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By integrating electric vehicles (EVs), the multi-microgrids (MMGs) can significantly enhance 
their resilient operation capabilities. However, existing works face challenges in formulating 
optimal routing and scheduling strategies for EVs, due to the spatial-temporal uncertainty of the 
distribution and transportation networks, as well as incomplete information. This paper addresses 
the coordination problem of EVs for the resilience enhancement of MMGs, using a distributed multi-
agent deep reinforcement learning approach to minimize the load-shedding cost. Specifically, a 
coupled power-transportation network (CPTN) model is constructed to facilitate EV routing and 
scheduling for resilience enhancement, considering the uncertainties associated with distributed 
renewables, load profiles, and traffic flow. Then, the coordination problem of each EV is formulated 
as a partially observable Markov decision process, and an attention-based distributed multi-agent 
deep deterministic policy gradient method, namely AD-MADDPG, is proposed to learn the optimal 
strategies. The proposed method applies an architecture with multi-actor, single-learner to reduce 
training complexity, employing a convolutional neural network to capture spatial characteristics 
from the CPTN, and incorporating a long short-term memory to derive temporal sequence features 
across multiple time steps, thereby enhancing the exploration efficiency of the action space. 
Simulation results implemented on the modified IEEE 33-bus test feeder demonstrate that AD-
MADDPG outperforms all other baselines in terms of load restoration, restoration fairness, and energy 
consumption when varying different numbers of EVs, maximum discharging proportion, and maximum 
moving distance.

Keywords  Resilience-driven, Microgrids, EV coordination, Coupled power-transportation network, 
Distributed deep reinforcement learning

Background and motivation
The continuous warming of the global climate poses significant challenges to the stable operation of power 
systems, increasing the occurrence of high-risk, low-probability extreme events1–3. To alleviate the impacts 
stemming from extreme events, enhancing the resilience of power systems has become a recent research 
focus4,5. Multi-microgrids (MMGs) architecture, comprising distributed renewable energy sources (DRES), 
demand response strategies, and flexible load resources, has emerged as a highly promising solution to enhance 
the resilience of distribution systems6. In the event of regional faults or outages in the utility grid, MMGs can 
operate in an off-grid mode, curtailing a portion of the load to maintain voltage and frequency within acceptable 
ranges, coordinating DRES to restore load as much as possible7. However, relying solely on the reconfiguration 
of distribution networks and intermittent DRES to maintain loads is challenging in practical operation, as their 
load restoration capabilities are limited and unstable. Moreover, multiple isolated microgrids may not be able to 
support each other, due to the random damage of distribution network lines.

Electric vehicles (EVs), with their excellent mobility and flexible charging and discharging capabilities, 
have been utilized in a lot of recent research to enhance the resilience of distribution networks8. The core 
issues of using EVs in resilience enhancement of MMGs lie in optimizing the routing and charge-discharge 
scheduling of EVs, maximizing load restoration while reducing energy consumption, under the premise 
of satisfying operational constraints9. To solve the optimal routing and dispatching problems, many model-
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based offline one-shot optimization methods have been proposed, such as mixed integer linear programming 
(MILP)10, stochastic programming11, and robust optimization12, etc. However, comprehensively considering the 
uncertainties of DRES and flexible loads imposes significant computational burdens, which may reduce the 
methods’ responsiveness to dynamic load changes.

To improve the adaptability of methods to time-varying environments, model-free approaches have been 
developed, such as deep reinforcement learning (DRL)13, offering a solution method to the decision-making 
problems in resilience enhancement of MMGs. DRL’s capability to deliver fast responses and accommodate 
uncertainties and contingencies is particularly advantageous. By training agents to iteratively interact with the 
environment without prior knowledge and learning the optimal policies for the dynamic scheduling of EVs. 
However, the existing DRL-based approaches14–16 usually treat the routing and scheduling of EVs separately, 
without considering their temporal and spatial coordination. Moreover, they simplify the routing of EVs to 
discrete path choices on a 2D vector map, ignoring the temporal and spatial characteristics of the movement 
process.

To solve these research gaps, we aim to design a coordinated and efficient routing and dispatch strategy 
for EVs to contribute to the resilience enhancement of MMGs, extract both temporal and spatial features, and 
improve the approaches’ responsiveness under incomplete information.

Literature review
Model-based methods
In recent years, model-based mathematical approaches have been extensively developed to model the routing 
and scheduling of EVs to enhance the resilience of power networks. In works17–19, a mixed-integer linear 
programming (MILP) model is proposed to achieve coordinated operation among EVs and MGs. In work20, a 
mixed-integer quadratically constrained programming (MIQCP) model is proposed to optimize the rerouting 
and dispatching of EVs for resilience enhancement in coupled traffic-electric networks. In work21, a two-stage 
stochastic optimization scheduling framework is proposed to coordinate the scheduling of EVs for the restoration 
of interconnected power-transportation systems under natural hazard risks. In works22,23, a robust optimization 
method is proposed to schedule the EVs’ mobility and its charging and discharging strategies to enhance the 
resilience of coupled networks by minimizing both investment and operational costs under uncertain traffic 
demands. In work24, a particle swarm optimization (PSO) algorithm is proposed to optimize the load dispatch 
of the microgrid containing EVs. In work25, a hybrid genetic algorithm and simulated annealing method 
(GA-SAA) is used to optimize the placement of EV charging station, reducing power losses and maintaining 
acceptable voltage levels. In work26, four metaheuristic algorithms, including differential evolution (DE), PSO, 
whale optimization algorithm (WOA), and grey wolf optimizer (GWO), are applied to schedule the charging/
discharging activities of EVs, reducing the daily costs. However, when the number of considered scenarios is 
large, addressing uncertainties through stochastic programming or robust optimization can impose a significant 
computational burden. Furthermore, problem-solving based on heuristic algorithms cannot guarantee the 
accuracy of the solutions obtained.

