
Seasonal quantile forecasting of 
solar photovoltaic power using 
Q-CNN-GRU
Louiza Ait Mouloud1, Aissa Kheldoun1, Samira Oussidhoum2, Hisham Alharbi3, 
Saud Alotaibi4, Thabet Alzahrani4 & Takele Ferede Agajie5

Accurately predicting solar power is essential for ensuring electric grid reliability and integrating 
renewable energy sources. This paper presents a novel approach to probabilistic solar power 
forecasting by combining Convolutional Neural Networks (CNN) with Gated Recurrent Units (GRU) into 
a hybrid Quantile-CNN-GRU model. The proposed model generates intra-day probabilistic quantile 
forecasts and is rigorously evaluated using datasets from geographically and climatically diverse 
regions and hemispheres: the Netherlands (temperate maritime climate), Alice Springs (arid desert 
climate), and Hebei (humid subtropical climate). These datasets cover varied temporal horizons (1-
hour, 6-hour, 12-hour, and 24-hour predictions) and seasonal conditions (summer, fall, spring, and 
winter), highlighting the model’s adaptability to different scenarios. The performance of the proposed 
Quantile-CNN-GRU model is benchmarked against state-of-the-art deep learning models, including 
standalone quantile-based architectures such as Quantile-GRU and Quantile-Long Short Term Memory 
(LSTM). A comprehensive evaluation framework is applied, employing probabilistic tools like the 
Continuous Ranked Probability Score (CRPS) for assessing forecast reliability, sharpness, and reliability 
diagrams with consistency bars to evaluate the calibration of the predictions. Results demonstrate 
that the proposed Quantile-CNN-GRU model consistently outperforms its counterparts in terms of 
CRPS, across varying forecast horizons and seasonal conditions. To further enhance performance, a 
multivariate case study incorporating exogenous inputs, specifically Numerical Weather Prediction 
(NWP) data, is conducted. Through sensitivity analysis, the influence of these additional inputs on 
forecast horizons and seasonal variability is systematically explored. The study reveals that integrating 
NWP data significantly improves the model’s predictive skill, particularly for longer forecast horizons 
and during transitional seasons like spring and fall, when solar variability is higher.

Keywords  Solar power, Seasonal forecasting, Quantile probabilistic forecasting, Deep learning, Continuous 
ranked probability score (CRPS), Reliability diagram, Consistency bars

The United Nations reports that climate change is largely driven by our heavy dependence on fossil fuels, which 
are responsible for more than 75% of global greenhouse gas emissions1. The need for a global shift toward 
sustainable and environmentally friendly energy sources has never been more urgent. This goal is reflected 
in the Paris Agreement, an international accord aimed at limiting the global average temperature increase to 
below 2°C2. Among renewable energy options, solar energy stands out for its many benefits. It is the most 
abundant, fastest-growing, and cheapest energy source available on Earth, accessible in most countries with 
varying potential levels, though its full potential remains largely untapped globally3. However, solar energy faces 
a significant challenge: its intermittency. Solar power generation fluctuates due to factors like the time of day, 
weather conditions, seasonal changes, and geographic location, complicating traditional methods of managing 
daily grid operations4. Grid operators must adapt their day-ahead, hour-ahead, and real-time procedures to 
accommodate these variations in solar power generation5. Despite its intermittent nature, solar energy’s 
generation patterns are not random6. The ability to predict solar resources with reasonable accuracy plays a 
critical role in integrating solar energy into the grid. Day-ahead and hour-ahead forecasts can be highly accurate, 
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making it easier to manage the integration of solar power plants into electrical grids. Accurate solar forecasting, 
especially when considering prediction intervals, is essential. It helps minimize the risks associated with grid 
operations and optimizes energy storage, ensuring a balance between energy supply and demand7.

