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The sulfur-containing amino acids (SAAs) play a key role in the occurrence and development of 
tumors. However, the clinical prognostic value of SAAs metabolism (SAAM) regulators in stomach 
adenocarcinoma (STAD) remains unclear. We systematically evaluated the clinical and immune 
characteristics of SAAM-related genes in STAD. Furthermore, a SAAM score model was constructed, 
and patients in the low-SAAM score group had a better prognosis. As the core gene in the model, 
the low expression of cystathionine beta-synthase (CBS) indicated a better prognosis for patients. 
Interfering with CBS expression in MKN-45 cells inhibited cell proliferation, reduced the production 
of glutathione (GSH), and promoted cellular oxidative stress. Importantly, the downregulation of 
CBS heightened sensitivity to ferroptosis inducers in STAD cells, highlighting the involvement of CBS 
in ferroptosis. In conclusion, the utilization of SAAM for the identification and personalized scoring 
of patients might potentially play a significant role in evaluating prognosis, immune infiltrates, and 
guiding treatment for STAD.
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Gastric cancer (GC) ranks among the top five leading causes of cancer-related deaths worldwide1. Patients with 
advanced GC, particularly stage IV stomach adenocarcinoma (STAD), face a poor prognosis, with median 
survival often less than 1 year despite chemotherapy2,3. The notable heterogeneity observed among STAD 
tumors, encompassing genetic disparities and distinct microenvironmental characteristics, creates a conducive 
environment for both tumor progression and the emergence of drug resistance4,5. In personalized therapy-
focused clinical trials, the adoption of a scoring system based on tumor mutational burden (TMB) emerged 
as a potential biomarker, correlating with improved overall survival (OS) in cases of toripalimab-treated 
chemorefractory GC6. This underscores the potential of personalized stratification for prognostic assessment and 
treatment guidance, pointing towards a promising avenue of development7,8. Nonetheless, the current landscape 
still lacks dependable categorization and prognostic evaluation methodologies for STAD. As such, the quest for 
more reliable and precise prognostic biomarkers or evaluation approaches remains a frontier worth exploring.

Sulfur-containing amino acids (SAAs), primarily methionine and cysteine, are vital in human metabolism9. 
Methionine undergoes transmethylation to synthesize S-adenosylmethionine and homocysteine. Homocysteine 
is then either remethylated back to methionine or catabolized via the transsulfuration pathway by cystathionine 
beta-synthase (CBS) and cystathionine gamma-lyase (CTH) to synthesize cysteine and glutathione (GSH)10–12. 
CBS is a crucial enzyme in sulfur metabolism, catalyzing the essential condensation of homocysteine and serine 
to form cystathionine in the transsulfuration pathway13,14. This process involves the transfer of sulfur atoms 
between these amino acids. Cystathionine is subsequently converted into cysteine through the action of other 
enzymes in the pathway15. Given its central role in sulfur metabolism, any dysfunction or deficiency in CBS 
activity has implications for the cellular levels of GSH, potentially affecting the ability of cells to manage oxidative 
stress and maintain proper cellular function16. Previous studies have shown that sulfur-containing amino acids 
metabolism (SAAM) and related genes are associated with many diseases. For instance, high concentrations 
of methionine, S-adenosylmethionine and homocysteine favor the transsulfuration over the remethylation 
in cells, thereby reducing the excessive accumulation of homocysteine and reducing the occurrence of severe 
hyperhomocysteinemia17. Silencing of GSH synthesis enzymes selectively induced the cytotoxicity of cell renal 
cell carcinoma cells while sparing normal cells18. Similarly, cysteine (a key GSH precursor) drives hypoxia 
adaptation and carboplatin resistance in ovarian cancer19. However, there are few studies on SAAM and related 
genes in STAD. This study aims to analyze SAAM in STAD using bioinformatics, construct a prognostic and 
therapeutic scoring model, and identify a central SAAM gene to provide a potential therapeutic target for STAD.

In the present investigation, a significant correlation has been discerned between SAAM and STAD. 
Furthermore, the metabolic processes involving SAAs confer unique action in organisms. Our findings suggested 
that SAAM is associated with OS and clinical outcomes in STAD patients. We used the databases to explore the 
effect of CBS, a key gene in SAAM, on STAD prognosis and subsequently validated our findings in vitro. The 
results demonstrated that CBS plays a protective role against oxidative stress and ferroptosis in STAD cells. To 
summarise, our investigation underscored the prospective utility of the SAAM scoring model and CBS as a 
biomarker, with the potential to significantly contribute to the assessment of therapeutic efficacy and prognosis 
in the context of STAD.

Materials and methods
Data sources and pre-processing
From The Cancer Genome Altas (TCGA, ​h​t​t​p​s​:​​​/​​/​w​w​​w​.​c​a​n​c​e​​r​.​g​​o​v​​/​a​b​o​​u​​t​-​​n​c​i​/​​o​r​g​a​n​i​​z​a​t​​i​o​​n​​/​c​c​g​​/​r​e​s​e​​​a​r​c​h​/​s​​t​r​u​c​​t​​
u​r​a​l​-​g​e​n​​o​m​i​c​s​/​t​c​g​a) database, the RNA sequencing (FPKM value) and corresponding clinical data of STAD 
were downloaded, including 343 STAD and 30 normal control samples. The data set GSE84437 (433 samples) 
was obtained from Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/). We used the FPKM 
function of the “limma” R package to transform the RNA-seq transcriptome data into transcripts per kilobase 
million (TPM). The CNV (copy number variation) analysis of the SAAM regulators was performed on the 
eligible data sets. Following the CNV analysis, a depiction of copy number alterations across the 23 chromosomes 
was rendered using the R programming language and its associated packages.
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Consensus clustering analysis of SAAM regulators
Patients were divided into three different subtypes based on the expression of SAAM regulators by performing 
consistent unsupervised cluster analysis of the Consensus Cluster Plus R package20. A stable clustering met the 
following conditions. Firstly, a more step-like curve and a greater area under the CDF (cumulative distribution 
function) were considered more stable clustering. Afterward, each group has a larger sample size. Lastly, 
correlations between groups decreased and within groups increased.