Value-based DRL methods
Considering these limitations, DRL emerges as a data-driven and model-free approach27, offering a new paradigm 
for resilient operations involving MMGs and EVs. In one aspect of the existing literature, the value-based DRL 
methods, have been adopted to train the optimal routing and scheduling decisions of EVs. In references28,29, 
a deep Q-network (DQN) based model is proposed to dispatch a set of EVs to supply energy to different 
consumers at different locations, enhancing power system resilience while considering the uncertainties in 
power supply and demand. In references15,30, a double deep Q-networks (DDQN)-based method is proposed to 
solve the routing and scheduling coordination problem of mobile energy storage systems in the load restoration. 
In reference31, an enhanced dueling DDQN algorithm with mixed penalty function is developed to optimize 
the energy management of MG incorporating EVs. Although DQN or DDQN utilize deep neural networks to 
effectively handle high-dimensional state space and mitigate the curse of dimensionality, they still face significant 
challenges in balancing exploration and exploitation in such large spaces. Furthermore, their capability to handle 
continuous action spaces is limited, rendering them inadequate for addressing stochastic decision problems.

Policy-based DRL methods
The other side, therefore, employs policy-based DRL methods that can directly optimize the probability of 
taking an action or the action value rather than estimating the Q-value function. In reference32, a decentralized 
Actor-Critic (AC) method is proposed to solve the routing and scheduling of a large fleet of EVs, addressing 
the scalability issues in large-scale smart grid systems. In reference33, a heterogeneous multi-agent hypergraph 
attention Actor-Critic (HMA-HGAAC) framework is proposed to solve the joint EVs routing and battery charging 
scheduling problem in a transportation network with multiple battery swapping stations. In references34,35, 
a deep deterministic policy gradient (DDPG) method is proposed to enhance the resilience of EV charging 
stations in the presence of cyber uncertainties. In reference36, a twin-delayed deep deterministic policy gradient 
(TD3) is developed to obtain the optimal driving strategy of EVs in a traffic scenario with multiple constraints. 
In reference37, a hybrid parameter sharing proximal policy optimization (H-PSPPO) method is proposed to 
compute both discrete and continuous actions simultaneously that align with the nature of EV routing and 
scheduling problems in power-transportation network, aiming at enhancing power system resilience.

It can be concluded that, despite various types of DRL methods being applied to the routing and scheduling 
of EVs participating in the resilient operation of MMGs, the previous work exhibits the following potential 
limitations: i) existing studies typically treat EVs’ routing as a discrete action problem, without considering the 
extraction of spatial-temporal features of EVs’ movement within the transportation network; ii) the methods 
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mentioned above may not deliver timely services for load restoration due to the increasing system scale and 
complexity in training within a multi-agent setting; iii) the inherent instability of the environment, coupled 
with the information asymmetry among multiple agents, exacerbates the difficulty of achieving stable learning 
dynamics and converging to optimal strategies.

Contribution
To address the above limitations and achieve multi-objective optimization, we propose an attention-based 
distributed MADRL algorithm with a multi-actors and single-learner framework to conduct the routing and 
scheduling of EVs. The main contributions of this paper can be summarized as follows:

•	 A coupled power-transportation network (CPTN) is constructed to investigate the coordination effect of EVs 
routing and scheduling problems for the resilient load restoration of MMGs. Each EV routing and scheduling 
coordination problem is then formulated as a partially observable Markov decision process, exploiting the 
EVs’ flexibility in temporal and spatial.

•	 An attention-based distributed multi-agent deep deterministic policy gradient method, namely AD-MAD-
DPG, is proposed to solve the routing and scheduling coordination decision-making problem of EVs. This 
method employs a multi-actor, single-learner interaction architecture and utilizes a convolutional neural net-
work (CNN) to extract spatial state features from the CPTN.

•	 To enhance the efficiency of action exploration and exploitation, a long short-term memory (LSTM) network 
is employed to capture multi-step temporal characteristics. By incorporating a prioritized experience replay 
mechanism, the multi-step reward is calculated, giving a more precise approximation.

•	 Comparative simulation results with other benchmark algorithms demonstrate that the proposed AD-MAD-
DPG achieves superior performance in terms of load restoration, energy consumption, and restoration fair-
ness.

Paper organization
The remainder of this paper is organized as follows. The section II presents the spatial-temporal network model 
of CPTN. The section III describes the problem formulation about the optimal routing and scheduling of 
EVs. In the section IV, the proposed AD-MADDPG algorithm is introduced to improve the load restoration 
performance. Performance evaluations are carried out in Section V to demonstrate the effectiveness of AD-
MADDPG. Finally, the section VI concludes the paper.

Spatial-temporal network modeling of coupled power-transportation network
The constructed spatial-temporal network model for the coupled power-transportation network (CPTN) is 
illustrated in Fig. 1. Considering disconnection from the utility grid, the radial network of MMGs operating in 
off-grid mode can be represented as a tree-topological graph Gmg = (B, L), where B = {1, 2, ..., B} denotes 
the set of buses, and L = {1, 2, ..., L} indicates the set of branches. Similarly, the transportation network 
is modeled as a directed connected graph Gtn = (V tn, Etn), where V tn = {1, 2, ..., V } represents the 
sequentially numbered vertices and Etn = {1, 2, ..., E} denotes the edges of the connected graph, indicating 
road intersections (including origin and destination points) and directed road segments, respectively. The CPTN 
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Fig. 1.  The optimal routing and scheduling of multiple EVs in a coupled power-transportation network model.
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model also incorporates charging-discharging stations (CDSs) that couple MMGs and transportation networks 
together, defined as H = {1, 2, ..., H}. Additionally, the set of microgrids is represented as M = {1, 2, ..., M}.

During extreme events such as earthquakes, typhoons, prolonged icy weather, etc., which result in failures 
or power outages in the utility grid area, MMGs can operate in islanded mode, utilizing local DRES, diesel 
generation (DG) and energy storage system (ESS) to maintain power supply to critical loads. In this paper, we 
focus on the optimal routing and scheduling of EVs I = {1, 2, ..., I} in the CPTN to enhance the resilient load 
restoration of isolated MMGs. Each MG monitors and collects information on bus and branch failures in the 
network, as well as the local generation and load, to form the supply-demand balance deviation requirements for 
the islanded operation of MGs. Additionally, each EV moves between different CDSs of MGs, considering the 
real-time traffic conditions of the transportation network, to facilitate load restoration after extreme events and 
ensure the stable operation of MMGs.