Solar forecasting is a diverse field that includes a wide range of models, each with different applications, 
operations, and structures. These models are generally grouped into three categories: machine learning models, 
physical models, and statistical models8. In recent years, deep learning—a subset of machine learning—has 
gained traction as a promising approach in forecasting research. Several deep learning algorithms, such as 
convolutional neural networks (CNN), gated recurrent units (GRU), long-short-term memory (LSTM)9and 
Recurrent Neural Networks (RNN), have been employed in numerous studies to predict solar irradiance or 
photovoltaic (PV) power output. Hybrid models, which hybridize two or more methods to generate the forecast, 
have gained popularity due to their superior ability to forecast solar irradiation more accurately than standalone 
models10. However, these models focus mainly on predicting the mean or average value of the hourly generation 
of PV energy at a future moment11. While deterministic forecasting models offer some utility, they are inherently 
limited in their ability to quantify the uncertainties intrinsic to the predicted value. In fact, numerous researchers, 
including12have underscored the limitations of deterministic forecasts. They argue that a comprehensive 
understanding of the variability and unpredictability inherent in Solar Surface Radiation (SSR) predictions is 
paramount. This understanding can furnish precise risk assessments for future SSR values, thereby facilitating 
informed decision-making. Deterministic forecasts, which fail to distinguish between noise and actual data, 
may not provide reliable insights, particularly if we operate under the assumption of uniformly distributed 
measurements. In contrast, the prediction of the probability distribution of future values can shed light on 
situations characterized by noise or unpredictability. Consequently, a non-precise understanding of forecast 
uncertainties can contribute to a reduction in the standby capacity and costs associated with flexible traditional 
power generators, also known as spinning reserves, and the energy storage necessary for grid balance13. 
In contrast, probabilistic forecasting models (PFMs) are capable of quantifying such uncertainties14. These 
models are gaining momentum as they provide future predictions along with their associated probabilities15, 
thereby enabling the quantification of the risk associated with decisions based on these predictions. Despite 
its potential, probabilistic forecasting has been the subject of relatively few studies, indicating a promising area 
for future research16. For instance, a study by Sharma et al.7 presents a comparison between a long short-term 
memory neural network and other simpler approaches for one-day-ahead probabilistic forecasts for a solar 
power system. Other studies explore various methods applied to probabilistic forecasting in the solar power 
area. For instance, Fan Lin et al.6 propose a new method for intra-day probabilistic solar power forecasting. The 
authors use fat-tailed distributions to model solar power output and a DeepAR model to map predictors into 
parameters of the fat-tailed distribution. They also introduce a novel loss function for efficient model training. 
The proposed model has shown high effectiveness and reliability in providing intra-day probabilistic solar power 
forecasting. More recently, Xiong et al.17. proposed a deep probabilistic solar power forecasting framework that 
combines Transformer networks with Gaussian process approximation, demonstrating superior performance 
in probabilistic forecasting tasks with 22.6–39.7% improvement in CRPS compared to conventional methods.

Most papers focus on other types of probabilistic methods. For instance, in18the Monte Carlo Dropout 
method is used to represent model uncertainty in deep learning. By randomly dropping various units during 
forecasting, different results are generated, providing a measure of uncertainty. This method can be particularly 
useful when wanting to capture the inherent variability and uncertainty in solar power generation. However, 
solar energy is very volatile and can experience extreme events; therefore, there is a need for quantile forecasting. 
A quantile forecast provides an estimate of the probability that a random variable will be below a certain value. 
This can be particularly useful when interested in the tails of a distribution, such as extreme events, which are 
important in solar forecasting to manage the risks associated with over- or under-production of solar power19. 
Currently, there is a lack of a structured method to incorporate these forecasts into operational processes and 
planning schedules. Nevertheless, the significance of these forecasts in developing power systems that are more 
economical, steady, and dependable is beginning to be acknowledged by operators, with a multitude of research 
initiatives currently underway20. Furthermore, the literature is replete with a vast number of related studies, 
which can facilitate the use of probabilistic forecasts21.

This paper presents a probabilistic Q-CNN-GRU architecture for quantile forecasting of solar power across 
three distinct locations: Hebei, China, Bill, Netherlands, and Alice Springs, Australia. The forecasts are made 
for intraday and day a head (1 h, 6 h, 12 h, 24 h) across four different seasons. Furthermore, a case study was 
conducted in Hebei province, china for multivariate forecasting. Key contributions of this study include:

•	 The introduction of a probabilistic deep learning method, Q-CNN-GRU, which integrates GRU and CNN to 
generate 99 quantile outputs across multiple stations for four seasons.

•	 The model is rigorously trained and tested on data from three distinct geographical locations with different 
climatic types, offering a robust evaluation of its performance.

