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In drug discovery, identifying molecules with desired pharmacological properties remains challenging, 
as conventional methods often rely on exhaustive trial-and-error and limited exploration of chemical 
space. Here, we present STELLA, a metaheuristics-based generative molecular design framework 
that combines an evolutionary algorithm for fragment-based chemical space exploration with a 
clustering-based conformational space annealing method for efficient multi-parameter optimization. 
Additionally, it leverages deep learning models for accurate prediction of pharmacological properties. 
Our case study, which focuses on docking score and quantitative estimate of drug-likeness as primary 
objectives, demonstrates that STELLA generates 217% more hit candidates with 161% more unique 
scaffolds and achieves more advanced Pareto fronts compared to REINVENT 4. In performance 
evaluations optimizing 16 properties simultaneously for MolFinder, REINVENT 4, and STELLA, STELLA 
consistently outperforms the control methods by achieving better average objective scores and 
exploring a broader region of chemical space. The results highlight STELLA’s superior performance in 
both efficient exploration of chemical space and multi-parameter optimization, indicating that STELLA 
is a powerful tool for de novo molecular design.

Keywords  Multi-parameter optimization, Deep learning, Drug discovery, Chemical space exploration, 
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Small molecule drug discovery faces a fundamental challenge: the vast and nearly infinite molecular space. 
The number of theoretically synthesizable organic compounds is estimated to range between 1030 and 10601,2. 
While this sheer diversity holds immense potential for discovering more effective drugs, it also presents a 
major bottleneck—efficiently navigating the chemical space to identify promising drug candidates. Traditional 
experimental screening methods cannot comprehensively explore such a vast chemical space, necessitating 
computational approaches to guide molecular design3. However, even computational methods, briefly described 
below, struggle with the trade-off between exploration and exploitation, making it difficult to efficiently generate 
novel, synthesizable, and biologically relevant drug candidates4. Addressing this challenge requires strategies 
that can systematically search chemical space while maintaining drug-like properties and synthetic feasibility.

Virtual screening is an option for computationally exploring vast chemical space. Given a 3D structure 
of a target protein, molecular docking screens large compound libraries by fitting molecules into the protein 
structure and evaluating their binding affinities5. The size of libraries for commercially available and virtually 
enumerated compounds has been rapidly expanding, leading to the development of ultra-large scale docking 
workflows6–8. However, the cost of docking increases roughly linearly with the number of compounds in the 
libraries, making it computationally daunting to perform docking calculations against billions of molecules. 
Furthermore, the compound libraries used for the large-scale virtual screening campaigns are still a tiny fraction 
of the full chemical space.

De novo drug design is a computational approach aimed at generating drug-like molecules from scratch. 
For instance, the lead optimization stage of drug discovery involves refining candidate molecules through 
highly iterative design-make-test cycles. An ideal de novo design method can quickly generate a relatively small 
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number of molecules with desired pharmacological properties by focusing chemical space exploration on the 
most relevant areas. Unlike virtual screening, which evaluates predefined compound libraries, de novo design 
enables the creation of entirely novel molecular structures by actively exploring chemical space. The potential 
of de novo drug design to drastically reduce the time and cost of drug development has garnered considerable 
attention over the past decade, driving scientific communities to invest significant efforts in developing more 
effective molecular design methods9–12.

Drug discovery is a challenging multi-objective problem. Drugs are molecules with pharmacological profiles 
that encompass various properties (e.g., binding affinity, pharmacokinetic properties, toxicity, drug-drug 
interactions, and synthesizability), many of which conflict with each other10. This multi-parameter optimization 
problem in drug discovery is a process of searching for solutions within a vast chemical space, while balancing 
complex pharmacological properties. A key challenge in this process is to efficiently find near-optimal solutions—
ideally global optima—by avoiding being trapped in low-quality local minima13. To address this, numerous 
computational methods have been developed to advance de novo drug design. The methods commonly employ 
two major approaches for molecular generation: metaheuristics and deep learning.

Metaheuristic methods explore chemical space by employing population-based stochastic optimization 
procedures14. We briefly highlight exemplar studies that adopt metaheuristic algorithms for generative molecular 
design. GANDI is a fragment-based method, where pre-docked fragments are encoded by the genetic algorithm, 
and suitable linkers are joined with a tabu search15. AutoGrow4 utilizes a genetic algorithm to generate a new 
population using SMARTS-reaction notation, followed by docking to select the next generation in terms of 
docking score16. EvoMol is a graph-based molecular generator, where molecules are represented as graphs, 
and the molecular graphs are sequentially mutated using seven atom-centered operators17. MolFinder uses 
the conformational space annealing (CSA) algorithm for global optimization of molecular properties18,19. The 
tool directly utilizes SMILES representation to explore chemical space. GENERA is a computational method 
combining a deep learning approach for drug-like analogue design with a genetic algorithm for generating 
molecules20. Winter et al. proposed a method called Molecule Swarm Optimization. This method integrates 
molecular property prediction with Particle Swarm Optimization to generate optimized molecules21.