Assessment of the relationship between various molecular subtypes with the clinical 
characteristics and prognosis of STAD
The progression of STAD is closely related to the clinical characteristics of patients. To further identify the 
clinical value of different subtypes, we analyzed the relationship among molecular subtypes, prognosis, and 
clinicopathological characteristics after downloading clinical data. The corresponding clinical data covered sex, 
age, TNM stage, and survival status. The difference between the OS of patients identified by consensus clustering 
was examined through Kaplan–Meier curves of R packages. The “GSVA” R package was employed for GSVA 
enrichment analysis to understand the differences of SAAM regulators in each group during the biological 
process. We received the data for GSVA analysis from the MSigDB database.

Identification of the immune cell infiltrating feature in the disparate molecular subtypes
The infiltrating immune cell gene set covers activated CD8 T cells, activated CD4 T cells, activated dendritic cells, 
activated B cells, macrophages, mast cells, monocytes, natural killer T cells, regulatory T cells, and neutrophils. 
We performed the single-sample gene set enrichment analysis (ssGSEA) algorithm for quantitative analysis of 
the difference in each immune cell infiltration in STAD. The R package “ggplot2” was used to map the enrichment 
results. The discrepancy of disparate SAAM clusters was manifested by the immune cell infiltration analysis.

Screening of overlap genes and functional annotation
In this study, the R package “limma” was used to calculate the fold change value of gene expression level to 
uncover the overlapping genes of various SAAM groups. Criteria of statistical significance were set at P < 0.001 
for screening the overlap genes in the SAAM pattern in STAD. Subsequently, the underlying functional attributes 
of overlap genes were explored by applying the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and 
Genomes (KEGG).

Establishment of the SAAM-related gene signature
To establish a prognostic score model, we conducted an unsupervised clustering analysis to investigate 
overlapping gene features in various SAAM groups, which divided the STAD patients into different groups for 
further study. We studied the prognosis of each crossover gene utilizing univariate Cox regression analysis. Next, 
the principal component analysis (PCA) was conducted to further analyze genes associated with prognosis. 
Finally, the result of PCA analysis in the “ggplot2” R package was used to structure the SAAM-related gene 
signature as well as analyze the prognosis of STAD patients21. Patients were divided into two groups by the 
maximally selected rank statistics as the threshold, which covered high- and low-score groups. We continuously 
performed Kaplan–Meier analysis of high- and low-score groups in STAD.

Correlation between the SAAM score and immune-related functions
The correlation analysis between SAAM score groups and immune cells was carried out by the Wilcoxon test. 
To identify the somatic mutations of patients in various groups with STAD, the TMB score was investigated by 
stratified analysis. We then conducted survival analysis for samples with high- or low-TMB scores. Microsatellite 
instability (MSI) refers to the phenomenon of MS sequence length changes caused by insertion or deletion 
mutations during DNA replication. Hence, we assessed the relationship between the SAAM-related gene 
signature and MSI to evaluate the prognostic value of immunotherapy. PD-1 is a significant immune checkpoint, 
therefore, we evaluated its differential expression densities employing the Wilcoxon test.

Cell lines and cell culture conditions
GES-1 cells (#SNL-304) and MKN-45 cells (#SNL-173) were purchased from Wuhan Sunncell Biotechnology 
and authenticated by STR. MKN-1 cells (#CBP60486) were purchased from Nanjing Cobioer Biosciences and 
authenticated by STR. Briefly, cells were suspended and cultured in RPMI 1640 (Gibco, #8118179) containing 
10% serum (Corille, #C1015-05) and 1% penicillin-streptomycin (Beyotime, #C0222) in an incubator with 10% 
CO2 at 37 °C. Mycoplasma scavengers (Yeasen Biotechnology, #40607ES08) were added to the complete medium 
once a month for one week to exclude mycoplasma contamination. All experiments were performed using cells 
in the logarithmic growth phase.

Western blot
Cells were lysed with RIPA (Beyotime, #P0013B) supplemented with protease and phosphatase inhibitors 
(Beyotime, #P1051) to obtain total protein. The proteins were adjusted to a consistent concentration using 
the Pierce™ BCA Protein Assay Kits (Thermo Scientific™, #23227) and were analyzed by SDS-PAGE using a 
12% polyacrylamide gel. Subsequently, proteins were transferred to PVDF membranes (Bio-Rad, #1620177) 
for evaluation. PVDF membranes were blocked with 5% skim milk for one hour prior to incubation with 
primary antibodies for 12  h. After another hour of incubation with the corresponding secondary antibody, 
the antibody bound to the FDbio-Pico ECL luminescent solution (FDbio science, #FD8000) was visualized the 
protein in Image Lab software. The antibodies contain CBS (ABclonal, #A11612), GAPDH (ABclonal, #AC033), 
nuclear factor erythroid 2-related factor 2 (NRF2, Proteintech, #80593-1-RR), manganese superoxide dismutase 
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(MnSOD, Abcam, #ab68155), solute carrier family 7 (xCT, Cell signaling, #12691S), γ-H2AX (Abcam, #ab81299), 
thioredoxin-2 (TRX-2, Abcam, #ab133524), ferritin heavy chain (FTH, Abcam, #ab176558), glutathione 
peroxidase 4 (GPX4, Proteintech, #30388-1-AP), Catalase (Proteintech, #21260-1-AP), glutathione reductase 
(GR, Abcam, #ab124995), HRP-labeled Goat Anti-Rabbit IgG (H + L) (Beyotime, A0208) and HRP-labeled Goat 
Anti-Mouse IgG (H + L) (Beyotime, A0216). Unprocessed images are presented in the Supplementary Materials 
2.

Clinical tissue samples
Six pairs of STAD clinical samples and adjacent tissues were obtained from STAD patients who underwent 
surgery at Zhejiang Provincial People’s Hospital. The postoperative tumor specimens were diagnosed as STAD 
by the pathologists. The STAD patients from whom the specimens were selected for this study were all voluntary 
participants and had signed the relevant informed consent forms. The collection process of tissue specimens 
has been reviewed by the ethics committee of Zhejiang Provincial People’s Hospital (approval number: 
ZJPPHEC2024O(087)). Clinical samples were analyzed for CBS protein levels using paired T-tests. All methods 
in our study were carried out in accordance with relevant guidelines and regulations.