•	 The proposed model is benchmarked against renowned state-of-the-art models such as Q-LSTM and Q-GRU.
•	 A comprehensive evaluation is conducted across four seasons and multiple steps (1 h, 6 h, 12 h, 24 h) provid-

ing an in-depth understanding of the model’s performance under various conditions. Additionally, a multi-
variate forecast was tested on the Hebei stations, demonstrating that multivariate forecasting, with the correct 
inputs, is superior to univariate ones.

•	 The Continuous Ranked Probability Score (CRPS) and Reliability Diagram with consistency bars are em-
ployed for evaluating the model’s performance, ensuring a rigorous assessment of its forecasting capabilities. 
The CRPS is normalized by the plant rate power (nominal power), which allows comparison of results be-
tween different sites.

•	 The present study adheres closely to the ROPES guidelines formulated by Yang22.
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•	 This work addressees the limited research on the impact of seasonal variations in probabilistic quantile solar 
power forecasting.

This methodology harnesses the capabilities of quantile deep learning architecture, thereby facilitating 
the generation of high-precision probabilistic forecasts. Furthermore, it acknowledges the significance of 
multivariate forecasting, emphasizing the necessity of selecting appropriate input parameters for optimal 
results. This approach not only enhances the accuracy of predictions but also contributes to the advancement 
of forecasting methodologies in the field. It underscores the potential of deep learning and multivariate analysis 
in transforming the landscape of probabilistic forecasting. The organization of this paper is as follows: Sect. 2 
provides a comprehensive description of the dataset. Section  3 outlines the preprocessing steps undertaken 
in the study. The methodology employed is introduced in Sect. 4, while Sect. 5 presents evaluation using the 
Continuous Ranked Probability Score (CRPS) and reliability diagram with consistency bar as the probabilistic 
evaluation metric. Section 6 discusses the experimental results and their implications. A study on multivariate 
forecasting is analyzed in Sect. 7. Finally, Sect. 8 draws conclusions from the study.

Dataset
Three publicly available datasets were used to evaluate the effectiveness of our model. The first dataset originates 
from residential solar photovoltaic (PV) systems in the province of Utrecht, Netherlands, specifically station 
ID003 from a total of 175 stations23 .This dataset provides minute-level power readings from January 2014 
to December 2017, with precise geographical coordinates mapped on a 150 m × 150 m grid. An illustrative 
figure can be found in reference24.The second dataset is sourced from the Desert Knowledge Australia Solar 
Center (DKASC) in Alice Springs, Australia25. It includes data from the Trina solar assembly, which employs 
monocrystalline silicon solar panels with dual-axis trackers. This assembly features the Trina TSM-175DC01 
panel (model 91-site-1  A) installed in 2009 with a 10.5  kW array, recording power data every 5  min, from 
August 14, 2013, to December 31, 2024. An illustrative figure can be found in reference26 .The third data set, 
the PVOD dataset27contains 15-minute resolution power data from 10 PV stations in Hebei Province, China. 
For this study, Station00, Station01, and Station02 were used, the PVOD data set integrates numerical weather 
prediction (NWP) data derived from the Weather Research and Forecasting (WRF) model, driven by European 
Center for Medium-Range Weather Forecasts (ECMWF) ERA5 data. The WRF model provides predictions for 
28 to 54 h of horizon with a grid resolution of 4 km and a temporal resolution of 15 min. An illustrative figure 
can be found in reference27.

Preprocessing
The data preprocessing pipeline follows a systematic seven-step approach to transform raw solar power datasets 
into a format suitable for deep learning models. As illustrated in Fig.  1, the workflow progresses from time 
series format conversion through resampling, zenith angle filtering, missing value handling, data splitting, 
standardization, and sliding window preparation. This strategy was applied to three geographically diverse 
datasets from the Netherlands, Australia, and China, ensuring data quality and temporal consistency while 
preparing supervised learning pairs through a 48-hour lookback window for robust intra-day forecasting.

Methodology
The gated recurrent unit (GRU)
The Gated Recurrent Unit (GRU)28 is a type of recurrent neural network that uses gating mechanisms to regulate 
the flow of information between cells in the network. These gates play a key role in managing dependencies 
within sequence data and help address challenges like the vanishing gradient problem. The GRU operates with 
two main gates: the update gate and the reset gate, along with a current memory content. Together, they decide 
how much past information should be retained and passed forward, and how much should be discarded.

