GPU memory (from TensorFlow Profiler) | ~500MB GPU memory (smaller input and frozen base)
Trainable parameters ~1,000-2,000 (all layers trainable) ~500-800 (most layers frozen)

Efficiency gain from TL | Not applicable (baseline) ~35-40% reduction in memory & training time

Model size 4-layer dense NN Reused base + minor new layers (efficient)

Conclusion Baseline full training Reduced cost via frozen weights, smaller input size

Table 7. Experimental setup and computational cost evaluation.

This is the process of minimizing the loss function L for the source model M given the labels ¥, model
parameters 6, and input data x,. The pre-trained layers F have frozen weights 0, which means they do not
change (Eq. 6).

oL,
— 6
o 0 ()

Only the new layers (target-specific layers) with weights 6; are updated (Eq. 7).

OL:

9t<—9t—n~87
t

(7)

where 7 is the learning rate, while 0; is updated, the weights of some or all of the pre-trained layers are unfrozen.
. 8

0+ 0—n 20 (8)

where 6 includes both pre-trained and new parameters, the source and target tasks can be combined into the
overall optimization objective for transfer learning (Eq. 8).

Ltotal =\ Ls + (1 -)\) . Lt (9)

In Eq. 9 Ls is the source task loss, L; is the target task loss, and A is the weighting factor (which regulates the
balance between the source and target loss).

Transfer learning with a deep neural network (DNN) involves transferring knowledge from a source domain
to a target domain using pre-trained models. On a source dataset D, a DNN model M is first trained to
learn feature representations by minimizing a source loss function L (6). The target domain then uses the
lower layers of M, which extract generic features fs = gs(z; 9?““). These layers are then frozen. In order to
minimize the target loss L:(6 t), a new model M, is then constructed by appending trainable task-specific
layers h; to the frozen base and trained on a target dataset D;. The summary of transfer learning architecture is
illustrated in Table 6.

Experimental results and analysis

The performance of the framework is assessed using a variety of assessment criteria, experimental results
are examined and reviewed, and data gathered for this study are interpreted. These factors provide crucial
information about the model’s performance. Table 7 lists all the tools and equipment used in the experiments,
along with a detailed comparison between creating a DL model from scratch and applying TL on Iot datasets.
Both approaches were used with Google Colab, the same computer environment that includes an NVIDIA

Scientific Reports |

(2025) 15:26971 | https://doi.org/10.1038/s41598-025-12404-w nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Tesla T4 GPU and 16GB of RAM, to ensure fair and unbiased comparisons. The Memory_Forensic dataset
requires approximately 45-60 seconds for 10 epochs of training for the model built from scratch. Conversely,
even after 20 epochs, the transfer learning method, which utilised frozen base layers, completed training in a
mere 30 to 45 seconds. The smaller number of trainable parameters and the reuse of pretrained weights, which
reduces backpropagation efforts, are responsible for this efficiency. The TL method was also preferred in terms
of inference time per sample. Due to its lighter architecture and fewer active parameters, the TL model achieved
faster inference at approximately 1.2 milliseconds per sample, whereas the scratch model required about 2.5
milliseconds per sample. Due to this, real-time anomaly detection scenarios in Iot applications are more suitable
for the TL technique. Based on TensorFlow Profiler’s memory measurements, the scratch model used roughly
800MB of GPU memory. On the other hand, since the input size was smaller and the majority of the model
layers were frozen, the TL model required only about 500 MB. In edge computing contexts, where memory
resources are frequently limited, this decrease is particularly crucial. In terms of trainable parameters, the TL
model had only 500 to 800, as most of the layers were frozen, whereas the scratch model had 1,000 to 2,000.
This decrease in parameter count directly impacts faster training and less memory usage. Transfer learning
resulted in a significant increase in efficiency. The TL configuration resulted in a 35-40% decrease in memory
use and training time, making it a suitable option for resource-conscious, lightweight deployments. In contrast,
the from-scratch model was used as a baseline with no previous modifications. Lastly, in terms of model size and
complexity, the TL-based architecture utilised a pretrained model as its base and added only a few new layers.
In contrast, the baseline model used a conventional 4-layer dense neural network. This modular and parameter-
efficient architecture further supports the usefulness and efficiency of TL in limited IoT situations.