Quantitative real-time PCR
Total RNA of gastric normal cells and cancer cells was extracted utilizing SteadyPure RNA Extraction Kit 
(Accurate Biology, #AG21024) and reverse transcribed to cDNA using the Evo M-MLV RT Mix Kit with 
gDNA Clean for qPCR Ver.2 (Accurate Biology, #AG11728) according to the instructions of the manufacturer. 
Quantitative real-time PCR (qRT-PCR) was performed with SYBR Green Premix Pro Taq HS qPCR Kit (Accurate 
Biology, #AG11701). The primer sequences were listed as below: human CBS, forward: 5′ - ​G​C​A​A​A​G​T​C​A​T​C​T​
A​C​A​A​G​C​A​G-3′, reverse: 5′ - ​C​G​A​A​G​T​T​C​A​G​C​A​A​G​T​C​A​A​T​G − 3′. human β-actin, forward: 5′ -​C​A​C​C​A​T​T​G​
G​C​A​A​T​G​A​G​C​G​G​T​T​C-3′, reverse: 5′ - ​A​G​G​T​C​T​T​T​G​C​G​G​A​T​G​T​C​C​A​C​G​T − 3′.

Small interfering RNA transfection
Down-regulation of CBS in STAD cells was achieved by transfection of small interfering RNA (siRNA). Cells 
were subjected to transfection experiments when 50% density was reached in six-well plates. 400 µL of MEM 
medium (CIRENRY, #CR22600) supplemented with 5 µL Lipofectamine 3000 (GLPBIO, #GK20006) and 5 µL 
siRNA were added to the complete medium without antibiotics. The effect of interference with CBS was verified 
by Western blot after 72 h.

The growth curve and edu staining experiments
5000 cells were seeded per well in a 96-well plate (NEST Biotechnology), and 200 µL of 10% complete medium 
was added, which was cultured in a cell incubator. At 0, 24, 48, and 72 h, 10 µL of CCK-8 (Meilunbio, #MA0218) 
reagent was added to each well and incubated for 2 h. The absorbance at 450 nm was measured using a microplate 
reader to assess cell viability. 200,000 cells were cultured in 24-well plates (NEST Biotechnology) for 12 h with 
the complete medium. Prior to fixing the cells with formaldehyde, the STAD cells were incubated with 10 µM 
EdU (Beyotime, #C0071S) for 4 h. Subsequently, the cells were treated with 0.3% Triton for 20 min and blocked 
with 10% BSA for 1 h. Finally, the reaction solution was prepared according to the instructions. Representative 
images were captured under an M7000 microscope.

Determination of reactive oxygen species (ROS), H2S, and lipid peroxide content
ROS, H2S, and lipid peroxides in STAD cells were labeled using DCFH-DA (Sigma, #35845), BODIPY (Invitrogen, 
#D3861), and WSP-1 (MCE, #HY-124409) dyes, respectively. Cells were treated with RSL-3 (5 µM) for 4 h and 
then stained with DCFH-DA (10 µM) or BODIPY (5 µM) for half an hour, then examined by flow cytometry or 
typically photographed by an M7000 microscope. Before staining WSP-1 (15 µM), cells were treated with serum-
free medium for 6 h and subsequently detected for changes in fluorescence by flow cytometry.

 Measurement of total GSH levels
500,000 cells were collected and resuspended in protein removal reagent S. Subject the suspension to three 
cycles of rapid freezing and thawing, alternating between liquid nitrogen and 37 °C. GSH samples were obtained 
by centrifugation at 10,000 g for 15 min after 5 min of ice bath. Prepare the necessary working solutions as 
the instructions in the Total Glutathione Assay Kit (Beyotime, #S0052). Employ the microplate reader to 
continuously monitor the maximum absorbance at 412 nm of the samples for one hour. Simultaneously, prepare 
equivalent samples for protein concentration determination to facilitate the calculation of GSH content.

Statistical analysis
The correlation coefficient between tumor microenvironment (TME) and SAAM-related gene expression was 
determined by applying Spearman and differential expression analyses. We compared the differences between 
different groups by conducting the One-way ANOVA and the Kruskal–Wallis test. The R package “survminer” 
was used to determine the cutoff point for each dataset subgroup. Survival analysis of different clusters was 
conducted via the Kaplan–Meier method and log-rank test. The hazard ratios (HR) for SAAM regulators were 
analyzed by using univariate regression analyses to identify the prognostic value. The mutation landscape in 
patients with high and low SAAM scores was presented by the waterfall function of the maftools package. 
In this study, all statistical analysis was performed using R software version 4.1.0 (http://www.R-project.org) 
and GraphPad Prism (version 9.0). Statistical significance was defined at *P < 0.05, **P < 0.01, and ***P < 0.001 
compared to the corresponding control.
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Results
Landscape of SAAM-related genes in STAD
In the present study, genes for SAAM were analyzed and the summary of these genes is presented in 
Supplementary Table S1. We first obtained the incidence of somatic mutations in 23 SAAM-related genes. As 
shown in Figure S1A, the frequency of SAAM-related gene mutation in STAD was 14.09% and MTR exhibited 
the highest mutation rate. We further analyzed the correlation between the MTR mutation and the expression of 
SAAM-related genes. Surprisingly, the expression of GOT1, ENOPH1, and CTH was significantly upregulated 
in the MTR mutation group compared to the wild group (Figure S2). Among those SAAM-related genes, GCLC 
and SUOX exhibited higher gain in CNVs, while MTAP and CDO1 showed CNV loss (Figure S1B). Notably, the 
locations of CNV alterations in SAAM-related genes on chromosomes were presented in Figure S1C. We then 
compared the mRNA expression levels of SAAM-related genes between normal and STAD samples to explore 
whether SAAM-related genes are affected by gene variations. Our results indicated that there was no significant 
correlation between the CNV alterations and expression levels of the SAAM-related gene. Even some SAAM-
related genes with CNV loss, most of them were evidently elevated in STAD tissues or showed no differences 
between tumor and normal tissues (Figure S1D). Expression of mRNA is regulated by multiple factors, not only 
CNV, which may explain the result.