MMGs network modeling
After extreme events occur (e.g., line faults at B1-B2, B4-B5, B5-B6, B11-B12 in Fig. 6), the distribution network 
is segmented into multiple autonomous MGs. Each MG operates independently by leveraging local resources 
(DRES, DG, ESS) and internal grid reconfiguration capabilities38. MMGs typically shed a portion of the load as 
an emergency response to prevent sustained frequency and voltage decline when operating in islanded mode38. 
Subsequently, based on the locally available renewable energy generation capacity and dispatchable resources on 
the load side, MMGs gradually restore critical loads during the blackout period. We assume no internal bus-level 
damage within MGs, focusing on post-segmentation coordination. This simplification aligns with standard test 
systems (e.g., IEEE 33-bus) for resilience studies3,6. In this paper, the load restoration problem aims to maximize 
load recovery while minimizing economic costs, subject to safety constraints.

Operation costs of MG
The operation costs of each MG consist of three components: (1) DG generation cost, (2) load shedding cost, and 
(3) ESS battery degradation cost, as expressed in Eq. (1).

	
Cmg

m =
T∑

t=1

[
αmP dg

m,t + cls
mP ls

m,t + cess
m P essd

m,t

]
� (1)

where αm and P dg
m,t represent the unit generation cost and active power output of DG, respectively. cls

m and 
P ls

m,t refer to the load shedding cost and the quantity of load shedding for MG m. cess
m  and P essd

m,t  represent 
the battery degradation cost coefficient of ESS and the amount of energy discharged. The objective of each MG 
is to minimize its operational cost while satisfying operational constraints. Additionally, to prioritize the load 
restoration of islanded MG, we set cls

m ≫ αm and cls
m ≫ cess

m , indicating that the penalty cost for load shedding 
is higher than the DG generation cost and ESS battery degradation cost.

Operation constraints
System-level constraints: The secure operation of MGs requires compliance with corresponding system-level 
power flow constraints as well as internal component-level constraints within the MGs. In this paper, the 
linearized DistFlow model39 is adopted to describe the power flow and voltage of MGs.

	

pnj,t =
∑

k∈Bj

pjk,t + P load
j,t − P dg

j,t − P pv
j,t − P wt

j,t − P essd
j,t � (2)

	

qnj,t =
∑

k∈Bj

qjk,t + Qload
j,t − Qdg

j,t � (3)

	
vj,t = vn,t − (rnjpnj,t + wnjqnj,t)

v1
� (4)

	 vn,min ⩽ vn,t ⩽ vn,max � (5)

where Eqs. (2) and (3) represent the active power and reactive power from bus n to j at time step t, respectively. 
Bj  is the set of buses that take bus j as the parent node. Equations (4) and (5) represent the voltage of bus and 
related constraints. Here, rnj  and wnj  represent the resistance and reactance of the branch (bus n to j), where 
the branch (n, j) ∈ L.

Component-level constraints: The operational constraints of each component (including DG, ESS, PV, WT) 
within the MGs are represented as follows:

	 P dg
m,min ⩽ P dg

m,t ⩽ P dg
m,max, ∀m, t � (6)

	 Qdg
m,min ≤ Qdg

m,t ≤ Qdg
m,max � (7)

	 P essd
m,min ≤ P essd

m,t ≤ P essd
m,max, ∀m, t � (8)
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Eess

m,t+1 = Eess
m,b,t + ηch

m P essc
m,t · ∆t −

∆t · P essd
m,t

ηdis
m

, ∀t � (9)

	 Eess
m,min ⩽ Eess

m,t ⩽ Eess
m,max � (10)

	 0 ⩽ P wt
m,t ⩽ P wt

m,max, ∀m, t � (11)

	 0 ⩽ P pv
m,t ⩽ P pv

m,max, ∀m, t � (12)

where Eqs. (6) and (7) represent the active power and reactive power constraints of DG, while (8) and (9) 
represent the power constraints of ESS.

Transportation network modeling
The transportation network model is illustrated in Fig. 2. Each node e, g ∈ V tn represents a road intersection, 
which could also serve as the original or destination point of a journey. An edge (e, g) ∈ Etn denotes an available 
road connecting nodes e and g. For each road, the length D(e, g) ∈ R≥0 determines the distance traveled 
along the road, while trd(e, g) ∈ {1, 2, . . . , T } represents the travel time on the road without congestion. The 
maximum capacity of the road, V max

(e,g) ∈ R≥0, indicates the maximum number of vehicles (per unit time) the 
road can accommodate without causing congestion from external traffic.

EVs traveling through the transportation network can both charge and discharge at the CDSs of MGs. When 
there is an excess of renewable energy generation in isolated MGs, EVs can serve as charging loads to absorb the 
surplus energy. Conversely, when there is insufficient generation in isolated MGs leading to load shedding, EVs 
can discharge, thereby enhancing the operational resilience of MGs. Nmax

h∈H ∈ N denotes the maximum number 
of EVs that can charge or discharge simultaneously at CDS h. In this paper, EVs freely enter/exit the network. 
Our model optimizes participating EVs (fixed during scheduling horizons), consistent with real-world V2G 
contracts.

Real-time traffic flow
Due to the spatial-temporal dynamics of traffic flow in the transportation network, the travel time of road (e, g) 
at time t is significantly influenced by the real-time traffic volume. This paper models the impact of real-time 
traffic volume on road travel time as follows15:

	
T dri

(e,g),t = trd
(e,g) + trd

(e,g) · δrd

(
F rt

(e,g),t

F max
(e,g)

)ρrd

, ∀t � (13)

	
F rt

(e,g),t = drd
(e,g),t +

∑
i∈I

Nrd
i,(e,g),t , ∀t � (14)

where T dri
(e,g),t represents the real-time travel time of the road (e, g), F rt

(e,g),t denotes the real-time traffic flow, δrd 
and ρrd represent congestion factors. drd

(e,g),t indicates the basic traffic volume40, i.e., the other types of vehicles 
with specific daily travel patterns in the transportation network. 

∑
i∈I

Nrd
i,(e,g),t represents the number of EVs 

participating in the resilient operation of islanded MGs on the road.