Deep learning-based algorithms can extract structural features of existing molecules, identify the patterns, and 
then replicate those patterns into novel molecules with notable efficacy22. A variety of deep learning architectures 
have been applied to molecular generation, showing the potential of generative models for chemical space 
exploration. REINVENT23 employs reinforcement learning using recurrent neural networks and transformers as 
deep learning architectures to generate de novo compounds. This tool was expanded to REINVENT 2.0 to cover 
both distribution-learning and goal-directed scenarios24 and to REINVENT 4 to include new functionalities 
such as staged learning and new transformer models for molecule optimization25. LiGAN is a computational 
tool for generating 3D molecular structures on a given receptor binding site. The generation model was trained 
using a conditional variational autoencoder on cross-docked protein-ligand structures26. QADD uses multi-
objective deep reinforcement learning to generate molecules with desired properties. In this method, molecules 
are represented as graphs, and the molecule generator is integrated with a graph neural network-based model 
for accurate molecular quality assessment27. Chemistry42 is a customizable web-based platform for molecular 
design and optimization. It offers more than 40 multiple generative models, including generative autoencoders, 
generative adversarial networks, flow-based approaches, and language models28. Despite its strengths, a major 
challenge faced by deep learning-based molecular generation is its dependency on large, high-quality datasets 
for training, which limits its applicability29.

In this study, we present STELLA (Systematic Tool for Evolutionary Lead optimization Leveraging Artificial 
intelligence), a seamless framework for generating molecules with optimized multiple pharmacological 
properties. In STELLA, an efficient evolutionary algorithm is used to enhance fragment-level chemical space 
exploration for molecular generation. In addition, STELLA utilizes a clustering-based CSA to effectively identify 
near-optimal solutions by balancing exploration and exploitation. A fragment replacement method and graph 
transformer-based deep learning models are also integrated to enhance molecule generation and improve the 
accuracy of pharmacological property prediction, respectively. We compare the performance of STELLA with 
REINVENT 4, a widely used deep learning-based tool, and MolFinder, a metaheuristics-based tool like STELLA. 
The evaluation results demonstrate that STELLA’s reliable performance in not only exploring a wider range of 
chemical space but also generating molecules with better objective scores.

Results and discussion
Overview of STELLA workflow
Figure 1 schematically presents an overall workflow of STELLA. Each step of the workflow—Initialization, 
Molecule Generation, Scoring, and Clustering-based Selection—is described in more detail in the subsections 
of the Methods section. Given an input seed molecule, STELLA begins with the Initialization, where an initial 
pool is generated by molecular mutation using FRAGRANCE (see the Methods section for details). A user-
defined pool of molecules can optionally be added to the initial pool. Variants of the molecules in the initial pool 
are then generated by the FRAGRANCE mutation, maximum common substructure (MCS)-based crossover, 
and trimming (Molecule Generation). Each generated molecule is scored using an objective function that 
incorporates user-defined molecular properties to be optimized (Scoring). All generated molecules, along with 
the initial pool are clustered with a distance cutoff, and molecules with the best objective score are selected from 
each cluster. If the number of the top-scoring molecules does not meet a target value, the next best molecules 
are iteratively selected from each cluster (Clustering-based Selection). The Molecule Generation, Scoring, and 
Clustering-based Selection, which are collectively referred to as multi-parameter optimization using clustering-
based CSA, are repeated in a loop. The distance cutoff in the Clustering-based Selection is progressively reduced 
in each cycle, gradually transitioning the selection criteria from maintaining structural diversity to optimizing 
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objective function. After the selection step, the algorithm evaluates the termination conditions. If any condition 
is met, the iteration process terminates.

Comparison with the case study in REINVENT 4
REINVENT 4 is a framework for designing small molecules with optimized multiple properties using generative 
AI models, implemented through reinforcement learning and a curriculum learning-based optimization 
algorithm25. The study presented a case study demonstrating its applicability in a hypothetical virtual screening 
scenario to identify novel phosphoinositide-dependent kinase-1 (PDK1) inhibitors30. We reproduced this 
case study using REINVENT 4 and STELLA under identical computational conditions to compare the results 
(Table 1; Fig. 2).

Due to the limited access to the commercial tools, LigPrep and Glide were replaced with an alternative in-
house ligand preparation method utilizing the OpenEye toolkit (version 2023.1.1) and CCDC’s GOLD docking 
software (version 2024.2.0), respectively31–33. The docking score threshold for hit identification was changed from 
a Glide docking score of ≤ −8 kcal/mol to a GOLD PLP Fitness score of ≥ 70, while retaining the REINVENT 4 
case study’s quantitative estimate of drug-likeness (QED) threshold of ≥ 0.7. Both metrics were weighted equally 
in the objective score. We employed the same workflow as in the REINVENT 4 study, beginning with 10 epochs 
of transfer learning followed by 50 epochs of reinforcement learning with a batch size of 128. The batch size 
represents the number of molecules generated, scored, and incorporated into each epoch. To ensure comparable 
computational conditions in STELLA, 128 molecules were generated per iteration of the genetic algorithm, with 
a total of 50 iterations performed. It should be noted that the terminology differs between two methods: one 

Fig. 1.  The overall workflow of STELLA. The initialization generates a seed pool, followed by iterative cycles 
of molecule generation, scoring, and clustering-based selection. The algorithm terminates when predefined 
conditions are met, yielding an optimized molecular pool for multi-parameter objectives.
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iteration in STELLA corresponds to one epoch in REINVENT 4. Detailed configurations of REINVENT 4 and 
STELLA used for this case study are provided in Supplementary Information Data S1.