Evaluation matrices

Accuracy is the percentage of correctly identified samples compared to the total sample size and serves as the
standard for evaluating performance. The accuracy of the model in Eq. 10 reflects the confidence in its ability to
produce accurate forecasts. It is crucial in assessing its predictive power and dependability despite its simplicity.

Truepos + Trueneg

A =
« Truepos + Trueneg + Falsepos + Falseneg

(10)

The precision of a model or system is the degree to which it accurately predicts the positive class. This number is
correspondingly displayed in Eq. 11 to facilitate comprehension of the metric fundamental equation.

TrueP

Pre= ——+— ——
e TrueP 4+ FalseP

(11)

Recall is a metric used to evaluate the performance of classification models, particularly when identifying
positive cases is crucial. It is also known as the true positive rate or sensitivity. The capacity of a model to
accurately differentiate all pertinent instances (true positives) from the actual positive cases is measured by
recall. The calculation of Eq. 12 indicates the unique advantage of this diverse perspective for an estimation.

TrueP

Re=— - '%¢°
¢ TrueP + FalseN

(12)

Since the appropriately calculated F1 score may effectively convey the essence of balanced performance, it serves
as a balance between accuracy and recall. Equation 13 provides a good description of this basic estimation
method despite its complexity.

Pre+ Re
F1-— =2X ——— 13
score Pre+ Re (13)

Table 8 displays the classification performance of a Deep Neural Network (DNN) model for the identification
of obfuscated malware. Malicious samples are likely represented by class 1, and benign samples by class 0. The
model obtained a precision of 0.99 for each class, indicating that 99% of the anticipated positive samples were
accurate. The model correctly identified 99% of the real positive cases, as indicated by the recall of 0.99. A well-
balanced performance is demonstrated by the F1-score, which gives a harmonic mean of precision and recall,
which is likewise 0.99 for both classes. There were 5801 Class 0 samples and 5919 Class 1 samples in the dataset,
indicating an essentially even distribution. The model’s total accuracy is 99%, which indicates that 11720 out of

Class Precision | Recall | F1-score | Support
0 0.99 0.99 0.99 5801

1 0.99 0.99 0.99 5919
Accuracy 0.99 11720
Macro Avg 0.99 0.99 0.99 11720
Weighted Avg | 0.99 0.99 0.99 11720

Table 8. DNN model results for obfuscated malware detection.

Scientific Reports |

(2025) 15:26971 | https://doi.org/10.1038/s41598-025-12404-w nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Classes Precision | Recall | F1-score | Support
0 0.93 0.99 0.96 192225
1 0.99 0.93 0.96 191593
Accuracy 0.96 383818
Macro Avg 0.96 0.96 0.96 383818
Weighted Avg | 0.96 0.96 0.96 383818

Table 9. Transfer learning results on NF-ToN-IoT dataset.

Classes Precision | Recall | F1-score | Support
0 1.00 0.92 0.96 9072

1 0.92 1.00 0.96 9061
Accuracy 0.96 18133
Macro Avg 0.96 0.96 0.96 18133
Weighted Avg | 0.96 0.96 0.96 18133

Table 10. Transfer learning results on UNSW-NB15 dataset.

11720 cases were properly identified. Furthermore, all measures show similar performance independent of class
size, with the macro average, which computes the average for each class equally, producing values of 0.99.

Table 9 demonstrates the outcomes of the transfer learning on the NF-ToN-IoT dataset for the identification
of obfuscated malware. Class 0 exhibits favourable performance metrics: a recall of 0.99 implies the model
correctly recognized 99% of the actual benign occurrences, while a precision of 0.93 suggests that 93% of the
samples predicted as benign were, in fact, benign with an F1-score of 0.96, which maintains a balance between
recall and precision. The dataset contained a total of 192,225 samples for this class. Class 1 had a precision of
0.99, indicating that almost all the malicious samples predicted were accurate. With a recall of 0.93, it was able
to identify 93% of all malicious instances. It demonstrated strong performance with an F1-score of 0.96, similar
to Class 0. 191,593 occurrences were identified in this class. Overall, the model performed effectively, properly
classifying a substantial portion of the 383,818 samples with an accuracy of 96%.