Dispatching costs of EVs
As EVs move within the transportation network, they consume energy, and their travel time is also affected 
by real-time road congestion. Therefore, we consider the energy consumption cost, time cost, and battery 
degradation cost of EVs moving between different CDSs for charging and discharging, calculated as follows:

Node
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Road Charging/Discharging Station (CDS)

Fig. 2.  The transportation network integrating charging/discharging stations.
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Cev

i =
∑
t∈T

(
dev

bat · (P evd
i,t + P evc

i,t ) + κ · Dev
i,t + σ · T dri

i,t

)
� (15)

where dev
bat represents the battery depreciation cost per unit of charging/discharging for EVs, P evd

i,t /P evc
i,t  

indicates the discharging/charging power of EV i at time t. κ and σ represent the energy consumption cost per 
unit distance and the cost coefficient per unit time for EVs, respectively. Dev

i,t and T dri
i,t  represent the moving 

distance and traveling time.
Moreover, the constraints of routing and scheduling behaviors for EVs are represented as follows:

	 0 ⩽ P evc
i,t ⩽ µc

i,t · P evc
i,max, ∀i ∈ I � (16)

	 0 ⩽ P evd
i,t ⩽ µd

i,t · P evd
i,max, ∀i ∈ I � (17)

	 µc
i,t + µd

i,t ⩽ 1 � (18)

	
Eev

i,t = Eev
i,t−1 + ηevc

i P evc
i,t ∆t −

P evd
i,t ∆t

ηevd
i

� (19)

	 Eev
i,min ⩽ Eev

i,t ⩽ Eev
i,max � (20)

where Eqs. (16) and (17) represent the charging and discharging constraints of EVs. The binary variables µc
i,t 

and µd
i,t represent the charging and discharging decisions of EV. Equation (18) guarantees that the charging and 

discharging patterns of EV i cannot be triggered simultaneously. Equations (19) and (20) indicate the energy 
storage dynamic and the minimum and maximum energy storage levels of EVs.

Problem formulation
The key issue of this paper is to optimize the routing and charging-discharging scheduling of EVs in the CPTN. 
The goal is to achieve maximum load restoration in MMGs with the minimum energy consumption cost of the 
EVs.

POMDP modeling
To address the resilient load restoration problem of MMGs, the optimal routing and scheduling of EVs is 
formulated as a partially observable Markov decision process (POMDP33), denoted as ⟨S, O, A, R, Υ ⟩. Then a 
distributed MADRL-based method is proposed to solve the optimization problem.

State space
The state space of the CPTN system is defined as St = {S1, S2, S3}, comprising three parts: 

	(1)	 The first channel of state S1 is shown in Fig. 3a, including the positions (x (h) , y (h))h∈H  of the CDSs 
and the quantity of shedding load P ls

h,t, i.e., S1 =
{(

x (h) , y (h) , P ls
h,t

)}
h∈H,t∈T

. Here, we utilize the 
index of CDSs to represent their corresponding MGs. Additionally, when P ls

h,t is positive, it indicates that 
the MG corresponding to CDS h experiences load shedding; when P ls

h,tis negative, it signifies that the MG 
corresponding to CDS h has surplus electricity.

	(2)	 The second channel of state S2 is shown in Fig. 3b, including the positions (x (e) , y (e))e∈V  of nodes, and 
the traffic volume F rt

(e,g),t of road (e, g), i.e., S2 =
{(

x (e) , y (e) , F rt
(e,g),t

)}
e∈V ,t∈T

.
	(3)	 The third channel of state S3 is shown in Fig. 3c, which includes the positions (x (i) , y (i))i∈I  and remain-

ing energy Eev
i,t  of all EVs, i.e., S3 =

{(
x (i) , y (i) , Eev

i,t

)}
t∈T

.
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Fig. 3.  The input state of the coupled power-transportation network.
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Action space

The action space is defined as A ≜
{

ai,t =
(
θi,t, li,t, P sch

i,t

)
i∈I

}
, where θi,t and li,t represent the moving 

direction and distance of EV i at time step t, respectively, P sch
i,t ∈ [−1, 1] denotes the charging/discharging 

scheduling of EVs. At each time slot t, each EV decides its direction θi,t ∈ [0, 2π) and distance li,t ∈ [0, lmax] 
of movement based on the load reduction of each MG and the real-time traffic conditions, aiming to achieve 
the maximum load restoration with minimum movement cost. Additionally, EVs must comply with driving 
regulations and travel along the roads, incurring penalties if the direction and distance of movement exceed 
the boundaries (coordinates) of the roads. The charging/discharging schedule P sch

i,t ∈ [−1, 1] represents 
the percentage of charging (positive) or discharging (negative) power of EVs relative to its battery capacity 
[−P evd

i,max, P evc
i,max] when it arrives at a specific CDS. It is important to note that, unlike existing work, in this 

paper, the direction and distance of the EV’s movement are treated as continuous variables.

Reward function
The objective of this paper is to minimize the load reduction costs of isolated MGs in an energy-efficient way. 
Then, combining Eqs. (1) and (15), the reward function can be defined as follows:

	
ri,t =

ωt ·
(
−cls

mP ls
m,t

)

Cev
i,t

(
P evd

i,t

) +
ωt · P evc

i,t

Cev
i,t

(
P evc

i,t

) � (21)

 where ωt denotes the fairness of load restoration in the MG, cls
mP ls

m,t represents the load shedding cost of MG, 
Cev

i,t

(
P evd

i,t

)
 and Cev

i,t

(
P evc

i,t

)
 are the discharging and charging cost of EV i, respectively. Rewards incentivize 

load restoration (−cls
mP ls

m,t) and efficient EV usage. Traffic congestion costs are inherently captured by T dri
i,t  in 

Cev
i  (Eq. 15).

Load restoration fairness
However, driven by the rational pursuit of profit, an EV is inclined to discharge at nearby MGs and then 
recharge at the closest ones, potentially neglecting MGs located in more remote areas. This tendency may result 
in insufficient or even no load restoration for certain MGs. Therefore, we introduce a fairness index ωt for load 
restoration across all isolated MGs, which can be represented by the Jain’s fairness index41, defined as:

	
ωt (π) =

(∑M

m=1 P load
t (π, m)

)2

M
∑M

m=1 P load
t (π, m)2

� (22)

where P load
t (π, m) represent the load restoration amount of MG m under EV scheduling strategy π. It can be 

seen that as the value of ωt (π) ∈ [ 1
M

, 1] increases, the load restoration process among different MGs becomes 
more equitable.