In Table  1, we compare the number of hits, optimized properties, and scaffold diversity to evaluate the 
sampling efficiency of REINVENT 4 and STELLA. Over 50 training iterations/epochs, REINVENT 4 generated 
116 hit compounds (average 1.81% hit rate per epoch) with mean scores of 73.37 for GOLD PLP Fitness and 
0.75 for QED. In contrast, STELLA produced 368 hit compounds (average 5.75% hit rate per iteration) with 
higher mean scores of 76.80 for GOLD PLP Fitness and 0.77 for QED. The superior performance of STELLA was 
further validated by plots of cumulative number of hits over iterations/epochs and distribution of the final hits 
over Gold.PLP.Fitness and QED in Fig. 2. STELLA maintains a higher cumulative number of hits throughout the 
optimization process after the initial stages (Fig. 2a). In addition, STELLA-generated hits occupy a more favorable 
Pareto frontier, indicating better optimization of target properties (Fig. 2b). As shown in Table 1, STELLA also 
demonstrates substantially greater scaffold diversity, generating 276 unique generic Murcko scaffolds compared 
to 115 in REINVENT 4, while both methods yielded comparable maximum structural similarities to the native 
pyrazoloquinazoline inhibitor (PDB entry: 2XCH). Overall, the results indicate that STELLA not only explores 
a broader region of chemical space but also more effectively optimizes the target properties than REINVENT 4 
in this case study.

Benchmark performance evaluation for multi-parameter optimization
To further assess performance, we evaluated the molecular optimization capabilities of MolFinder, REINVENT 
4, and STELLA for two target proteins: tyrosine-protein kinase Abl1 (Abl1) and cellular tumor antigen p53 
(p53). The goal of this benchmark was to optimize a single objective score that encompassed 16 properties 
relevant to drug candidate evaluation, including: (1) GOLD docking score (Gold.PLP.Fitness). PDB entries 
4TWP and 4AGQ, obtained from the PDBbind Core Set (v2020)34were used for Abl1 and p53, respectively. 
(2) 3D similarity to the reference ligand (i.e., ligands in 4TWP and 4AGQ) calculated by OpenEye’s ROCS35 
(Tanimoto Combo score). (3) RDKit descriptors—QED, AlogP, and the synthetic accessibility score36 (SAscore). 
(4) 11 properties from our proprietary deep learning model, QIP-ADMET (Caco-2 permeability, aqueous 
solubility, plasma protein binding ratio, predictions for CYP inhibition and substrate probabilities for CYP2D6, 
CYP3A4, and CYP2C9, hepatocyte clearance, and hERG inhibition probability)37. Designing molecules with 
high binding affinity is a key objective in drug discovery. Based on empirical tuning, the GOLD docking score 

Fig. 2.  Performance comparison between REINVENT 4 and STELLA. (a) Cumulative number of hits over 
epochs for REINVENT 4 and iterations for STELLA. (b) Distribution of hits over the projected surface of Gold.
PLP.Fitness and QED, with REINVENT 4 hits shown in red and STELLA hits in blue. The Pareto frontiers are 
visualized as dashed lines connecting the best-performing hits.

 

REINVENT 4 STELLA

Cumulative number of hits 116 368

Average score of hits (Std.)

Gold.PLP.Fitness 73.37 (3.07) 76.80 (4.81)

QED 0.75 (0.04) 0.77 (0.06)

Average hit rate per iteration/epoch (%) 1.81 5.75

Number of unique generic Murcko scaffolds in hits 115 276

Best similarity of hits to the crystal ligand 0.24 0.23

Table 1.  A comparison of hit compounds generated by REINVENT 4 and STELLA.
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was assigned a weight four times higher than that of other properties to approximately balance the contribution 
of binding affinity with other components. To maintain drug-likeness constraints, molecules with a molecular 
weight exceeding 600 Da were filtered out. All scoring components were implemented identically in MolFinder, 
REINVENT 4, and STELLA.

In many real-world hit-to-lead or lead optimization scenarios, certain chemical moieties (i.e., scaffold) 
remain unaltered to reduce synthetic cost, improve SAR interpretability, and align with specific project goals. To 
reflect these conditions, we arbitrarily designated scaffolds in each reference ligand with restrictions of no more 
than two rings, a single side chain, and a molecular weight below 200 Da (Supplementary Figure S1). We used 
the same parameters as in the MolFinder study for molecule generation and the global optimization of molecular 
properties18. For molecule generation in REINVENT 4, we used LibINVENT, a generative tool specialized 
in reaction-based scaffold decoration38. All three methods were configured to generate 2,500 molecules per 
iteration/epoch with 50 iterations for MolFinder and STELLA, and 50 epochs for REINVENT 4.

The top 300 molecules were selected from the final iteration/epoch based on the objective score, where a 
lower value indicates more optimized properties. Table 2 summarizes the assessment results for the objective 
score and structural diversity of the selected molecules. STELLA achieved average objective scores that were 
0.05 and 1.03 lower than MolFinder and REINVENT 4, respectively, for Abl1, and 1.39 and 0.46 lower for p53, 
demonstrating STELLA’s effectiveness in minimizing the objective function.