Table 10 demonstrates the results of transfer learning on the UNSW-NBI5 dataset for identifying obfuscated
malware. Class 0, which stands for apparently benign samples, had a precision of 1.00. The F1-score, which
balances precision and recall, was 0.96, and the recall was 0.92, which indicates that 92% of real benign incidents
were properly identified. There were a total of 9,072 benign samples (support). The precision for Class 1, which
probably consists of dangerous or obfuscated malware samples, was 0.92, which means that 92% of the samples
that were predicted to be malicious were correct. The model effectively detected every fraudulent instance, as
evidenced by the recall of 1.00 and the high F1-score of 0.96. There were 9061 samples in this class. The accuracy
of the overall model performance was 0.96, meaning that 96% of the 18,133 samples in total were properly
identified. Precision, recall, and F1-score values of 0.96 were obtained by the macro average, which considers
both classes equally regardless of size, indicating consistently satisfactory results across both classes.

Figure 6 compares the effectiveness of two models, a Transfer Learning model and a DNN model, by
identifying malware that has been disguised across three distinct datasets. Figure 6a illustrates the training and
validation curves of a DNN model, which is probably employed as the basis for malware detection. While the
validation accuracy shows a similar pattern but remains somewhat lower, it shows reasonable generalisation
with no overfitting. In contrast, the training accuracy increases significantly over the initial few epochs and
maintains around 99.8%. The training and validation loss values decrease sharply in the early epochs before
stabilising at very low levels, demonstrating effective learning with few errors. The DNN model’s exceptional
overall performance, characterised by high accuracy and minimal loss, makes it an effective choice for malware
detection. The performance of the Transfer Learning model on the NF-ToN-IoT dataset, which is intended
for malware analysis and most likely includes network traffic data from IoT devices, is shown in Fig. 6b . This
approach utilises previously acquired data from a larger malware dataset to facilitate the identification of
malware. After roughly 10 epochs, the training accuracy rises quickly to almost 100%, indicating efficient and
rapid learning. Substantial generalization is demonstrated by the validation accuracy, which similarly shows a
consistent rise and plateaus over 98%. The practicality of the model in identifying malware patterns is further
supported by the quick decline and stabilization of both training and validation loss values at very low levels.
This demonstrates Transfer Learning’s tremendous efficacy on the NF-ToN-IoT dataset, where it achieved nearly
flawless accuracy, making it exceedingly useful for malware detection in IoT environments.

Figure 6¢ evaluates the effectiveness of the TL model on the UNSW-NB15 dataset, a well-known benchmark
dataset that contains network traffic data with a range of attack scenarios, including malware. The training
accuracy increases steadily and reaches about 88% after 7 epochs. The validation accuracy approximately follows
this trend. In the initial epochs, the training and validation loss levels similarly rapidly decrease before levelling
off. The loss values remain slightly higher than those of the NF-ToN-IoT dataset, though, which may indicate
that the UNSW-NB15 dataset has more intricate patterns or that the pre-trained features are more difficult
to transfer. The accuracy of the TL model is marginally lower than that of the NF-ToN-IoT dataset despite its

Scientific Reports |

(2025) 15:26971 | https://doi.org/10.1038/s41598-025-12404-w nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

—— Training Loss
0.9995 4 0.0200 1 Validation Loss
0.0175 A
0.9990
0.0150 4
0.9985
> 0.0125 A
E 0.9980 A P
5
g < 0.0100 {
0.9975
0.0075 A
0.9970 1
0.0050 4
0.9965
—— Training Accuracy 0.0025 4
0.9960 .
Validation Accuracy
T . . : . 0.0000 L—
0 2 4 6 8 0 2 4 6 8
Epochs Epochs
(a)
1.00 —— Training Loss
0.30 Validation Loss
0.98
0.25 4
0.96 4
0.20 1
>
E 0.94 P
3 g 015+
2
0.92 4
0.10
0.90
0.05 1
088 1 —— Training Accuracy
Validation Accuracy 0.00 4
T T T T T T T T T T T T T T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 175 0.0 25 5.0 7.5 10.0 125 15.0 17.5
Epochs Epochs
(b)
0.9 1.2
0.8
10
0.7
0.6
> 4
E —— Training Accuracy @ 08
2 054 Validation Accuracy | 3
<
0.41 0.6
0.3
02 049 Training Loss
i Validation Loss
0 1 2 3 a 5 6 7 0 1 2 3 4 5 6 7
Epochs Epochs