According to the predetermined state transition Υ  and reward function ri,t, the optimization problem in this 
paper can be formulated as:

	
V ∗

i (st) = max
ai,t

[
ri,t (st, ai,t) + γ

∫

st+1∈S

Υ (st, ai,t, st+1) V ∗
i (st+1)

]
� (23)

where γ denotes the discount factor. At time slot t, each EV i makes decisions to learn the optimal scheduling 
policy π∗

i , aiming to maximize its cumulative total reward, which can be defined as follows:

	
π∗

i = arg max
ai,t

[
ri,t (st, ai,t) + γ

∫

st+1∈S

Υ (st, ai,t, st+1) V ∗
i (st+1)

]
� (24)

To solve the continuous optimal routing and scheduling problem of EV i, we proposed a distributed multi-agent 
DRL (MADRL) method to learn the optimal policy π∗

i  for each EV. However, the optimal routing decision of 
an EV involves the spatial features of the CPTN. Additionally, due to the limited maximum distance an EV can 
move within a single time slot t, reaching a CDS may require multiple steps. Therefore, exploiting both the spatial 
and temporal features of EV movements is critical to solving our problem. In this paper, we use a convolutional 
neural network (CNN) to capture the spatial characteristics and integrate a long short-term memory (LSTM) 
network to extract temporal features, thereby improving the long-term performance of our model.

Distributed deep deterministic policy gradient framework
In this section, we propose an attention-based distributed multi-agent deep deterministic policy gradient (AD-
MADDPG) framework to address the continuous routing and scheduling problem for each EV.

Attention-based distributed actor-critic with spatial state modeling
Each EV aims to navigate through the transportation network to reach the corresponding CDS associated with 
each isolated MG, minimizing load shedding losses for the MG during disconnection periods. Simultaneously, to 
reduce its energy consumption, EV i needs to optimize both its charging/discharging decisions and its movement 
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paths within the transportation network. Therefore, acquiring effective spatial state information about the CPTN 
is crucial for the EV’s decision-making. To facilitate the extraction of spatial features from the CPTN, we divide 
the transportation network into a grid graph and utilize a CNN to extract the spatial information, as illustrated 
in Fig. 4.

Furthermore, for each EV i, four deep neural networks (DNNs) are implemented as Actor network θa
i , 

Target Actor network θta
i , Critic network θc

i  and Target Critic network θtc
i . At each time slot t, EV i obtains an 

observation oi,t and then the Actor θa
i  decides on an action ai,t to execute according to the policy πi (ai,t |oi,t ) 

combined with an attention mechanism. Here the attention mechanism learns a weight distribution Wi over 
the input observation and applies it to the original features, enabling the learning task to focus on the most 
important features, thereby improving efficiency. The attention mechanism is calculated as follows:

	 o′
i,t = Softmax (Wi · oi,t) · oi,t� (25)

The attention mechanism can adaptively adjust the attention weights Wi and feature weighting based on changes 
in the environment and tasks, thereby optimizing policy selection and improving reinforcement learning 
performance.

After each EV takes actions according to its private observation, the corresponding reward ri,t is calculated 
for each EV, and the state st transitions to st+1. This transition includes the amount of load shedding P ls

m,t, 
the traffic volume F rt

(e,g),t of road (e, g), the EV location (x (i) , y (i))i∈I , and the remaining energy Eev
i,t  of 

each EV. At the end of each time slot t, the state transition tuple (oi,t, ai,t, ri,t, oi,t+1) generated from the 
interaction between EV and the environment is stored into the experience replay memory. After a fixed number 
of interactions, a mini-batch of state transitions is sampled from the experience replay memory to train the 
DNNs. Then, the critic network θc

i  is updated by minimizing the following loss function:

	
L (θc

i ) = E
[(

y
θtc

i
i,t − Q (st, a1,t, ..., aI,t |θc

i )
)2

]
� (26)

where the target Q-value yθtc
i

i,t  is calculated by:

	 y
θtc

i
i,t = ri,t + γQ′

i

(
st+1, a1,t+1, ..., aI,t+1

∣∣θtc
i

)
� (27)

Finally, the actor network θa
i  is updated using gradients as:

	
∇θa

i
J ≈ ∇aQi(s, a1,t, ..., aI,t|θc

i )ai,t=πi(oi,t) · ∇θa
i

θa
i (oi)� (28)

Given the scale of the CPTN network, EVs require significant time and numerous transitions to fully explore their 
spatial and temporal features. To reduce the training complexity and enable the agent to learn optimal routing 
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and scheduling strategies efficiently, we adopt a multi-actor, single-learner training framework. Specifically, the 
learner is implemented using the DDPG method, which consists of four DNNs (see Fig. 4). Each independent 
actor (EV) copies the policy network parameters from the learner and updates its policy network periodically. 
Each actor maintains a local experience replay memory Blocal

i  to store the generated transitions sequentially 
within its local observation, while the learner utilizes a global memory Bglobal

i  for each EV i. The local memory 
Blocal

i  sends all data to the global memory Bglobal
i  once Blocal

i  is full. Since the multi-actors and single-learner 
operate in parallel, this framework allows for distributed execution of exploration and learning tasks, improving 
efficiency.

LSTM-enhanced temporal sequence features extraction
Within a single time slot t, the immediate step reward ri,t only reflects benefits or losses at that moment and 
cannot capture the cumulative rewards of the EV over multiple time slots, which is essential for long-distance 
travel (since reaching a CDS may require multiple steps due to the maximum distance constraint within a single 
time slot t). Therefore, relying solely on the value of previous observations and actions based on Qi (ot+1, ai,t+1) 
may not be accurate during the initial stages of training. Additionally, some EVs may develop a tendency to 
rely on specific CDSs that are suboptimal or may frequently return to recharge without contributing to load 
restoration rewards. Hence, it is crucial to extract multi-step temporal sequence features to address this issue. To 
better capture the long-term impact of policy choices and help the agent evaluate the future value of its actions, 
this paper calculates the cumulative reward over multiple steps as follows:

	 λi,t = ri,t + γri,t+1 + · · · + γN−1ri,t+N−1, ∀i ∈ I � (29)

Therefore, the new transition will use oi,t and oi,t+N−1 as the initial and final observations, generating a new 
transition (oi,t, ai,t, λi,t, oi,t+N−1).

To account for the multi-step reward for each EV i, with a transition starting from t to t + N − 1, we employ 
an LSTM network to capture additional temporal sequence information. Specifically, we fed two sequences 
of observations {oi,t−ε+1, oi,t−ε+2, · · · , oi,t} and {oi,t+N−ε, oi,t+N−ε+1, · · · , oi,t+N−1} into the LSTM 
network to generate new observations Ψi,t and Ψi,t+N−1 respectively, as shown in Fig. 5. This allows us to 
obtain a new transition (Ψi,t, ai,t, λi,t, Ψi,t+N−1) based on the LSTM network modeling. Here, ε is the LSTM 
sequence length. In this way, as an EV learns from mini-batches, it retrospectively considers multiple time slots, 
gaining insight into the cumulative impact of a sequence of actions and decisions. Additionally, the EV can 
simultaneously learn optimal charging or load restoration locations through this iterative process.