Identification of SAAM subtypes in STAD
To investigate the relationship between SAAM-related gene expression and clinicopathological features, the 
k-means consensus clustering analysis was conducted in STAD samples. After adjusting the clustering variables 
(k) from 2 to 9, we found that patients showed the appropriate grouping status when k = 3 (Fig. 1A, Figure S3). 
Hence, these three subgroups (cluster A, cluster B, and cluster C) defined by k = 3 were used for further analysis. 
Kaplan-Meier survival analyses among the three subtypes showed that patients in cluster B had the best prognosis 
(Fig. 1B). Next, we explored the relationships between three subgroups and clinicopathologic characteristics 
including survival status (alive or dead), age ( < = 65 or > 65 years), node (0 or 1–3), gender (female or male), 
clinical stage (1–2 or 3–4) in GSE84437 and TCGA data sets. Patients with alive status or age < = 65 were mainly 
concentrated in the SAAM cluster C (Fig. 1C). In short, these analysis results indicated that the SAAM cluster is 
associated with the clinicopathologic characteristics and survival of patients with STAD.

TME and biological characteristics analysis of different subtypes
The TME plays a crucial role in tumor growth, invasion, metastasis, and response to therapy22. Understanding 
the TME is important for developing effective cancer treatments and improving patient outcomes. To estimate 
the TME heterogeneity of SAAM clusters, we compared the levels of infiltrating immune cells among the three 
groups. The results indicated that subtype A was enriched in CD56dim natural killer cells, monocytes, and 
neutrophils. Cluster B revealed an increased abundance of activated CD4 T cells, CD56bright natural killer cells, 
type 17 T helper cells, and type 2 T helper cells, while cluster C exhibited the highest level of activated B cells, 
activated CD8 T cells, eosinophil, immature B cells, MDSC, macrophage, mast cells, natural killer T cells, natural 
killer cells, plasmacytoid dendritic cells, regulatory T cells, T follicular helper cells, type 1 T helper cells than A 
and B (Fig. 1D).

Ulteriorly, GSVA enrichment analysis was performed to estimate the biological characteristics of SAAM 
clusters. As shown in Figure S4A and B, cluster A was highly enriched in the cellular processes, including the 
metabolism of GSH, drugs, and pyrimidines, as well as the biosynthesis of steroids, terpenoids, and N-glycans. 
The pathways associated with cluster B contained dilated cardiomyopathy, calcium signaling pathway, and 
vascular smooth muscle contraction. Evidently, cluster C was enriched in vascular smooth muscle contraction, 
dilated cardiomyopathy, and calcium signaling pathways. Collectively, SAAM clusters showed different biological 
characteristics and were closely related to the prognosis of patients.

Differentially expressed genes (DEGs) among SAAM clusters in STAD and functional 
enrichment analysis
To further understand the biological features of different SAAM patterns, we tend to identify the DEGs among 
the three SAAM subtypes. PCA analysis exhibited the gene profile of different clusters (Fig. 2A). Next, 968 SAAM 
subtype-related DEGs were identified by the R package “limma” for further study (Fig. 2B). GO enrichment 
analysis indicated that these DEGs were evidently enriched in various cellular and biological processes, including 
organelle fission, nuclear division, mitochondrial matrix, mitochondrial inner membrane, and so on (Fig. 2C–
D). In addition, the DEGs were closely involved in amyotrophic lateral sclerosis, biosynthesis of cofactors, and 
carbon metabolism signaling pathways (Fig.  2E–F). Our results suggested the momentous role of SAAM in 
tumorigenesis and tumor development.

Identification of gene cluster based on prognostic DEGs and construction of SAAM score
To comprehensively understand the molecular characteristics of various SAAM patterns, the consensus clustering 
analysis was executed, and the STAD patients were identified into three gene clusters (1, 2, and 3) based on 284 
prognostic DEGs screened out from the DEGs of three SAAM clusters (Figure S5). Among the analyses exploring 
the correlation between gene clusters and clinical characteristics, there were significant differences in features 
such as prognosis and clinical T stages in the three clusters (Fig. 3A). However, those patients with various gene 
cluster profiles exhibited prognosis discrepancies. Kaplan-Meier plots showed that gene cluster 2 had the longest 
survival time (Fig. 3B). Whereafter, the expression level of SAAM genes was evaluated in multiple gene clusters. 
SAAM genes were distinct among the three gene clusters, and most of the genes were upregulated in gene cluster 
2, as shown in Fig. 3C. Considering the individual heterogeneity, an optimum SAAM score based on DEGs was 
constructed using PCA analysis. STAD patients were divided into two groups according to the appropriate cut-
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Fig. 1.  Identification of the SAAM regulators’ molecular subtypes and clinicopathological characteristics 
analysis in STAD by consensus clustering. (A) Heatmap showing consensus clustering matrix for k = 3 as well 
as their area. (B) Kaplan–Meier curves presenting the survival rate of STAD patients based on three SAAM 
clusters utilizing univariate analysis. (C) Heatmap revealing relationships among clinicopathologic features, 
gene expression levels, and three SAAM clusters in STAD. (D) Associations between immune infiltration 
level of 23 immune cell types and three SAAM subtypes. Blue, green, or pink represent three various SAAM 
subtypes.
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off of scores. The distribution of patients in multiple groups, including SAAM subtypes, gene clusters, SAAM 
scores, and survival status was exhibited by Sankey plots (Fig. 3D). Meanwhile, the difference in SAAM score 
among SAAM clusters and gene clusters was evaluated. Gene cluster 3 presented the highest score while gene 
cluster 2 showed the lowest score (Fig. 3E). Similarly, the SAAM score in SAAM cluster C was the highest, and 
the score in SAAM cluster B was the lowest (Fig. 3F).

Fig. 2.  DEGs among SAAM clusters in STAD and functional enrichment analysis. (A) PCA analysis based on 
three distinct SAAM subtypes in TCGA. STAD in the cluster A, B, or C subgroup is marked with blue, green, 
and pink. (B) Venn plots presenting intersection analysis of genes between SAAM subtypes in STAD. (C, D) 
GO enrichment analysis of intersectant genes among three SAAM clusters. (E, F) KEGG enrichment analysis 
of intersectant genes among three SAAM clusters.
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Fig. 3.  Identification of gene cluster based on prognostic DEGs and construction of SAAM score. (A) Heat 
map clarifying differences in clinicopathological parameters in various genetic patterns. (B) Kaplan–Meier 
curves illustrating the OS of patients in different gene clusters (log-rank tests, p-value = 0.002). (C) Boxplots of 
the distribution of gene expression based on three genetic patterns. The horizon axis represents distinct genes, 
while the vertical axis indicates gene expression levels. (D) Sankey diagram suggesting the relationship among 
SAAM clusters, gene clusters, SAAM score, and survival outcomes. (E) Box plots of the distribution of the 
SAAM score in three gene clusters. (F) Box plots displaying the distribution of the SAAM score in three SAAM 
clusters.