Structural diversity of the generated molecules was evaluated using an average of all-against-all pairwise 
Tanimoto similarity values of ECFP4 fingerprints and the number of clusters based on Sphere Exclusion 
algorithm with a similarity threshold of 0.3. The average pairwise Tanimoto similarity values for STELLA are 
0.28 and 0.26 for Abl1 and p53, respectively, both of which are lower than those of REINVENT 4 (0.31 for 
both targets). Compared to MolFinder, STELLA yielded a lower similarity value for Abl1 (0.28 vs. 0.33), while 
MolFinder had a lower value for p53 (0.23 vs. 0.26). The Sphere Exclusion clustering analysis shows a similar 
trend, in which STELLA produced the largest number of clusters for Abl1, whereas MolFinder did so for p53. It 
is noted that STELLA maintains a balanced number of clusters across both targets (18 vs. 20 for Abl1 and p53, 
respectively), whereas the control tools exhibit large disparities between targets (7 vs. 27 for MolFinder and 11 
vs. 21 for REINVENT 4). Although MolFinder achieved the highest number of clusters for p53 among the three 
methods, this result should be interpreted with caution, as its corresponding average objective score was the 
worst. Overall, the results demonstrate STELLA’s consistently reliable performance in effectively optimizing the 
objective score and generating diverse molecules compared to the control tools.

Figure 3 are plots of average objective scores over iterations/epochs. The top 300 molecules were selected in 
the first iteration/epoch. In the subsequent iterations/epochs, newly generated molecules were combined with 
the 300 molecules selected in the previous iteration/epoch, and the top 300 molecules were then selected from the 
combined pool. The average objective scores were calculated at each iteration/epoch. All three methods exhibit 
a similar trend, where initial average objective scores gradually decrease as iterations/epochs progress. While 
STELLA initially generates molecules with higher average objective scores compared to REINVENT 4, STELLA 
outperforms REINVENT 4 after 23 and 17 iterations/epochs for Abl1 and p53, respectively. This suggests that 
REINVENT 4, which is based on a pre-trained generative model, has already learned general patterns of drug-
like molecules and can generate promising candidates early in the optimizing process. However, its sampling 
is less robust than that of STELLA, resulting in reduced effectiveness in optimizing the objective score as the 
optimizing progresses. MolFinder exhibited a trend similar to STELLA for Abl1, achieving a comparable average 
objective score at the final iteration (2.47 for MolFinder and 2.42 for STELLA). However, MolFinder’s ability to 
optimize the objective score for p53 was significantly lower compared to REINVENT 4 and STELLA.

We plotted the distribution of each property for the top 300 molecules generated in the final iteration/epoch 
by MolFinder, REINVENT 4, and STELLA (Supplementary Figure S2). To easily assess how many compounds 
fall within a pharmacologically reliable property range, we defined hit criteria for each property (Supplementary 
Table S1). Predefined hit thresholds were applied to QED, SAscore, AlogP, Gold docking score, and ROCS 
Tanimoto combo. ADMET prediction values were evaluated using a threshold of 0.5 for classification models, 
while for regression models, we adopted criteria reported in a previous study39 on ADMET predictions. MolFinder, 
REINVENT 4, and STELLA achieved balanced optimization across multiple properties, avoiding over-reliance 
on a single score. MolFinder and STELLA outperformed in optimizing GOLD docking score for both Abl1 and 
p53 (see Supplementary Figure S3 for the progression of docking scores over the optimization steps), whereas 
REINVENT 4 focused more on SAscore and QED. Notably, most molecules generated by MolFinder exhibited 
unfavorable QED values for both targets, often featuring long branched structures that appear non-druggable 
(Supplementary Figure S4). For CYP2C9 inhibition in the p53 case, STELLA produced a significantly higher 

MolFinder REINVENT 4 STELLA

Abl1 p53 Abl1 p53 Abl1 p53

Average objective score (Std.) ↓ 2.47 (0.14) 5.44 (0.37) 3.45 (0.38) 4.51 (0.34) 2.42 (0.38) 4.05 (0.25)

Average pairwise similarity (Std.) ↓ 0.33 (0.1) 0.23 (0.1) 0.31 (0.07) 0.31 (0.07) 0.28 (0.11) 0.26 (0.1)

Number of clusters ↑ 7 27 11 21 18 20

Table 2.  Comparison of molecular optimization performance among MolFinder, REINVENT 4, and STELLA 
for the top 300 molecules in the final iteration/epoch. Performance metrics include average objective score, 
average pairwise Tanimoto similarity, and the number of clusters based on Sphere Exclusion algorithm with a 
similarity threshold of 0.3.
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proportion of molecules within the hit area, whereas most molecules generated by MolFinder and REINVENT 
4 did not achieve favorable values. The representative 12 molecules generated by MolFinder, REINVENT 4, and 
STELLA for Abl1 and p53 are presented in Supplementary Figures S4–S6.