Action clipping for safe exploration
When exploring the action space using DDPG, the physical system constraints of the EVs and MMGs must 
be satisfied. Otherwise, the resulting actions may threaten the safe operation of the MMGs and lead to 
severe consequences. Therefore, we clip the agents’ actions to ensure that the action exploration of EV agents 
complies with the constraints. In the load restoration problem of an isolated microgrid system, Eqs. (16)–(20) 
account for the constraints of EV charging/discharging scheduling. To satisfy these constraints, the Sigmoid 
activation function is designed in the output layer of the Actor network, guaranteeing that the output actions [
θout,i,t, lout,i,t, P sch

out,i,t

]
 are normalized values between 0 and 1. These normalized values are then mapped 

back to the absolute values within the operational range, expressed as follows:

	 θi,t = 2π · θout,i,t � (30)
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extraction.
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	 li,t = lmax · lout,i,t � (31)

	 P sch
i,t = 2P sch

out,i,t − 1 � (32)

	
Eev

i,t =
{

max
(
Eev

i,t + ∆t · P sch
i,t · P evd

i,max/ηevd
i , Eev

i,min
)

, if P sch
i,t ⩽ 0

min
(
Eev

i,t + ∆t · ηevc
i P sch

i,t · P evc
i,max, Eev

i,max
)

, Otherwise
� (33)

where Eqs. (30) and (31) denote the action constraints for the EV’s movement direction and distance, respectively. 
Equation (32) represents the charging/discharging power constraint for the EV, while Eq. (33) ensures that the 
EV’s energy level at time step t always remains within its lower and upper bound.

Algorithm description
In this subsection, the AD-MADDPG algorithm for load restoration in isolated MMGs is illustrated, which 
combines a CNN for spatial information extraction and integrates an LSTM to capture multi-step temporal 
sequence features. The single-learner, utilizing the Deep Deterministic Policy Gradient (DDPG), replays 
mini-batch of transitions to update the policy network. The multi-actors operate independently within the 
environment, evaluating a local policy π derived from the Learner, and recording the observed transition data 
into their local replay memory. Periodically and asynchronously, these actors transmit their local buffer data to 
the Learner for each EV i. The training process of AD-MADDPG is described in Algorithms 1 and 2.

Algorithm 1.  Actors
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Algorithm 2.  Learner

Performance evaluation
Simulation settings
To validate the performance of the proposed AD-MADDPG algorithm for resilient load restoration in EV-
coordinated MMGs, we model the transportation network as a 2D square grid with dimensions of 32 × 32 units. 
For the power network, we construct an off-grid operation scenario consisting of 5 MGs, based on a modified 
IEEE 33-bus test system, with the topological structure shown in Fig. 6. The CPTN includes 5 CDSs, which 
support EVs for charging and discharging. We assume that at 10:00 a.m., multiple faults occur, causing the 
MMGs to disconnect from the utility grid. The expected duration of the utility grid outage is 6 hours, with an EV 
scheduling interval of 0.5 hours (i.e., T = 12). Additionally, to validate the performance of EVs in participating 
in the load restoration of MMGs, we assume that the following lines are disconnected due to faults: B1-B2, B4-
B5, B5-B6, and B11-B12. As a result, the MMGs are decomposed into 5 autonomously operating MGs, each 

Fig. 6.  The operation scenario consists of 5 independent MGs based on the modified IEEE 33-bus test system.
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utilizing internal DRES (e.g., PV and WT), DG, ESS and EVs to supply power to the loads within their respective 
islands. The technical parameters of each MG and EV are shown in Table 1.

For the DNN structure design, we use a 4-layer fully connected neural network with 2 hidden layers 
for the Actor, Critic, and Target networks. The neurons of hidden layers are 64, and the activation function 
is ReLU. Additionally, we employ a CNN with 3 hidden layers to extract spatial features. In the i-th layer of 
CNN, the number of filters is 16 × 2(i−1), each of size 3 × 3 with stride 2. To prevent gradient explosion, batch 
normalization is applied in the CNN, and layer normalization is adopted in the LSTM. For the LSTM, the gain is 
set to 1.0, and the shift is set to 0.0. The sequence length ε is chosen from the set {2, 3, 4}.

To validate the effectiveness of the proposed AD-MADDPG algorithm, we compared it with several baseline 
algorithms, which are listed as follows:

•	 MADDQN15: It investigates the optimization of routing and scheduling of mobile energy storage systems 
(MESS) for load restoration. To implement the MADDQN-based simulation, we discretized the routing and 
scheduling of EV to verify its convergence.

•	 MADDPG35: It is regarded as the state-of-the-art method for multi-agent deep reinforcement learning, 
demonstrating superior performance in cooperative and competitive multi-agent environments compared to 
other DRL methods. In this paper, we employ MADDPG’s centralized training with decentralized execution 
to learn optimal routing and scheduling policies.

•	 AD-MADDPG w/o LSTM: In this version, the policy network relies only on the current observation oi,t at 
time slot t, without utilizing the proposed LSTM-enhanced Multi-step temporal sequence features extraction.

Evaluation of AD-MADDPG
Convergence analysis
The training curves for the EVs are compared and presented in Fig. 7. The left side of Fig. 7 shows the training 
loss for both the Actor and Critic networks, while the right side displays the average reward along with the 
standard deviation (shaded region) over 10000 episodes. From the figure, it can be observed that the loss values 

Fig. 7.  Episodic average reward of EV agent over 10000 episodes for different methods.