 

Scientific Reports |        (2025) 15:28829 8| https://doi.org/10.1038/s41598-025-12460-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Prognostic significance and immune correlation of SAAM score in STAD
We further investigated the prognostic value of the SAAM score. The Kaplan–Meier curves showed that patients 
with low-SAAM score had longer survival times than those in the high-SAAM score group (Fig. 4A). This result 
of Kaplan–Meier analysis was consistent with the previous results that SAAM subtype C (Figs. 1B and 3F) and 
gene cluster 3 (Fig. 3B and E) with the highest SAAM score had the poorest prognosis. Moreover, those patients 
with low-SAAM scores exhibited higher live rates (Figs. 4B and 64% vs. 46%), which can explain why the SAAM 
score of survivors was significantly decreased (Fig. 4C). In addition, no matter whether in stage T1-2 or T3-4, the 
high SAAM score of patients suggested a poor prognosis (Fig. 4D–E). As shown in Fig. 4F, the SAAM score was 
significantly positively related to activated B cells, mast cells, and type 17 T helper cells, while negatively related 
to activated CD4 T cells, CD56dim NK cells, neutrophil, and type 2 T helper cells.

Correlation between TMB, MSI, and SAAM scores in STAD
TMB has gained significant attention in cancer research and clinical practice as tumors with high TMB may 
be more susceptible to immune checkpoint inhibitor therapy23. Next, we intended to clarify the correlativity 
among TMB and SAAM scores in STAD. Spearman correlation analysis indicated a negative correlation between 
TMB and SAAM score (Figure S6A). As expected, patients with high SAAM scores exhibited low TMB, while 
those with low SAAM scores showed high TMB (Figure S6B). After proving the prognostic value of TMB, we 
combined TMB with the SAAM risk score in STAD to evaluate the outcomes of four novel subgroups. The 
subsequent stratified survival analysis showed that the SAAM score could distinguish the survival of STAD 
patients in both high- and low-TMB subgroups, and the trend of survival advantage in the high- and low-TMB 
groups was improved by the low-SAAM score (Figure S6C). Ultimately, the top 20 mutation genes in the high- 
and low-SAAM score groups based on the TCGA-STAD dataset were presented on the waterfall diagram. The 
top mutated genes in the two groups were the same, but the mutation frequencies were different. The mutation 
frequencies of the top three genes, including TTN, TP53, and MUC16, in the high-SAAM score group were 
significantly lower than those in the low SAAM score group (Figure S6D).

Accumulated evidence indicated that patients with high microsatellite instability (MSI-H) are more likely 
to respond to immune checkpoint inhibition and benefit from immunotherapy24,25. In the further study, we 
visualized the relationship between the SAAM score with MSI status. Whether in the high SAAM score group 
(52%) or low score group (84%), patients with microsatellite stable (MSS) account for the majority. Furthermore, 
patients with MSI-H in the low SAAM score group were more than those in the high SAAM score group (Figure 
S6E, 31% vs. 4%). Consistently, the MSI-H group had the lowest SAAM score (Figure S6F). In addition, the 
mRNA level of PD-L1 was downregulated in the high-score group, which may indicate that a high SAAM score 
shows a worse response to ICIs (Figure S6G).

CBS as a key gene in the SAAM model
Utilizing the STRING database, an analysis of the interaction network among 23 SAAM-related proteins was 
conducted. CBS was confirmed to have the strongest association with other SAAM genes (Fig. 5A). Survival 
curve analysis revealed that low expression of CBS was associated with a favorable prognosis among STAD 
patients (Fig.  5B). Subsequent analysis of CBS expression in various stages of STAD demonstrated lower 
expression in early-stage samples and higher expression in advanced-stage samples (P = 0.0042) (Fig. 5C). We 
detected the expression of CBS in 15 pairs of STAD tissues and adjacent non-cancerous tissues. In the examined 
samples, 33.3% exhibited relatively low expression of CBS in STAD tissues, while 53.3% demonstrated elevated 
expression of CBS in STAD tissues (Figure S7). In addition, we collected normal gastric tissue and STAD tissue 
samples to analyze the expression of CBS protein, attesting that the CBS protein level was up-regulated in STAD 
tissues (Fig.  5D). Furthermore, we performed additional investigations into the expression of CBS in both 
normal gastric cells and STAD cells, which unveiled a noteworthy elevation in both CBS mRNA and protein 
levels in the STAD cell line MKN-45 (Fig. 5E–G).

CBS deletion induced Inhibition of STAD cell proliferation and reduced GSH production
To elucidate the role of CBS in STAD cells, siRNA was employed to specifically silence the expression of CBS 
protein in MKN-45 cells (Fig.  6A-B). The comparison of growth curves between the negative control (NC) 
and siCBS groups revealed a significant inhibition of MKN-45 proliferation following CBS silencing (Fig. 6C). 
Homoplastically, a comparison of EdU-positive cells between the NC and siCBS groups in MKN-45 demonstrated 
a marked impact of CBS silencing on STAD cell proliferation (Fig. 6D–E).