(c)

Fig. 6. Graphical visualisation of accuracy and loss curve for obfuscated malware detection. (a) Training and
validation curve of DNN model. (b) Transfer learning model training and validation curve on NF-ToN-IoT
dataset. (c) Transfer learning model training and validation curve on UNSW-NBI15 dataset.

excellent performance. This suggests that obfuscated malware detection in this dataset is more difficult and
might require additional fine-tuning or domain-specific feature extraction.

Table 11 provides the performance of a Fully Connected Neural Network (FCNN). Figure 7 compares two
different neural network models for detecting malware that has been obscured. Figure 7a displays the training
and validation curve for a FCNN. The validation accuracy has a similar pattern, levelling off at a slightly lower

Scientific Reports| (2025) 15:26971 | https://doi.org/10.1038/s41598-025-12404-w nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Epoch | Accuracy | Loss | Val accuracy | Valloss
1 0.5840 0.7105 | 0.6870 0.5473
2 0.6877 0.6003 | 0.6849 0.5035
3 0.7147 0.5584 | 0.6890 0.4797
4 0.7236 0.5399 | 0.7362 0.4633
5 0.7357 0.5263 | 0.7338 0.4495
6 0.7454 0.5116 | 0.7186 0.4409
7 0.7486 0.5108 | 0.7181 0.4330
8 0.7522 0.5012 | 0.7180 0.4270
9 0.7534 0.4981 | 0.7184 0.4223
10 0.7544 0.4946 | 0.7184 0.4171
11 0.7567 0.4885 | 0.7188 0.4139
12 0.7566 0.4867 | 0.7192 0.4101
13 0.7566 0.4828 | 0.7196 0.4071
14 0.7594 0.4807 | 0.7198 0.4039
15 0.7623 0.4735 | 0.7204 0.4006
16 0.7631 0.4723 | 0.7211 0.3983
17 0.7605 0.4721 | 0.7218 0.3958
18 0.7645 0.4680 | 0.7221 0.3933
19 0.7644 0.4654 | 0.7225 0.3906
20 0.7669 0.4637 | 0.7234 0.3880
21 0.7625 0.4641 | 0.7238 0.3858
22 0.7623 0.4658 | 0.7241 0.3842
23 0.7667 0.4597 | 0.7250 0.3820
24 0.7648 0.4585 | 0.7265 0.3801
25 0.7664 0.4533 | 0.7291 0.3783
26 0.7664 0.4593 | 0.7320 0.3762
27 0.7656 0.4530 | 0.7338 0.3753
28 0.7706 0.4456 | 0.7428 0.3729
29 0.7695 0.4485 | 0.7433 0.3715
30 0.7667 0.4510 | 0.7432 0.3686

Table 11. Training and validation performance per epochs for fully connected neural network.

value of 0.70, while the training accuracy rises quickly in the initial few epochs before settling at 0.74. The
noticeable difference between training and validation accuracy suggests some overfitting, indicating that the
model performs better on the training data than on unseen data. The training loss, which decreases sharply in
the initial epochs before gradually declining to less than 0.55, and the validation loss, which also decreases but
plateaus at a higher value, both indicate the presence of overfitting. Overall, the fully connected neural network
exhibits indications of overfitting, which may restrict its capacity for generalization, even though it attains a
respectable accuracy of about 70%.

Table 12 demonstrates the performance of the hybrid CNN-DNN model. Similarly, in Fig. 7b , the training
and validation curve of a CNN-DNN hybrid model is illustrated. CNNs are especially adept at extracting
features from structured data, while DNNs excel at learning complex patterns. The training accuracy increases
dramatically and reaches a higher plateau of about 0.78 when compared to the fully linked model. Meanwhile, the
validation accuracy also increases gradually and reaches a maximum of 0.74. There seems to be less overfitting in
this model, as evidenced by the reduced difference between training and validation accuracy compared to Fig. 7a
. Further evidence of enhanced performance and superior generalization is provided by the training loss (blue
line), which drops quickly and reaches a lower value than the fully linked model, and the validation loss (orange
line), which likewise drops and plateaus at a lower level.