 

Parameter Value Parameter Value

DG 1/DG 2 (MW) 0.4/0.3 PV 1/PV2 (MW) 0.4/0.3

DG 3/DG 4 (MW) 0.5/0.4 PV 3/PV 4 (MW) 0.4/0.3

WT 1/WT 2 (MW) 0.25/0.32 PV 5/PV 6 (MW) 0.25/0.35

ESS 1 Power/Capacity (MW/MWh) 0.5/1.0 PV 7 (MW) 0.5

ESS 2 Power/Capacity (MW/MWh) 1.5/3.0 DG unit generation cost αm 0.65

ESS 3 Power/Capacity (MW/MWh) 0.5/1.0 ESS degradation cost cess
m  (CNY/kWh) 0.2

ESS discharging efficiency ηdis
m 0.95 EV capacity Eev

max  (kWh) 100

EV energy consumption cost κ (kWh/mile) 3.8 EV degradation cost dev
bat  (CNY/kWh) 0.1

EV unit time cost σ (CNY/h) 2 Load shedding cost cls
m  (CNY/kWh) 10

Table 1.  Technical parameters of each MG and EV.
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for both the Actor and Critic networks initially decrease rapidly due to the imprecise approximation, which 
cause high loss values at the beginning. With the use of multi-actor, single-learner, along with LSTM-enhanced 
Multi-step temporal sequence features extraction, the losses gradually converge to a smaller numerical range 
around 4000 episodes, effectively demonstrating the convergence of the proposed AD-MADDPG algorithm. 
Furthermore, the right side of Fig. 7 shows that our AD-MADDPG algorithm outperforms the three baselines in 
terms of both the converged average rewards and convergence speed. Specifically, the converged average reward 
for AD-MADDPG is 21.5% higher than AD-MADDPG w/o LSTM. These results indicate that our method 
is learning a more effective policy, maximizing load restoration in isolated MMGs while reducing the energy 
consumption of EVs.

Voltage analysis of MGs
The hourly voltage fluctuation curves for different buses in MMGs are shown in Fig. 8. All bus voltages remain 
within the range of 0.95-1.05 p.u., confirming that each MG independently sustains stable voltage profiles. In 
particular, even Bus 6 with the largest fluctuations (±0.015 p.u.) strictly adheres to the safe range. In addition, 
voltage fluctuations intensify during 08:00–19:00 due to concurrent spikes in MG load consumption and 
renewable generation (PV/WT). The increased PV/WT output elevates local voltages, while load surges create 
temporary drops. Our coordination framework dynamically balances these opposing effects through EV 
scheduling, ensuring overall stability.

Computational performance
The computational performance of the evaluated methods is shown in Table 2. It is evident that MADDQN has 
the longest total training time, primarily due to the near-linear increase in the number of DNNs as the number of 
EVs grows and the large-scale discrete action space. In contrast, MADDPG has the shortest training time, thanks 
to its deterministic policy updates and simplified action selection process. Additionally, the AD-MADDPG 
algorithm converges in the fewest episodes, benefiting from the multi-actor, single-learner architecture of 
MADRL and the LSTM-enhanced Multi-step temporal sequence modeling. These results indicate that our 
AD-MADDPG algorithm achieves higher action exploration efficiency during training, leveraging multi-step 
expected discounted reward calculation. This leads to higher average rewards for EVs in load restoration and 
demonstrates superior computational performance within a reasonable training time.

Evaluation of load restoration
To verify the performance of EV scheduling policies for load restoration in islanded MMGs, we conducted 
a comparative analysis between scenarios with and without EV participation. The comparison results are 
illustrated in Fig. 9.

Method MADDQN MADDPG AD-MADDPG w/o LSTM AD-MADDPG

Num. of DNNs I 2I 2I+3 2I+4

Num. of episodesa 6200 5500 4500 4200

Tot. training time (h) 1.48 0.96 1.02 1.03

Average training time per episode (s) 0.86 0.63 0.82 0.88

Tot. average reward 4.23 25.53 42.65 51.83

Table 2.  Computational performance of the evaluated methods. aEach episode includes 12 time slots (i.e., 
T = 12) in our simulation setting

 

Fig. 8.  The hourly voltage fluctuation curves for different buses in MMGs..
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From Fig. 9a, it can be observed that MG 1 experiences issues with DRES (wind and solar) power curtailment 
due to an abundance of renewable energy when EVs are not participating in the strategy. However, when EVs are 
incorporated into MG 1’s operation scheduling, the surplus renewable energy is effectively utilized. After being 
fully charged in MG 1, these EVs can leverage their mobile energy storage capability to discharge in other MGs 
where power generation is insufficient. Fig. 9b demonstrates that MG 3 achieves a basic supply-demand balance 
without EVs. However, this balance comes at the cost of extensive diesel generator use and frequent ESS charge-
discharge cycles, leading to high operational costs and significant carbon emissions. With the participation of 
EVs, the reliance on diesel generation and ESS scheduling in MG 3 is significantly reduced, resulting in substantial 
cost savings. Fig. 9c shows that MG 4 experiences substantial load shedding when EVs are not involved, in order 
to maintain power balance due to insufficient output from DRES. When EVs participate, they facilitate a better 
load recovery, utilizing their batteries to discharge energy back into the MGs. Table 3 provides a comparison of 
the total costs under the two different strategies. Compared to Strategy 1, Strategy 2 achieves a reduction in both 
DRES curtailment costs and load shedding costs, directly saving an economic loss of 42659.33 (CNY), which 
accounts for approximately 52.53% of the total cost under Strategy 1.

Accordingly, under the strategy where EVs do not participate in the operation scheduling of MMGs, due to 
the lack of effective energy transmission channels, the surplus DRES in MG 1 cannot support the load of MG 
4, resulting in curtailment of wind and solar power in MG 1 and load shedding in MG 4. Conversely, when 
EVs participate in the scheduling of MMGs, the mobile energy storage feature of EVs can be fully utilized to 

(a) MG 1

(b) MG 3

(c) MG 4

Fig. 9.  The independent operation of each MG under different EVs strategies.
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establish temporary electricity transmission channels, thereby transferring surplus renewable energy from MG 
1 to support critical loads in MG 4, enhancing the overall operational resilience of the entire MMGs.

Evaluation of EVs scheduling
To evaluate the scheduling performance of EVs, we compare the proposed AD-MADDPG with three other 
baselines (as stated in section V.A.) in terms of the following three metrics.

•	 Load restoration ratio σl: determined as the ratio of the total amount of load restored to the initial amount of 
shed load over T time slots.

•	 Restoration fairness ωt: defined by Eq. (22) to illustrate how evenly the load associated with MGs is restored 
by all EVs over T time slots.

•	 Energy consumption ratio σe: computed as the ratio of the total energy consumed (for movement) by all EVs 
to the initial energy reserve over T time slots.