CBS undertakes the conversion of homocysteine to cystathionine and finally to cysteine in the transsulfuration 
pathway. Their levels were evaluated to determine the effect of CBS silence on STAD cells. The results showed 
that the level of homocysteine increased, while the levels of cysteine, cystathionine, and GSH decreased after 
interfering with CBS (Fig.  6F–I). Although H2S exhibited a decreasing trend, no significant difference was 
observed, indicating that the 50% efficiency of CBS silencing was inadequate to impact H2S production (Fig. 6J). 
The decrease in GSH content usually disrupts the balance between cellular oxidative and antioxidative systems. 
By examining pertinent proteins, alterations in this equilibrium can be elucidated. The downregulation of CBS 
expression resulted in the decrease of antioxidant proteins NRF2, MnSOD, TRX-2, and GPX4, and the increase 
of GR and Catalase, signifying a disturbance in the equilibrium between cellular oxidative and antioxidative 
systems, thereby inducing oxidative stress (Fig. 6K and Figure S8). Oxidative stress can result in various forms 
of DNA damage, with γ-H2AX serving as a marker for it26. The silencing of CBS induced an upregulation of 
γ-H2AX protein levels, indicating that CBS deletion could trigger DNA damage (Fig. 6K). In summary, targeted 
silencing of CBS substantially suppressed the proliferation of STAD cells, diminished GSH production, and 
provoked oxidative stress within the STAD cells.
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Fig. 4.  Prognostic significance and immune correlation of the SAAM score in STAD. (A) Kaplan–Meier 
analysis of the OS of patients based on SAAM score in STAD (log-rank tests, p < 0.001). The high and low 
SAAM scores of STAD samples are listed under the Kaplan–Meier plot. (B) Correlations of the SAAM score 
and the survival status of patients. (C) Box plot of the allocation between the SAAM score and the survival 
status of patients. (D) Survival analysis between patients in T1-2 cohorts stratified by high-SAAM score (pink) 
and low-SAAM score (blue). (E) Kaplan–Meier curve analysis between patients in T3-4 cohorts stratified by 
SAAM scores high (pink) and low (blue). (F) Heatmap revealing the correlation between the SAAM score and 
immune infiltrating cells. Red and blue manifest a positive correlation and a negative correlation, respectively.
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CBS silencing promotes ferroptosis in STAD cells
Besides its role in ROS scavenging, GSH also eliminates lipid peroxides, which are an important defense to 
ferroptosis27. Thus, it is hypothesized that CBS can heighten the susceptibility of STAD cells to ferroptosis 
through GSH depletion. CBS deficiency resulted in reduced xCT and FTH levels, enhancing the propensity 

Fig. 5.  CBS as a key gene in the SAAM model. (A) Interaction map of the SAAM-associated proteins. The 
color from light green to dark blue represents the degree value of the node from small to large. (B) Survival 
analysis of patients with high and low CBS expression. (C) CBS expression in STAD at different stages. (D) 
Differences in CBS protein between normal and STAD tissues. N and T represent normal and tumor samples, 
respectively. (E) CBS protein expression in normal and STAD cells. (F) Quantification of protein levels of CBS 
in normal and STAD cells. (G) CBS mRNA expression in normal and STAD cells.
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Fig. 6.  CBS deletion inhibited STAD cell proliferation and induced oxidative cell damage. (A) The changes 
in CBS protein were detected by western blot. (B) The silencing efficiency of CBS was quantified. (C) The cell 
viability of MKN-45 was measured at 0, 24, 48, and 72 h to reflect its growth rate. (D) Proliferating cells from 
both the NC and siCBS groups were photographed by an M7000 microscope. (E) EdU-positive cells from 
both the NC and siCBS groups were quantified. (F–H) Relative levels of homocysteine (F), cysteine (G), and 
cystathionine (H) in STAD cells after interfering with CBS. (I) Changes in total intracellular GSH. (J) Effect 
of CBS deletion on intracellular H2S production. (K) Antioxidant proteins and markers of DNA damage were 
tested by western blot.
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of cells to undergo ferroptosis (Fig. 7A). The xCT protein plays a critical role in transporting cysteine for GSH 
synthesis, while FTH is indispensable for iron ion storage28,29. Therefore, we administered the ferroptosis 
inducers RSL-3 and DHA, both targeting the GPX4 protein, which uses GSH as a reducing agent to catalyze 
the reduction of lipid peroxides into the corresponding alcohols (Fig. 7B). Cytotoxicity assays demonstrated the 
enhanced sensitivity of the siCBS group to the ferroptosis inducers compared to the NC group (Fig. 7C). DCFH-
DA fluorescence probe was employed to label intracellular ROS, demonstrating a notable elevation in ROS 
levels following RSL-3 treatment for 4 h in the siCBS group (Fig. 7D–E). Flow cytometry analysis utilizing the 
BODIPY fluorescence probe, a marker of lipid peroxides, revealed a substantial rise in the siCBS group treated 
with RSL-3 (Fig. 7F–G). These results underscored the significant role of CBS in the pathway of ferroptosis, 
which should not be overlooked.

Identification of the correlation between CBS and the TME
We utilized two single-cell RNA-seq datasets (STAD_GSE134520 and STAD_GSE167297) sourced from the 
TISCH database to investigate the expression of CBS in cells related to the TME. As depicted in Figure S9A, CBS 
exhibited predominant expression in immune cells. Further analysis revealed that fibroblasts and plasma cells 
displayed the highest levels of CBS expression (Figure S9B). These results indicated that the expression pattern 
of the CBS gene is different in STAD at the single-cell level, suggesting that the CBS gene may play an important 
role in specific cell types.

Discussion
STAD is a highly heterogeneous disease, even if similar pathological characteristics can lead to different outcomes. 
This suggests that previous staging systems may have reached the limits of predicting patient outcomes and 
treatment benefits30. Therefore, there is a need for a new classification of STAD patients based on genomic 
analysis and clinical evidence to provide preventive and therapeutic approaches. Precision oncology approaches 
based on molecular subtypes represent a promising frontier in cancer therapy31. For instance, Zhang et al. 
comprehensively evaluated m6A modification patterns based on 21 m6A regulators in GC and linked them to 
TME cell infiltration characteristics, further to determine the immune phenotypes of tumors and guide the more 
effective clinical practice32. Similarly, Chong et al. established a cuproptosis-related gene signature for prognostic 
risk assessment in GC33, while Lin et al. constructed an histone deacetylases score based on the expression 
level of histone deacetylases in GC to characterize the TME and predict immunotherapy efficacy34. This study 
integrated data from multiple levels including gene mutations, CNVs, and transcriptome expression from a novel 
perspective to comprehensively analyze the role of SAAM-related genes in STAD. We systematically evaluated 
their clinical and immunological relevance and constructed a SAAM scoring model as a novel prognostic and 
therapeutic tool. Furthermore, CBS was identified as the core gene in the SAAM model, and its mechanism of 
action in STAD cell proliferation, oxidative stress, and ferroptosis was explored, offering a new potential target 
for the treatment of STAD.