Findings and discussion

For detecting obfuscated malware, the proposed transfer learning-based deep neural network (DNN) model
demonstrates a balance between detection performance and processing efficiency. Using feature preprocessing
techniques like min-max scaling and normalisation, a multi-layered deep neural network was optimised during
the initial model training on the MalwareMemoryDump dataset. The transfer learning phase utilises pre-trained
model weights rather than developing a new model from scratch, which significantly reduces training time
and computational overhead. Using the newly acquired feature representations from the source dataset, the
pre-trained DNN is refined in this phase using the NF-TON-IoT and UNSW-NB15 datasets. In fine-tuning,
lower-level layers are frozen to preserve overall malware features, while higher-level layers are adjusted to
capture dataset-specific patterns. The model can more effectively generalize to hidden malware samples due

Scientific Reports |

(2025) 15:26971 | https://doi.org/10.1038/s41598-025-12404-w nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

—— Training Accuracy —— Training Loss
0.76 Validation Accuracy Validation Loss
. 0.65
0.74 1
0.60 -
0.72 1
0.55
=23
E 0.70 1 p
3 9
£ 0.50 A
0.68
0.66 - 0.45 -
0.64 1
0.40 A
0.62
10 15 20 25 30 0 5 10 15 20 25 30
Epochs Epochs
(a)
0.78 1 —— Training Accuracy 0.65 —— Training Loss
Validation Accuracy Validation Loss
0.76 -
0.60 -
0.74
0.55
0.72 4
S
o
g 4 050 A
g s~
£ 0.70
0.45 4
0.68
0.66 0.40 4
0.64 -
0.35 -
10 15 20 25 30 0 5 10 15 20 25 30
Epochs Epochs

(b)

Fig. 7. Accuracy and loss curve for obfuscated malware detection. (a) Training and validation curve of fully
connected neural net model. (b) Hybrid model (CNN and DNN) training and validation curve on.

to this method, which also ensures knowledge retention across datasets. The incorporation of SHAP (Shapley
Additive Explanations) values, which improve interpretability by measuring feature importance in classification
decisions, significantly influences the model's complexity. By iteratively assessing feature contributions to
prediction probability, SHAP values are calculated, giving cybersecurity analysts insight into which features of
a malware sample are the most significant for categorization. However, because many altered instances of the
dataset must be created to compute individual feature attributions, this interpretability method incurs additional
processing costs.

The architecture also incorporates fully connected layers, following transfer learning, which enhances feature
fusion and decision-making. By producing probability distributions across binary classes, the final softmax
activation function establishes whether a sample is malware or benign. Overfitting risks are mitigated by batch
normalisation and dropout layers, but adjusting hyperparameters remains challenging. Model performance

Scientific Reports |

(2025) 15:26971 | https://doi.org/10.1038/s41598-025-12404-w nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Epoch | Accuracy | Loss | Val Accuracy | Val Loss
1 0.5974 0.6754 | 0.6815 0.5597
2 0.6914 0.5856 | 0.6810 0.5064
3 0.7059 0.5495 | 0.6792 0.4789
4 0.7203 0.5237 | 0.7254 0.4518
5 0.7387 0.5104 | 0.7184 0.4327
6 0.7471 0.4956 | 0.7188 0.4183
7 0.7551 0.4806 | 0.7182 0.4110
8 0.7596 0.4749 | 0.7192 0.4027
9 0.7618 0.4695 | 0.7199 0.3983
10 0.7625 0.4629 | 0.7208 0.3942
11 0.7615 0.4620 | 0.7212 0.3897
12 0.7653 0.4583 | 0.7217 0.3890
13 0.7665 0.4542 | 0.7282 0.3838
14 0.7657 0.4523 | 0.7294 0.3823
15 0.7685 0.4507 | 0.7317 0.3794
16 0.7723 0.4448 | 0.7336 0.3760
17 0.7712 0.4443 | 0.7340 0.3757
18 0.7719 0.4413 | 0.7350 0.3734
19 0.7736 0.4424 | 0.7370 0.3701
20 0.7742 0.4392 | 0.7377 0.3687
21 0.7724 0.4384 | 0.7377 0.3692
22 0.7736 0.4361 | 0.7382 0.3685
23 0.7747 0.4365 | 0.7398 0.3650
24 0.7735 0.4337 | 0.7399 0.3639
25 0.7763 0.4348 | 0.7408 0.3607
26 0.7762 0.4318 | 0.7414 0.3600
27 0.7749 0.4299 | 0.7415 0.3592
28 0.7737 0.4296 | 0.7415 0.3581
29 0.7754 0.4270 | 0.7416 0.3589
30 0.7776 0.4288 | 0.7430 0.3544