Update gate  The update gate, denoted as zt, decides the extent of past information to be passed to the future. It 
is computed using the equation.

	 zt = σ
(
Wz ·

[
h{t−1}, xt

])
� (1)

where:

•	 Wz is the weight matrix for the update gate,
•	 ht−1 is the hidden state at the previous time step,
•	 xt is the input at the current time step,
•	 σ is the sigmoid function.

Reset gate  The reset gate, denoted as rt, determines the amount of past information to forget. It is computed as.

	 rt = σ
(
Wr ·

[
h{t−1}, xt

])
� (2)

where Wr is the weight matrix for the reset gate.

Current memory content  The current memory content, denoted as ht, uses the reset gate to store relevant in-
formation from the past. It is computed as.
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Fig. 1.  Comprehensive data preprocessing pipeline for solar power forecasting including time series 
conversion, filtering, and supervised learning preparation.
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∼
ht = tanh (W . [rt ∗ ht−1, xt])� (3)

where:

•	 W is the weight matrix, and.
•	 ∗ denotes element-wise multiplication.

Final memory  The final memory at the current time step is a combination of the past memory content, con-
trolled by the update gate, and the current memory content. It is computed as.

	 ht = (1 − zt) ∗ ht−1 + zt ∗
∼
ht

� (4)

In these equations, ht is the hidden state at time t, xt is the input at time t, and W are the weight parameters the 
model learns. The sigmoid function σ outputs a value between 0 and 1, which assists the update and reset gates 
in deciding the amount of information to retain or discard. The GRU’s architecture allows it to capture both 
short-term and long-term dependencies in sequence data, making it a powerful tool for tasks such as time series 
forecasting, natural language processing, and more.

Convolutional neural networks (CNNs)
CNN is a feed-forward network composed of three different layers, each of which has its functioning29. The 
convolutional layer works on finding local relationships in the input data, like in our case, the spatial patterns 
from power and its related input data historical power, while the pooling layer reduces the dimensions of a target 
variable, and the fully connected layer works on predicting the target variable30. Very few studies reported using 
CNN in solar forecasting despite being good at extracting hidden features in a given dataset30. CNN is first used 
for two-dimensional (2D) problems like image and video processing, however, recently one-dimensional (1D) 
version of it has been used in time series forecasting31. The structure of the 1D CNN network is shown in Fig. 2.

Quantile regression
Quantile regression is a robust technique, especially when the focus is on modeling conditional quantile functions 
rather than just the mean, as is common in ordinary least squares regression. It offers a more comprehensive 
analysis by capturing different aspects of central tendency and dispersion, making it highly effective in the 
presence of outliers in response data32. In the context of probabilistic forecasting, where the direct formulation 
of probabilistic training samples from historical data is a challenge, quantile regression (QR) provides a powerful 
solution. By predicting multiple quantiles (e.g., 10th, 50th, 90th percentiles) instead of a single value, QR allows 
for the construction of the probability distribution without requiring explicit probabilistic data during training. 
The quantile loss function, defined as:

	
L

q
(

ŷq, y
) = max ( q · (y − ŷq) , (q − 1) · (ŷq − y) )� (5)

ensures that each quantile prediction yˆq corresponds to a specific quantile level q ∈ [0, 1], such as q = 0.5 for the 
median or q = 0.9 for the 90th percentile. This asymmetric penalization of over- and under-estimations allows 
the model to effectively learn the conditional quantiles, providing a more nuanced and accurate forecast. In a 
deep learning model, such as the.

CNN-GRU architecture, the final output layer is designed to predict multiple quantiles for each time step. 
This multi-quantile forecast is represented by:

Fig. 2.  Convolutional neural network (CNN) architecture showcasing the sequence of layers, including the 
input layer, convolutional layers with filters, max pooling layers for dimensionality reduction, fully connected 
layers, and the output layer, designed for spatial feature extraction in solar power forecasting applications.
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	 ŷq = fθ (Xt), q ∈ {0.1, 0.5, 0.9}� (6)

where fθ  is the CNN-GRU model with parameters θ, and the predicted quantile levels provide confidence 
intervals for the forecasted values. By applying the quantile loss function during training, the model is capable 
of predicting a range of outcomes that reflect different levels of uncertainty, significantly enhancing the accuracy 
and reliability of probabilistic forecasts33.