We conduct three sets of simulations by varying the number of EVs I, maximum discharging proportion P sch
max, 

and the maximum moving distance lmax in a time slot. The comparison results in terms of load restoration ration 
σl, restoration fairness ωt, and energy consumption ratio σe are illustrated in Fig. 10. As shown in Fig. 10a, we 
fixed P sch

max = 70%, lmax = 1.0, while the number of EVs I changes form 20 to 60. In this case, we observe 
that our AD-MADDPG consistently outperforms the other three baselines in terms of load restoration. For 
example, when I = 30, AD-MADDPG achieves a load restoration ratio of 0.924, compared to 0.814 achieved 
by the best baseline AD-MADDPG w/o LSTM, making a 13.5% improvement. On average, our AD-MADDPG 
improves the load restoration ratio by 9.5%, 22.6%, and 41.5% over AD-MADDPG w/o LSTM, MADDPG and 
MADDQN, respectively. In addition, we can see that with the increase in the number of EVs, the load restoration, 
restoration fairness and energy consumption are increasing due to the increased total energy consumption. 
However, benefiting from the LSTM-based N-step temporal sequence modeling and multi-actor, single-learner 
architecture designing, our AD-MADDPG method facilitates effective collaboration among multiple EVs. This 
leads to better scheduling strategies during the learning process, thereby improving the load restoration ratio 
and restoration fairness, while keeping the increase in energy consumption relatively slow. Specifically, for the 
energy consumption ratio, our AD-MADDPG achieved an average reduction of 8.9%, 17.8%, and 21.4% over 
AD-MADDPG w/o LSTM, MADDPG, and MADDQN, respectively.

In Fig. 10b, we fixed I = 30, lmax = 1.0, while the maximum discharging ratio P sch
max changes from 0.4 to 

0.8 with a step size of 0.1. As can be seen, AD-MADDPG outperforms all baselines in terms of load restoration, 
restoration fairness, and energy consumption. This is because as the maximum discharging ratio increases, EVs 
can strategically adjust their discharging rates based on their remaining energy status during each time slot. This 
enables them to supply more electrical energy to MGs experiencing energy deficits, thereby increasing the load 
restoration ratio. Furthermore, by discharging more energy in each time slot, EVs can reduce the frequency 
of their movements required for charging and discharging, consequently lowering energy consumption costs 
and enhancing overall operational efficiency. These results demonstrate that our spatial-temporal cooperative 
method effectively trains multiple agents to cooperate in a distributed manner, thereby enhancing the load 
restoration ratio while reducing energy consumption and maintaining a high level of restoration fairness.

Figure 10c evaluates the impact of maximum moving distance lmax of EVs in a time slot on the three metrics. 
We fixed I = 30, P sch

max = 80%, while the maximum moving distance lmax changes from 0.6 to 1.4 with a step 
size of 0.2. As can be observed from Fig. 10c, compared to the three benchmark algorithms, the proposed 
algorithm demonstrates a significant performance improvement. Specifically, it achieves an average increase 
in load restoration ratio of 9.6%, 19.8%, and 25.5%, respectively. Additionally, it improves restoration fairness 
by 7.9%, 16.5%, and 40.9%, and reduces the energy consumption ratio by 8.2%, 15.7%, and 23.6% on average, 
respectively. We can see that as the maximum moving distance increases, the load restoration ratio of MMGs and 
restoration fairness gradually improve and reach the bottleneck, while the energy consumption ratio exhibits 
only slight fluctuations. This occurs because increasing the maximum moving distance of EVs within a single 
time slot allows the EVs to cover greater distances over the entire episode with a fixed number of slots. As a 
result, EVs can reach more distant MGs during the resilient load restoration process, providing more flexible 
routing and charge-discharge scheduling. This enhances the overall system’s collaborative performance.

Cost type

Strategies

Without EVs (Strategy 1) With EVs (Strategy 2)

DRES curtailment cost (CNY) 2959.64 0

Load shedding cost (CNY) 68367.39 9700.32

Diesel generation (DG) cost (CNY) 9612.34 7223.86

ESS scheduling cost (CNY) 264.54 187.26

EVs scheduling cost (CNY) 0 21433.14

Total cost (CNY) 81203.91 38544.58

Table 3.  The cost comparison of different scheduling strategies.
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Conclusion
This paper focuses on improving the resilient load restoration of MMGs by integrating EVs. The impact of EVs 
on load restoration of MMGs is analyzed using a constructed CPTN system, which couples the MMGs’ power 
network with the transportation network. To reduce load-shedding costs during off-grid operation and save 
energy consumption of EVs, a distributed DDPG algorithm with a multi-actor, single-learner training structure 
is implemented to explore the performance of routing and charging-discharging scheduling. The main findings 
of this paper can be concluded as follows:

•	 To investigate resilient load restoration in MMGs, we constructed a coupled power-transportation network. 
This model represents the off-grid operation of MMGs and the optimal routing and scheduling of EVs, taking 
into account the uncertainty factors of both MGs and the transportation network.

•	 To maximize the load restoration and restoration fairness among MMGs while minimizing the energy con-
sumption of EVs, a distributed multi-agent DDPG approach is proposed, called AD-MADDPG. This ap-
proach incorporates CNN for spatial feature extraction and LSTM for temporal sequence modeling. Further-
more, we make an improvement for AD-MADDPG by integrating a multi-actor, single-learner framework to 
improve the learning speed and quality.

•	 Simulation results demonstrate that: (1) the involvement of EVs in the resilient operation of MMGs signifi-
cantly reduces the load shedding costs; (2) Compared to benchmark algorithms, the proposed AD-MADDPG 
utilizes a framework of multi-actor, single-learner, along with LSTM-enhanced Multi-step temporal features 
extraction, effectively accelerates DNN training and facilitates the learning of multi-agent cooperation strate-
gies, thereby improving load restoration and restoration fairness while reducing energy consumption.

In future work, we will provide a more detailed modeling of the uncertainty factors within transportation 
networks and analyze their impact on EV scheduling. Additionally, curriculum learning and parameter sharing 
will be integrated into the multi-actor single-learner framework to further enhance the learning efficiency of the 

(a)

(b)

(c)

Fig. 10.  The comparison of AD-MADDPG with the other three baselines in terms of load restoration, 
restoration fairness, and energy consumption.
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distributed multi-agent training process, thereby establishing a robust foundation for the practical application of 
the AD-MADDPG algorithm in real-world environments.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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