Table 12. Training and validation accuracy and loss per epoch for hybrid model.

must be balanced with the avoidance of unnecessary computational load by selecting the optimal learning rates
(0.0001), dropout ratios, and layer designs. Despite the model’s ability to detect obfuscated malware, problems
still arise, especially when using smaller or unbalanced datasets. Biased categorisation outcomes could result
from the model’s inability to identify representative patterns in malware families with notably smaller sample
sizes. To enhance the model’s resilience to evolving obfuscation strategies, future studies should explore data
augmentation methodologies, ensemble learning approaches, and adversarial training techniques.

The findings demonstrate that the proposed framework is highly applicable to real-world cybersecurity
systems, particularly in security operations and forensic malware investigations. The high detection accuracy of
obfuscated malware indicates that this framework may be incorporated into security solutions, including cloud-
based malware detection platforms, antivirus engines, and intrusion detection systems (IDS). The interpretability
of SHAP values, which provides human-readable justifications for classification decisions, enhances confidence
in Al-driven security technologies. However, additional testing on dynamic malware samples and continuous
model changes to accommodate evolving threats are necessary for real-world deployment. Additionally, to ensure
real-time applicability in cloud and business security situations, it will be essential to optimise the computational
efficiency of SHAP calculations.

Conclusion

This study employed TL and SHAP interpretability techniques to develop an effective deep learning-based
system for detecting privacy-intrusive and obfuscated malware. Compared to traditional signature-based
methods, which frequently struggle to detect complex or hidden malware behaviours, the proposed method
demonstrated strong generalisation by initially training a DNN on the MalwareMemoryDump dataset and then
fine-tuning it on two real-world cybersecurity datasets, NF-TON-Iot and UNSW-NB15. The model’s capability
to identify subtle malware indicators was improved by the incorporation of TL, which enabled the model to
retain and adapt learnt information from memory dumps to various network traffic patterns. SHAP was also
incorporated to provide insight into the model’s decision-making process and identify the key components that
significantly impacted categorisation outcomes. Along with making the model more transparent, this improved
accountability and confidence in security systems driven by Al The enhanced performance of the suggested

Scientific Reports |

(2025) 15:26971 | https://doi.org/10.1038/s41598-025-12404-w nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

framework over current detection techniques was validated by experimental evaluation. The model’s remarkable
96% accuracy on the UNSW-NB15 and on the NF-TON-IoT dataset demonstrate its resilience and versatility in
a variety of attack scenarios. Overall, this study provides a scalable, interpretable, and highly accurate approach
to modern malware detection, particularly when addressing obfuscated and evasive attacks.

Future studies should incorporate more real-world datasets into the proposed model to further validate its
resistance to different virus types. Additionally, evaluating hybrid deep learning models may improve feature
extraction and classification performance. Another option is to create adaptive models that can identify malware
in real time, thereby expediting reaction times to emerging threats. Additionally, federated learning integration
might enable cooperative malware detection across disparate platforms while protecting user privacy. Finally,
to improve the transparency of malware categorisation, further explainability techniques, such as LIME or
attention mechanisms, could be incorporated into the interpretability framework.

Data availability
All data generated or analyzed during this study are included in this published article.

Received: 14 March 2025; Accepted: 16 July 2025
Published online: 24 July 2025

References

1. Cevallos-Salas, D., Grijalva, E, Estrada-Jiménez, J., Benitez, D. & Andrade, R. Obfuscated privacy malware classifiers based on
memory dumping analysis. IEEE Access (2024).