Q-CNN-GRU architecture
Combining Convolutional Neural Networks (CNN) with Gated Recurrent Units (GRU) creates a powerful 
architecture for solar forecasting, effectively capturing both spatial and temporal dependencies in the data. 
CNNs are particularly effective at processing spatial data, identifying patterns and relationships across different 
locations, such as multiple photovoltaic (PV) installations or points on a solar irradiance map. This is achieved 
through their convolutional layers, which apply filters to the input data to produce feature maps33. These feature 
maps enable the network to automatically and adaptively learn spatial hierarchies of features, thus recognizing 
spatial dependencies in the data. In contrast, GRUs are designed to handle temporal data, excelling at capturing 
long-term dependencies in sequential datasets, which is common in time series forecasting34. GRUs utilize 
an update gate and a reset gate to regulate the flow of information, ensuring the network efficiently manages 
time-based dependencies and temporal variations in the data35 The model is trained using quantile regression, 
which is implemented with a custom loss function for each quantile. This enables the model to predict a range 
of possible future outcomes (quantiles) rather than a single point estimate. The model forecasts 99 quantiles, 
ranging from 0.01 to 0.99, providing a fuller picture of potential outcomes and their associated probabilities. This 
approach is particularly useful for decision-making under uncertainty, as it offers a more comprehensive view of 
possible scenarios, allowing for better-informed decisions.

To prevent overfitting during training, the model leverages an early stopping callback. After training, the 
model outputs quantile-based predictions. These predictions are then evaluated using the Continuous Ranked 
Probability Score (CRPS), a metric that compares the predicted quantiles with the true values. Importantly, 
the CRPS scores are normalized by the nominal power (plant rate power). This normalization ensures that the 
forecast performance is consistent across sites, allowing for a meaningful comparison of forecast performance, 
especially when evaluating sites with differing nominal power capacities. By normalizing the CRPS, we ensure 
that the forecast performance is not skewed by differences in plant size. The approach has been shown to improve 
forecast accuracy while maintaining computational efficiency, making it an ideal tool for intra-day decision-
making in PV power output forecasting.

Model fine-tuning
The proposed Conv1D-GRU architecture was carefully fine-tuned to balance model complexity, generalization 
capability, and computational efficiency. The network processes input sequences shaped (batch_size, 48, 1), 
corresponding to 48 consecutive hourly observations of normalized solar power output. This temporal window 
effectively captures both diurnal cycles and short-term meteorological fluctuations. The feature extraction 
module consists of two sequential 1D convolutional layers, each comprising 22 filters with a kernel size of 
4, ReLU activation, and ‘same’ padding. These layers output a consistent temporal shape of (batch_size, 48, 
22), enabling the preservation of local temporal features. A MaxPooling1D layer with a pool size of 1 follows, 
maintaining the sequence length while offering structural adaptability. Temporal dependencies are modeled 
using a GRU layer with 31 hidden units, reducing the representation to (batch_size, 31). GRUs were selected 
over LSTMs due to their lower computational overhead and similar performance in modeling long-term 
dependencies. To enhance generalization, dropout regularization with a rate of 10% is applied to the GRU 
input connections during training. The probabilistic forecasting module comprises 99 parallel Dense layers, 
each producing a single output corresponding to quantile levels τ ∈ {0.01, 0.02, …, 0.99}, with linear activation 
functions to support direct quantile regression. Model training is performed using the Adam optimizer with 
default parameters (learning rate = 0.001, β₁ = 0.9, β₂ = 0.999) and a mini-batch size of 32. The loss function is 
the quantile (pinball) loss, applied individually to each quantile output. Training is limited to a maximum of 30 
epochs, with early stopping (patience = 10) based on validation loss monitoring. This approach halts training 
when no improvement is observed over ten consecutive epochs and restores the best-performing model weights. 
Overfitting is mitigated through a combination of architectural and procedural strategies. In addition to dropout 
and early stopping, the total parameter count is intentionally kept moderate (approximately 8,847 parameters), 
comprising 198 from the Conv1D layers, 2,046 from the GRU layer, and 6,534 from the 99 Dense output heads. 
Temporal order is preserved during training, thus maintaining the inherent sequential structure of solar power 
time series data. These strategies collectively contribute to robust generalization and reliable probabilistic 
forecasting performance.