We compared the ability of MolFinder, REINVENT 4, and STELLA in exploring the chemical space (Fig. 4). 
The top 300 molecules selected at each iteration/epoch were transformed into ECFP4 fingerprints and projected 
onto a 2D space using DensMap40 for dimensionality reduction. To illustrate the trajectory over exploration, later 
iterations/epochs are represented by darker points (Fig. 4a and b). Furthermore, Sphere Exclusion clustering 
was applied to all 15,000 molecules generated over 50 iterations/epochs to determine the number of distinct 
clusters (Fig. 4c). As iterations/epochs progress, STELLA demonstrates a stronger tendency to expand its search 
space, whereas REINVENT 4 maintains a more focused search within its initial generation space. The number 
of clusters for REINVENT 4 and STELLA was 42 and 251 for Abl1, and 61 and 210 for p53, respectively. These 
results indicate that STELLA conducts a broader exploration of chemical space compared to REINVENT 4. 
While REINVENT 4 has mechanisms to balance exploration and exploitation, its optimization likely remains 
confined within the generation space, possibly due to constraints from its prior model. A well-known limitation 
of genetic algorithm-based approaches is their tendency to become trapped in suboptimal regions of the 
chemical space. However, STELLA effectively addresses this issue by incorporating clustering-based CSA, 
which preserves structural diversity while dynamically adjusting selection pressure. This approach progressively 
enhances optimization efficiency, steering molecular design towards high-quality solutions. MolFinder, which 
employs metaheuristic approaches similar to STELLA, also demonstrates superior capability in exploring 
broader chemical space than REINVENT 4. However, unlike STELLA, its capability is inconsistent across the 
two targets, suggesting that the efficiency of chemical space exploration may be highly dependent on specific 
protein targets or parameter settings.

Fig. 3.  The progression of average objective score over 50 iterations/epochs for MolFinder, REINVENT 4, and 
STELLA on (a) Abl1 and (b) p53. Lower objective scores indicate better performance.
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One notable advantage of deep learning-based methods over metaheuristic approaches is their ability to 
incorporate an implicit scoring function within the generative model. As generation and scoring are performed 
simultaneously within a unified framework, the overall computational burden is typically lower. However, in 
this study, we adopted an objective function-based generation strategy, where the scoring process is delegated to 
an external scoring function. In this setting, scoring all generated molecules—particularly molecular docking—
is significantly more expensive than the molecule generation process itself throughout the de novo design 
workflow. Although the molecule generation process in REINVENT 4 may be faster in isolation than STELLA, 
its computational cost is approximately orders of magnitude lower than that of the scoring process. When 
generation and scoring are executed using parallel computing, as in our implementation, the negligible cost of 
generation has little impact on overall wall-clock time of iterative generation-scoring loop. In this study, since 

Fig. 4.  Visualization of the 300 top molecules generated at each iteration/epoch for (a) Abl1 and (b) p53 case 
studies. Each point represents a single molecule, with color intensity increasing according to iteration/epoch 
progression. Molecules generated by MolFinder, REINVENT 4, and STELLA are shown in green, red, and 
blue gradients, respectively. (c) The number of clusters identified using the Sphere Exclusion algorithm with a 
similarity threshold of 0.3, based on the 15,000 molecules generated over 50 iterations/epochs.
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the total number of calls to the evaluation functions was fixed across the methods, the overall computational 
workload was roughly comparable regardless of the molecule generation strategy.

In STELLA, the specification of a scaffold is designed as a user-driven process to reflect practical needs. 
The platform provides an intuitive web-based graphic interface that enables users to easily define the scaffold 
of a user-uploaded seed molecule by directly selecting atoms on the interface. While scaffold specification is a 
manual step in the current implementation, automating this step is feasible and potentially useful for broader 
exploratory tasks. We plan to integrate automated scaffold selection options (e.g., Murcko scaffolds or frequency-
based core selection) in future versions.

Conclusions
In this study, we presented STELLA, a novel de novo molecular design framework. STELLA employs both 
an evolutionary algorithm and clustering-based CSA for efficient exploration of chemical space and global 
optimization of objective function. It also leverages an advanced fragment replacement method and graph 
transformer-based deep learning models to enhance the efficiency of molecule generation and the accuracy of 
pharmacological property prediction, respectively, aiming to facilitate the evolutionary process toward more 
optimized drug-like candidates with unique structures.

Our case study, which focuses on docking score and QED, demonstrates that STELLA generates more hit 
candidates with a great diversity of scaffolds and achieves superior multi-objective optimization compared to 
REINVENT 4. In performance evaluations involving the simultaneous optimization of 16 properties to more 
thoroughly assess multi-parameter optimization capabilities, STELLA consistently outperforms the control 
methods by achieving better average objective scores and exploring a broader region of chemical space. 
Overall, these results highlight that STELLA’s robust capability for de novo design of molecules with desirable 
pharmaceutical properties.

Looking ahead, future research could enhance STELLA by integrating deep learning models for molecule 
generation and for predicting additional pharmacological properties and synthetic feasibility. We believe that 
STELLA lays a strong foundation for hybrid metaheuristic-deep learning approaches, offering a promising tool 
for efficiently generating novel drug candidates across vast regions of chemical space.

Methods
Multi-parameter optimization using clustering-based CSA
In STELLA, we utilized the principles of conformational space annealing (CSA), a highly effective global 
optimization algorithm, to enhance search efficiency while maintaining structural diversity during chemical 
space exploration. CSA is an algorithm integrating the strengths of genetic algorithms and simulated annealing41 
to balance exploration and exploitation during the optimization process and has been successfully applied to 
various global optimization problems19,42,43.