2. Essefi, I, Rahmouni, H. B., Solomonides, T. & Ladeb, M. F. Hipaa controlled patient information exchange and traceability in clinical
processes. In 2022 IEEE Sth International Conference on Sciences of Electronics, Technologies of Information and Telecommunications
(SETIT), 452-460 (IEEE, 2022).

3. Jahromi, A. N, Hashemi, S., Dehghantanha, A., Parizi, R. M. & Choo, K.-K.R. An enhanced stacked Istm method with no random
initialization for malware threat hunting in safety and time-critical systems. IEEE Trans. Emerg. Top. Comput. Intell. 4, 630-640
(2020).

4. Carrier, T., Victor, P, Tekeoglu, A. & Lashkari, A. H. Detecting obfuscated malware using memory feature engineering. In Icissp,
177-188 (2022).

5. Huseynov, H., Kourai, K., Saadawi, T. & Igbe, O. Virtual machine introspection for anomaly-based keylogger detection. In 2020
IEEE 21st International Conference on High Performance Switching and Routing (HPSR), 1-6 (IEEE, 2020).

6. Homayoun, S., Dehghantanha, A., Ahmadzadeh, M., Hashemi, S. & Khayami, R. Know abnormal, find evil: Frequent pattern
mining for ransomware threat hunting and intelligence. IEEE Trans. Emerg. Top. Comput. 8, 341-351 (2017).

7. Shukla, S., Kolhe, G., PD, S. M. & Rafatirad, S. Stealthy malware detection using rnn-based automated localized feature extraction
and classifier. In 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), 590-597 (IEEE, 2019).

8. Lee, Y., Woo, S., Song, Y., Lee, J. & Lee, D. H. Practical vulnerability-information-sharing architecture for automotive security-risk
analysis. IEEE Access 8, 120009-120018 (2020).

9. Dener, M., Ok, G. & Orman, A. Malware detection using memory analysis data in big data environment. Appl. Sci. 12, 8604 (2022).

10. Chen, C.-W,, Su, C.-H., Lee, K.-W. & Bair, P.-H. Malware family classification using active learning by learning. In 2020 22nd
International Conference on Advanced Communication Technology (ICACT), 590-595 (IEEE, 2020).

11. Lashkari, A. H,, Li, B., Carrier, T. L. & Kaur, G. Volmemlyzer: Volatile memory analyzer for malware classification using feature
engineering. In 2021 Reconciling Data Analytics, Automation, Privacy, and Security: A Big Data Challenge (RDAAPS), 1-8 (IEEE,
2021).

12. Mu, D. et al. Pomp++: Facilitating postmortem program diagnosis with value-set analysis. IEEE Trans. Softw. Eng. 47, 1929-1942
(2019).

13. Xu, Y., Li, D,, Li, Q. & Xu, S. Malware evasion attacks against IoT and other devices: An empirical study. Tsinghua Sci. Technol. 29,
127-142 (2023).

14. Aurangzeb, S. & Aleem, M. Evaluation and classification of obfuscated android malware through deep learning using ensemble
voting mechanism. Sci. Rep. 13, 3093 (2023).

15. Shafin, S. S., Karmakar, G. & Mareels, I. Obfuscated memory malware detection in resource-constrained IoT devices for smart city
applications. Sensors 23, 5348 (2023).

16. Hidouri, A., Hajlaoui, N., Touati, H., Hadded, M. & Mubhlethaler, P. A survey on security attacks and intrusion detection
mechanisms in named data networking. Computers 11, 186 (2022).

17. Yang, L., Liu, G, Dai, Y., Wang, J. & Zhai,]. Detecting stealthy domain generation algorithms using heterogeneous deep neural
network framework. IEEE Access 8, 82876-82889 (2020).

18. Setiawan, H., Putro, P. A. W,, Pramadji, Y. R. et al. Comparison of Istm architecture for malware classification. In 2020 International
Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS), 93-97 (IEEE, 2020).

19. Vinayakumar, R., Soman, K., Poornachandran, P, Akarsh, S. & Elhoseny, M. Improved dga domain names detection and
categorization using deep learning architectures with classical machine learning algorithms. In Cybersecurity and Secure
Information Systems: Challenges and Solutions in Smart Environments, 161-192 (Springer, 2019).