SAAM dysregulation contributes to tumorigenesis and malignant progression35,36. As important members 
of the antioxidant family, the increased level of SAAs was observed in the tissue metabolomic analysis of 
colorectal cancer37. Cysteine was upregulated in ovarian cancer patients, which helps ovarian cancer cells adapt 
to hypoxia stress and escape from carboplatin cytotoxicity38. Conversely, cysteine deprivation may lead to cell 
death. Inhibition of cysteine in retinal pigment epithelial cells induced GSH depletion, ultimately resulting in 
ferroptosis, autophagy, and premature senescence39. Moreover, studies have reported that methionine deficiency 
promoted mitophagy via lncRNA PVT1-mediated promoter demethylation of the BNIP3 in GC40. This 
evidence suggests that SAAM has the ability to influence tumor malignant progression. Our SAAM scoring 
system characterizes the integrated SAAM-mediated TME landscape in STAD, elucidating its impact on tumor 
development and guiding precision therapy.

We initially analyzed the mutation and expression patterns of SAAM genes in normal and STAD samples, 
revealing that CNVs may be the primary cause of gene alterations in tumor samples. The STAD samples were 
divided into three clusters, and clustering analysis was performed based on SAAM genes to investigate their 
clinical characteristics and TME. In comparison, SAAM cluster B showed better OS, while SAAM cluster C had 
the poorest prognosis. SAAM cluster B enriched activated CD4 T cells, CD56bright natural killer cells, type 17 
T helper cells, and type 2 T helper cells, which play crucial roles in recognizing and attacking cancer cells41,42. 
Subsequently, we identified DEGs from these SAAM clusters and performed PCA to classify STAD into three 
refined gene clusters. These gene clusters delineated molecular characteristics of SAAM clusters more precisely, 
revealing key prognostic pathways and verifying SAAM cluster stability while uncovering intrinsic molecular 
differences between subtypes. The gene clusters exhibited distinct prognostic outcomes and TME features.

By further performing PCA analysis from prognostic DEGs, we successfully developed an SAAM scoring 
algorithm and discovered that STAD patients with lower scores exhibited better prognosis and improved survival 
status. The measurement of TMB is of significant importance in cancer research and treatment as it helps identify 
specific gene alterations that drive tumor growth and influence prognosis and treatment response43. Therefore, 
the association of SAAM scores with TMB was evaluated, which uncovered that high TMB and low SAAM 
scores were associated with better prognostic outcomes. Furthermore, there was a substantial increase in MSI-H 
in samples with low SAAM scores, hinting that immune therapy could be an effective treatment strategy for 
patients with low SAAM scores44. Besides, some tumor cells can evade the immune surveillance by expressing 
PD-L1, which interacts with PD-1 on T cells and suppresses their anti-tumor activity. This interaction between 
PD-L1 and PD-1 is known as an immune checkpoint pathway and serves as the target for immune checkpoint 
inhibitors45. Hence, we further examined the expression of PD-L1 in two different groups and found a significant 
increase in the low SAAM score group. In conclusion, these results indicated that the constructed SAAM scoring 
model can predict the prognosis of STAD patients as well as their sensitivity to immunotherapy.
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Fig. 7.  CBS silencing promotes ferroptosis in STAD cells. (A) Ferroptosis-related proteins changed with 
the decrease of CBS. (B) Schematic representation of GSH involvement in the ferroptosis pathway. (C) The 
cytotoxicity of RSL-3 (2.5 µM) and DHA (100 µM) was tested after the treatment of 20 h treatment in both 
NC and siCBS cells. (D) Typical pictures were captured to measure intracellular ROS levels using an M7000 
microscope after the application of RSL-3 (5 µM) in MKN-45 cells. (E) DCFH-DA-labeled ROS levels were 
quantified. (F) After 4 h of treatment with RSL-3 (5 µM), the cells were stained with BODIPY for 30 min and 
the fluorescence intensity was measured by flow cytometry. (G) BODIPY-labeled lipid peroxide levels were 
quantified.
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Despite the extensive research on molecular biomarkers, many of the identified markers have not been 
validated successfully. Targeted therapy remains unavailable for the majority of patients with advanced STAD, 
and there are currently no diagnostic markers for secondary prevention. Interestingly, low expression of CBS was 
associated with a favorable prognosis in STAD patients. Single-cell analysis has identified CBS enrichment in 
fibroblast cells in STAD. Fibroblasts modulate subsequent immune responses when challenged with various tissue 
injuries, which include interactions with granulocytes and myeloid cells, as well as regulating the recruitment 
and retention of lymphocytes, which are crucial in connective tissue, contributing to wound healing, tissue 
repair, and immune regulation46,47.

CBS is an enzyme that plays a crucial role in SAAM and has been implicated in promoting cancer growth 
and progression through autocrine and paracrine mechanisms48,49. In 2012, CBS was first identified as an 
epigenetic biomarker for the molecular diagnosis of gastrointestinal cancers, sparking interest in its role in 
GC. In colorectal and GC patients, CBS was prone to methylation-mediated silencing, leading to the loss of 
its mRNA expression50. However, Zhang et al. discovered that the CBS protein is expressed and upregulated 
in human gastric carcinoma mucosa51. The inconsistent expression of CBS in different STAD patients may be 
due to inter-individual variability and tumor heterogeneity. Nevertheless, CBS was upregulated in STAD tissues 
compared to normal and STAD tissues in our analysis. Notably, CBS exhibited varying levels of expression 
across different stages of STAD, with higher expression of the CBS gene observed in more advanced stages of 
the tumor. Ulteriorly, we assessed the expression of CBS mRNA and protein in normal gastric cells and STAD 
cells through qRT-PCR and western blot experiments, respectively, revealing upregulation of CBS mRNA and 
protein expression in the STAD cell line MKN-45. This evidence suggested that CBS can be used as a molecular 
biomarker to provide new ideas for prognosis and tumor-targeted immunotherapy in STAD.