Conventional CSA employs an individual molecule-based approach, where a generated molecule replaces 
either the closest molecule with worse objective score (if the distance ≤ cutoff) or the molecule with the worst 
objective score (if the distance > cutoff). In this process, newly generated molecules with better objective scores 
relative to the current population are discarded when the closest molecules within the cutoff have better scores. 
On the other hand, our approach, clustering-based CSA, groups newly generated molecules together with the 
parent pool into clusters and then selects the target number of top-scoring candidates from these clusters, 
allowing the molecules with good objective scores to be included in the new parent pool (see the Clustering-
based Selection subsection below). This approach enables efficient global optimization of the objective function, 
while maintaining the overall diversity of the population. As a result, when the algorithm struggles to identify 
promising candidates in a specific local region, it can efficiently redirect exploration to other areas, accelerating 
the discovery of diverse, high-quality solutions.

FRAGRANCE
We introduce FRAGRANCE (Fragment Retrieval and Combination-based Enumerator), a computational 
method for modifying a given molecule by substituting its fragments with alternatives from a fragment database, 
ensuring similar chemical properties. The workflow of FRAGRANCE is illustrated in Fig. 5. To construct the 
fragment database, we collected compounds from ChEMBL24.1 (https://ftp.ebi.ac.uk/pub/databases/chembl) 
and SureChEMBL_20210401 (about 23 million unique molecules) and fragmentized each molecule as follows: 
(1) A molecule is separated into rings and linkers. Fused ring systems are considered single components. Side 
chains remain attached to their respective rings. Linkers are defined as fragments connecting one ring system 
to another. (2) BRICS44 bonds are enumerated within each ring and linker, and a set of breakable bonds that 
produce fragments with reasonable size and synthetic accessibility are identified using beam search guided by 
a penalty metric. An empirical size-based penalty is applied to fragmentation, based on the largest fragment 
produced when breaking bonds. Specifically, the penalty is given as max(num. heavy atoms in the largest 
fragment−15, 0) to discourage the generation of excessively large fragments, thereby resulting in more balanced 
fragment sizes. Another constraint is that all fragments produced by breakable bonds should have at least three 
heavy atoms. In cases where the size-based penalties are equal, the maximum SAscore is evaluated for each set 
of fragments to determine the optimum fragmentation.

Fragments were removed from the database if they were redundant, failed sanitization using RDKit (version 
2023.9.5), had a molecular weight of > 600 Da, contained PAINS45 substructures, or failed to pass the Eli Lilly 
medicinal chemistry rules46. Among the Eli Lilly rules, those rejecting molecules with fewer than seven atoms or 
molecules lacking specific atoms were not applied, as such rules are not suitable for evaluating fragments. While 
the fragment library included large fragments to ensure broad coverage, only smaller fragments (typically < 300 
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Da) were effectively utilized during molecule generation due to the overall molecular weight constraint. The 
resulting database consists of about 2.6  million unique fragments. For each fragment, we computed RDKit-
derived physicochemical and topological properties, resulting in a 115-dimensional feature vector for each 
fragment (see Supplementary Table S2 for the full list of properties). To address inconsistencies in the scales of 
the properties and mitigate the impact of outliers, we scaled them using RobustScaler in Scikit-learn (version 
1.6.0).

Given a molecule with a user-defined scaffold, FRAGRANCE first identifies the fragments that do not intersect 
with the provided scaffold. For these non-scaffold fragments, the scaled feature vectors are calculated. Candidate 
fragments for replacement are obtained from the database using the following two methods: (1) Approximate 
k-nearest neighbors are retrieved based on the feature vector to identify database fragments structurally similar 
to the target fragment. We used a HNSW (Hierarchical Navigable Small Worlds)47 index for efficient nearest 
neighbor querying (default: 10). (2) Fragments are selected using weighted sampling (default: 10), where the 
weights are determined by e−?x−xi?/T , where x and xi are feature vectors for a target fragment and a database 
fragment, respectively. T is a temperature parameter that controls the preference for fragments similar to the 
target (default: 1.0). This method occasionally introduces fragments distant from the target fragment, enhancing 
the structural diversity. Among the candidate database fragments obtained from both methods, those with the 
same number of attachment points (i.e., broken inter-fragment bonds during fragmentation) are selected to 
ensure that the replacement yields a chemically valid molecule.

When multiple attachment points exist in the target fragment, the reconstruction process can become 
ambiguous due to potential permutations in the mapping between them. To minimize structural deviations, we 
reconnect the bonds in a way that preserves the original topological distances between the attachment points as 
closely as possible. Let {i1, i2, . . . in} and {j1, j2, . . . jn} denote the indices of the attachment points in the 
original fragment and the replacement fragment, respectively. We find the permutation π  of the atom indices 
that minimizes P enalty(π ).

Fig. 5.  Schematic illustration of FRAGRANCE workflow.
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P enalty (π ) =

∑ n

a=1

∑ n

b=a+1

∣∣∣∣∣
1

dS (ia, ib) − 1
dT

(
jπ (a), jπ (b)

)
∣∣∣∣∣

where dS  and dT  denote the topological distances between atoms in the original and the replacement fragment, 
respectively.