20. Dang, Q.-V. Detecting obfuscated malware using graph neural networks. In International Conference on Power Engineering and
Intelligent Systems (PEIS), 15-25 (Springer, 2023).

21. Gorment, N. Z., Selamat, A. & Krejcar, O. Obfuscated malware detection: Impacts on detection methods. In Asian Conference on
Intelligent Information and Database Systems, 55-66 (Springer, 2023).

22. Naeem, M. R. et al. A malware detection scheme via smart memory forensics for windows devices. Mobile Inf. Syst. 2022, 9156514
(2022).

23. Hossain, M. A. & Islam, M. S. Enhanced detection of obfuscated malware in memory dumps: A machine learning approach for
advanced cybersecurity. Cybersecurity 7, 16 (2024).

24. Hasan, S. R. & Dhakal, A. Obfuscated malware detection: Investigating real-world scenarios through memory analysis. In 2023
IEEE International Conference on Telecommunications and Photonics (ICTP), 01-05 (IEEE, 2023).

25. Alani, M. M., Mashatan, A. & Miri, A. Xmal: A lightweight memory-based explainable obfuscated-malware detector. Comput.
Secur. 133, 103409 (2023).

26. Oztiirk, A. & Hizal, S. Detection and analysis of malicious software using machine learning models. Sakarya Univ. J. Comput.Inf.
Sci. 7, 264-276 (2024).

27. Maniriho, P., Mahmood, A. N. & Chowdhury, M. J. M. Memaldet: A memory analysis-based malware detection framework using
deep autoencoders and stacked ensemble under temporal evaluations. Comput. Secur. 142, 103864 (2024).

28. Prasad, A. & Chandra, S. Botdefender: A collaborative defense framework against botnet attacks using network traffic analysis and
machine learning. Arab. J. Sci. Eng. 49, 3313-3329 (2024).

Scientific Reports |

(2025) 15:26971 | https://doi.org/10.1038/s41598-025-12404-w nature portfolio

http://www.nature.com/scientificreports

www.nature.com/scientificreports/

29. Prasad, A. & Chandra, S. Phiusiil: A diverse security profile empowered phishing url detection framework based on similarity
index and incremental learning. Comput. Secur. 136, 103545 (2024).

30. Shuai Li, A, Iyengar, A., Kundu, A. & Bertino, E. Transfer learning for security: Challenges and future directions. arXiv e-prints
arXiv-2403 (2024).

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University,
Arar, KSA for funding this research workthrough the project number “NBU-FFR-2025-2443-04". The authors
extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for fund-
ing this work through LargeResearch Project under grant number RGP2/473/46.

Author contributions

A.A.: Conception and design of study, Analysis and/or interpretation of data, Writing—original draft, Method-
ology, Acquisition of data. S.A.: Writing—original draft, Writing—review & editing, Data Analysis, Implementa-
tion, Acquisition of data. N.K.: Writing—original draft, Supervision, Writing—review & editing, Methodology.
A.A.H.: Writing—original draft, Writing—review & editing, Methodology, Resources, Visualizations. B.B.: Writ-
ing—original draft, Writing—review & editing, Visualizations, Funding Acquisition. M.A.: Writing—original
draft, Writing—review & editing, Methodology, Funding Acquisition, Supervision, Administration. S.A.: Writ-
ing—original draft, Acquisition of data, Conceptualization, Writing—review & editing, Methodology.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to N.K. or S.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommo
ns.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

Scientific Reports |

(2025) 15:26971 | https://doi.org/10.1038/s41598-025-12404-w nature portfolio

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Transfer learning with XAI for robust malware and IoT network security
	﻿Research motivation
	﻿Research contribution
	﻿Organization
	﻿﻿Related work
	﻿Obfuscated malware background
	﻿Machine and deep learning techniques

	﻿﻿Proposed methodology
	﻿Data description
	﻿MalwareMemoryDump dataset
	﻿NF-TON-IoT dataset
	﻿	UNSW-NB15 Dataset

	﻿Data preprocessing
	﻿Shapley additive explanations
	﻿Deep neural network
	﻿Transfer learning
	﻿﻿Experimental results and analysis
	﻿Evaluation matrices
	﻿Findings and discussion

	﻿﻿Conclusion
	﻿References