To test whether CBS affects the growth of STAD cells in vitro, we utilized siRNA to knock down CBS expression 
in MKN-45 cells. The growth curve and EdU staining assay results showed that CBS deletion had a significant 
impact on the proliferation of MKN-45 cells. CBS is responsible for the production of cystathionine, cysteine 
and H2S in the transsulfuration pathway, all of which are key antioxidant molecules36. CBS silencing causes 
the accumulation of homocysteine, decreased levels of cysteine and GSH. The lack of CBS catalysis prevents 
the smooth conversion of homocysteine to cystathionine. Although homocysteine forms mixed disulfides with 
cysteine and is excreted from the body, high homocysteine concentrations have little effect on the degree of 
dehydrosulfation of cysteine catalyzed by CBS or CTH. In general, the reaction of CTH is not saturated in 
cystathionine, and its reaction of catalyzing homocysteine to H2S, 2-ketobutyrate and NH4

+ is highly sensitive 
to high concentrations of homocysteine10,52–54. Unfortunately, no significant change in H2S concentration 
was observed in STAD cells with CBS interference, which may be due to the low expression of CTH in gastric 
tissues55. Cystathionine has been considered an important intermediate in the transsulfuration pathway, and 
recent studies have shown that it resists endoplasmic reticulum stress-induced injury in a mouse model56. 
Cystathionine accumulation may occur in gastric tissues with low CTH expression, protecting gastric tissues 
from stress57. However, interfering with CBS reduced the production of cystathionine, and further studies are 
needed to investigate the changes in cystathionine and its role in STAD cells.

Previous studies have shown that cells with low expression of CBS and CTH only activate the transsulfuration 
pathway to maintain cysteine and REDOX homeostasis when exogenous cystine is depleted36,58,59. Most of 
the intracellular cysteines are derived from cystines transported from the extracellular by the xCT system60. 
Interestingly, xCT protein levels tended to decrease with CBS silencing. This indicated that CBS silencing exerted 
an inhibitory effect on the xCT system, which significantly reduced intracellular cysteine and GSH levels. 
However, the mechanism of the inhibition of the xCT system after CBS silencing needs to be further studied.

GSH is the most prevalent nonprotein thiol in cells. It is catalyzed by glutamate-cysteine ligase (GCL) to link 
cysteine to glutamate, producing γ-glutamylcysteine. Subsequently, glycine and γ-glutamylcysteine are catalyzed 
by GSH synthase (GSS) to produce GSH. Among them, GCL expression and cysteine concentration are the key 
factors for GSH synthesis61. The decreased concentration of cysteine in cells with CBS silence resulted in the lack 
of reaction substrates for GCL and GSS to synthesize GSH. Whether the deletion of CBS affects the expression 
of GCL and GSS has not been reported. Cancer cells, adapting to high levels of oxidative stress, become more 
sensitive to GSH deficiency62,63. After CBS deletion, resulting in decreased expression of antioxidant enzymes 
such as NRF2, MnSOD, and GPX4, and increased expression of GR and Catalase. These changes indicated 
that the antioxidant defense system of the cells is inhibited, and the activation of compensatory mechanisms 
is not able to fully counteract the increased oxidative stress. In addition, reduced TRX-2 expression further 
impaired the antioxidant capacity of the cells. These changes led to a decrease in GSH levels. The decrease in 
GSH disrupted the REDOX balance, preventing the consumption of intracellular ROS and lipid peroxides, and 
contributing to oxidative stress in cells, manifesting as a decrease in antioxidant proteins and the appearance of 
DNA damage.

In 2012, Dixon proposed ferroptosis as an iron-dependent programmed cell death process, which also 
heavily relies on GSH metabolism64. Hence, we hypothesized that CBS deficiency may render STAD cells more 
susceptible to ferroptosis. FTH serves as a key component in iron metabolism and storage, modulating the 
availability of intracellular iron65–67. By sequestering excess free iron, FTH helps maintain iron homeostasis 
and prevents the accumulation of labile iron, which is critical for initiating the lipid peroxidation process in 
ferroptosis68. FTH protein showed a tendency to decrease after CBS silencing. The loss of FTH will increase the 
intracellular free iron ion, induce more lipid peroxide production, and promote the occurrence of ferroptosis.

GPX4 catalyzes the reaction of GSH with ROS and lipid peroxides to form GSSG, which protects cells from 
ferroptosis11. RSL-3 and DHA were selected to confirm our hypothesis. They are both ferroptosis inducers that 
inhibit GPX4 protein. Consequences exhibited that ferroptosis inducers have greater toxicity against siCBS-
treated STAD cells. In addition, siCBS-treated STAD cells treated with RSL-3 also revealed an increase in ROS 
and lipid peroxides. These results all provided evidence that CBS deletion induces cell susceptibility to ferroptosis. 
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Based on this, studying the impact of CBS on ferroptosis will help deepen our understanding of the role of CBS-
mediated resistance to oxidative stress and free radicals in the occurrence and development of STAD.

Several limitations need to be acknowledged in this study. First, although we constructed a SAAM scoring 
model from the first 23 genes, a number of emerging SAAM-related genes need to be enrolled in the model 
to optimize the accuracy of the patterns. Second, this SAAM scoring model was derived from retrospective 
datasets; therefore, a prospective cohort of STAD patients is required to validate our findings. Third, due to 
the variability and limitations of data from public databases, extensive in vitro and in vivo experiments are still 
required to support our findings.

Conclusions
In summary, we constructed a fascinating risk score model based on the expression patterns of SAAM in STAD. 
Our results revealed that the SAAM risk score can serve as a dependable indicator of clinical characterization, 
immune cell infiltration, and survival outcome. The downregulation of CBS, serving as the key gene in the 
model, led to reduced intracellular levels of cysteine and GSH, inducing oxidative stress, enhancing ferroptosis 
sensitivity, and inhibiting the growth of STAD cells. These findings provided evidence supporting the notion that 
patients with low CBS expression have a better prognosis. Our study significantly promoted the understanding 
of the potential mechanism of SAAM regulators in STAD, which may help to predict prognosis and even forecast 
the effects of immunotherapy.

Data availability
Sequence data that support the findings of this study have been deposited in the Gene-Expression Omnibus 
(GEO; https://www.ncbi.nlm.nih.gov/geo/) and The Cancer Genome Atlas (TCGA; ​h​t​t​p​s​:​/​/​c​a​n​c​e​r​g​e​n​o​m​e​.​n​i​h​.​g​
o​v​/​a​b​o​u​t​t​c​g​a​/​​​​​) with the primary accession code GSE84437.
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