Initialization
This step is an augmentation process for a single seed molecule to generate initial population for the genetic 
algorithm. The scaffold atoms, defined as atoms that should not be modified, can be specified by the user. 
The FRAGRANCE algorithm modifies the non-scaffold fragments of the seed molecule to generate diverse 
molecule structures. The resulting augmented molecular population is referred to as the “seed pool.” By default, 
FRAGRANCE generates 10,000 molecules. This pool can be further expanded by incorporating a custom 
molecule pool provided by the user.

Each molecule in the seed pool is converted into ECFP4 fingerprints, and pairwise Tanimoto similarity 
values are calculated to construct a distance map. Agglomerative Hierarchical Clustering (AHC) is then applied 
to this distance map to group molecules into clusters. Clustering is performed to generate the number of clusters 
that matches the target population size ( Nt, default: 300). The centroid molecules from each cluster are selected 
as the initial pool ( P0​). Remaining molecules are assigned to an auxiliary pool (Paux).

Molecule generation
In STELLA, new molecule structures are augmented by generating an offspring pool from a parent pool using 
the genetic algorithm. In the first iteration after the Initialization, the initial pool serves as the parent pool. 
STELLA employs three distinct methods, FRAGRANCE mutation, maximum common substructure (MCS)-
based crossover, and trimming, to generate offspring molecules.

FRAGRANCE mutation randomly selects a molecule from the parent pool and modifies one non-scaffold 
fragment. This mutation is repeated until the target number of unique molecules is reached (default: 3,000 
molecules).

In the MCS-based crossover method, two molecules are randomly selected from the parent/auxiliary pool, 
where one is designated as the acceptor molecule and the other as the donor molecule. The donor molecules 
are selected from either the parent or auxiliary pool, depending on a user-defined auxiliary ratio, whereas the 
acceptor molecules are always chosen only from the parent pool. For example, if the total number of molecules 
for MCS crossover and the auxiliary ratio are set to 1,000 and 0.3, respectively, 300 donor molecules will be 
sampled from the auxiliary pool, while the remaining 500 acceptor molecules and 200 donor molecules will 
both be sampled from the parent pool. The MCS between an acceptor and a donor molecule is identified, and 
the indices of MCS atoms in both the acceptor and donor molecules are set to be the same based on those of 
the acceptor molecule. The identified MCS is designated as core fragment, and fragments with MCS atoms 
are unified as the core fragment. The molecules are fragmented at cleavable bonds defined by RDKit’s BRICS 
rules, while preserving the core fragment intact. The molecules are represented as fragment-level graphs, with 
each fragment treated as a node and bonds cleaved during fragmentation as edges (Fig. 6). Each node in the 
fragment-level graphs is assigned two key properties: Nearest MCS Atom Index and Distance from Core. The 
Nearest MCS Atom Index is the index of the MCS atom with the shortest path length from any fragment atom. 
The Distance from Core represents the relative distance of each fragment from the core fragment (The core 
fragment is assigned 0, and fragments directly connected to the core fragment are assigned 1 with the value 
increasing based on their distance from the core). Fragments in the donor molecule are sorted in ascending 
order in terms of their Distance from Core values, prioritizing fragments closest to the core. Crossover occurs 
when the acceptor molecule has a fragment with the same node property values as ones of a fragment in the 
donor molecule, replacing the fragment in the acceptor molecule with its counterpart in the donor molecule. 
All fragments contain dummy atoms that represent the originally connected atoms. Bonds between fragments 
are formed randomly among the atoms associated with these dummy atoms, diversifying the products of 
the recombination while preserving their original connectivity. An addition is attempted when the acceptor 
molecule has a fragment with the same Nearest MCS Atom Index but a Distance from Core that is one less than 
that of a donor fragment. In the addition, the donor fragment is connected to the acceptor atom replacing one 
of the hydrogen atoms.

Trimming is designed to randomly remove a single atom and reconnect its neighboring atoms, provided 
that the removed atom has more than one neighbor. It removes an atom when the atom is not part of a ring, not 
part of a conjugated system, and not included in the atom indices matched to the scaffold structure. If trimming 
results in an atom violation of valence, it is excluded from the trimming candidates.

Evolutionary operations for molecule generation can be implemented using either atom-based or fragment-
based approaches48. STELLA employs fragment-based approaches to mutation and crossover, while MolFinder 
utilizes them only for crossover18. In MolFinder, fragments are defined based on ring structures extracted from 
SMILES strings. This contrasts with our approach, which leverages MCS matching in combination with BRICS-
based fragmentation to define chemically meaningful fragments, enabling efficient and synthesizable molecule 
generation. EvoMol17 randomly removes an atom and reconnects its bonded neighbors (i.e., the Cut atom 
action), a strategy conceptually similar to the Trimming operator in STELLA. While EvoMol also supports the 
freezing of scaffold atoms, its removal operation is primarily applied to an atom bonded to two other atoms that 
are not connected to each other. This differs from STELLA, where removal targets atoms that are not part of a 
ring or conjugated system, irrespective of their number of bonded neighbors, thereby enabling both broader and 
chemically more stable molecule modifications.
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Scoring
The offspring molecules are evaluated using an objective function for optimization. STELLA’s objective function 
encompasses various pharmacological properties, including molecular weight, AlogP, polar surface area, the 
number of rotatable bonds, hydrogen bond donors, and acceptors, SAscore, maximum fused ring size, maximum 
ring size, the number of chiral centers, ring size penalty, undesirable SMARTS pattern-based penalty, and scores 
from docking tools such as GOLD. Moreover, it incorporates scores from QIP-ADMET, our proprietary ADMET 
property prediction model, which leverages a graph transformer-based deep learning approach pretrained 
on quantum data and fine-tuned using transfer learning37. STELLA also provides diverse filtering options, 
including substructure filters, interaction fingerprint filters, PAINS filters (OpenEye OMEGA version 5.0.1.3, 
https://www.eyesopen.com/filter), Eli Lilly’s medicinal chemistry rules-based filters (version 1.0, ​h​t​t​p​s​:​​​/​​/​g​i​t​h​u​​b​.​
c​o​​m​/​I​a​n​A​​W​a​t​s​​o​​n​/​L​i​l​​​l​y​-​M​e​d​​c​​h​e​m​-​​R​u​​l​e​s​/​​t​r​e​​e​/​v​1​.​0), and 3D shape similarity filter using ROCS (version 3.6.2.3, 
https://www.eyesopen.com/rocs). For computational efficiency, all scoring methods are executed in a predefined 
order, skipping computationally intensive methods if a molecule is filtered out by user-defined thresholds for less 
resource-demanding methods.

The calculated scores for all properties are integrated into a single objective function. Each property score is 
transformed using its own sigmoid function, mapping the value to a range between 0 and 1 based on the upper 
( M ) and lower ( m) thresholds of the property. For properties where the target is the upper threshold, the 
sigmoid function is defined as:

	
S (x) = 1

1 + e−α (x−c)

where c represents the midpoint between the thresholds ( c = (m + M)/2), and α  is calibrated such that the 
upper threshold corresponds to a value of 0.05, and the lower threshold to 0.95:

	
α = log(0.05/0.95)

c − M

For properties targeting the lower threshold, the sigmoid function is adjusted as follows:

	
S (x) = 1 − 1

1 + e−α (x−c)

The transformed scores can be adjusted using user-specified weights ( wi​), with default values of 1 for all 
properties), and the final objective score ( F ) is the sum of the weighted scores:

	
F =

∑
i

wi · Si

Fig. 6.  Schematic illustration of the core assignment process in the MCS-based crossover and the conversion 
of a molecule to a fragment-level graph. At the atom level, atoms identified as part of the MCS in two sampled 
parent molecules are designated as core atoms and are protected from modifications during the crossover 
operation. In the fragment-level representation, each node (fragment) is annotated with two properties—
Nearest MCS Atom Index and Distance from Core—which guide the crossover operation.
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where Si represents the transformed score for property i.

Clustering-based selection
Clustering is performed on the scored offspring pool together with the parent pool using AHC, as in the 
initialization step. In the first iteration, dcutoff  ​is optimized to align the number of clusters with the target 
number of molecules to be selected. This optimization minimizes the difference between the desired number 
of clusters ( Ndesired​, equal to the target number of molecules) and the actual number of clusters ( Nclusters):

	 dcutoff = argmin |Nclusters (d) − Ndesired|

In subsequent iterations, dcutoff  is scaled by a predefined decrease ratio k (default: 0.98):

	 d
(i+1)
cutoff = d

(i)
cutoff × k

The minimum dcutoff ​, determined by its lower bound, represents the smallest value achievable through 
iterative scaling. This lower bound is typically set between 0.2 and 0.5 depending on the configuration. Once 
this minimum is reached, dcutoff  ​remains constant until the end of the run. The gradual decrease of dcutoff  
during the iterations shifts the optimization focus from global exploration to local exploitation, refining the 
search within more specific regions of chemical space (Fig. 7).

A molecule with the minimum objective score is selected for each cluster. If the target number of molecules 
( Nt) is not reached, the next lowest-scoring molecule in each cluster is iteratively selected until the target count 
is achieved. If the number of clusters exceeds Nt, the top molecules in each cluster are collected, sorted by 
objective score, and the top Nt among them are selected.

Fig. 7.  Schematic visualization of molecule selection over iterations with progressively decreasing distance 
cutoff. Gray dots represent candidate molecules, while red dots indicate selected molecules. The curved 
boundary illustrates the reduction of the distance cutoff as iterations progress, shifting the selection strategy 
from promoting diversity to focusing on local exploration.
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Termination
After the selection step, the algorithm checks whether the termination conditions are met. The primary 
condition is reaching the maximum allowed iterations (default: 50). In addition, two optional conditions can 
also terminate the selection process. The first option, referred to as the evolution efficiency of the pool, checks 
whether the current pool includes a sufficient proportion of newly added molecules compared to the previous 
iteration (default: 0.05). To account for cases where extensive filtering makes it difficult to find new molecules, 
this condition is only applied after 10 iterations by default, but this value can be adjusted in the configuration. 
The second condition, early stopping, is triggered when consecutive failures to improve the objective score 
exceed a predefined number (default: 10). The improvement (default threshold: 0.01) is evaluated based on 
either the average or median objective score. The process of molecule generation, scoring, and selection is then 
repeated in a loop until one of the termination criteria is met.

Data availability
All data generated or analyzed during this study are available as supplementary data (Supplementary_Infor-
mation_Raw_Data.zip). STELLA presented in this study is a commercial tool but is available upon request by 
completing a form on https://www.standigm.com/ai-saas/stella.
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