Tools for performance evaluation
In this section, we present two primary tools used to evaluate the performance of the proposed Q-CNN-GRU 
model: the Continuous Ranked Probability Score (CRPS) and the Reliability Diagram with consistency bars.

Continuous ranked probability score (CRPS)
The Continuous Ranked Probability Score (CRPS) is a widely-used metric for assessing the accuracy of 
probabilistic forecasts by comparing the predicted cumulative distribution function (CDF) to the observed 
data36. CRPS is particularly valuable in quantile-based forecasting, as it evaluates the difference between the 
predicted CDF and the step-function CDF of the actual observations37. The formula for CRPS is given by:
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CRP S = 1

N

∑ N

i=1

∫ ∞

−∞

[
P̂ fcast

i (x) − P x0
i (x)

]2
dx � (7)

where P̂ fcast
i (x) represents the predicted CDF, and P x0

i (x)is a step function that jumps from 0 to 1 at the point 
where the forecasted variable equals the observed value x0. In practice, when only a discrete set of quantiles (e.g., 
5th, 10th, 50th, 90th, and 95th percentiles) is available, we interpolate between these quantiles to approximate 
the continuous CDF. This piecewise linear interpolation allows for an accurate CRPS computation by capturing 
the behavior between quantiles, even in the absence of a continuous probabilistic distribution. CRPS rewards 
models that tightly concentrate the predicted probability around the actual observations, yielding lower CRPS 
values for better accuracy. Conversely, models that exhibit bias or fail to sharpen their predictions are penalized 
with higher CRPS values. By applying this criterion, we ensure that our model’s performance reflects its ability to 
provide reliable uncertainty estimates. CRPS can address both reliability and resolution, decomposing into three 
components: reliability, resolution, and uncertainty.

Reliability diagram with consistency bars
The Reliability Diagram is a graphical verification tool used to evaluate the reliability of probabilistic forecasts. 
It compares the forecasted probabilities of an event to the observed frequencies, providing insight into the 
calibration of the forecasting model. A perfectly reliable forecast aligns observed proportions with forecast 
probabilities, resulting in points that lie on the diagonal line of the reliability diagram. To address practical 
challenges such as limited data and serial correlation in observations, reliability diagrams are supplemented with 
consistency bars. These bars, as suggested by Brocker and Smith (2007)38account for data limitations and serial 
dependencies, providing a statistical range within which observed proportions should fall for the forecast to be 
considered reliable. If observed proportions lie within these consistency bars, the hypothesis that the forecast is 
reliable cannot be rejected36. The reliability diagram, complemented by consistency bars, offers a robust visual 
diagnostic tool to assess the calibration of probabilistic forecasts. When combined with CRPS, these tools provide 
a comprehensive evaluation framework, encompassing both forecast accuracy and reliability under uncertainty.

Results and discussion
The efficacy of the proposed probabilistic model for photovoltaic (PV) power forecasting was evaluated using 
the Continuous Ranked Probability Score (CRPS) and the reliability diagrams. This evaluation was conducted 
using historical PV power data from three distinct locations: Hebei Province, China; The Bilt, Netherlands; and 
Alice Springs, Australia. The model was tested across varying seasons and time horizons (1-hour, 3-hour, 12-
hour, and 24-hour forecasts) and compared against state-of-the-art deep learning models, specifically Q-GRU 
and Q-LSTM. To support the performance analysis, we incorporated ERA539 reanalysis data to examine how 
seasonal weather variability and cloud cover influence forecast reliability across the three study sites.

CRPS evaluation
The Continuous Ranked Probability Score (CRPS), normalized to the capacity of each station, facilitates 
comparisons across different locations. As a negatively oriented metric, lower CRPS values indicate a higher 
forecast accuracy. The presented results Tables 1 and 2, and Table 3. demonstrate that the Q-CNN-GRU model 
consistently outperforms alternative models across all locations and forecasting horizons. Moreover, aligning 
with established findings that the accuracy of the forecast decreases as the forecasting horizon increases due 
to the accumulation of errors. Among the locations studied, Alice Springs exhibits the lowest CRPS values 
across all seasons and horizons, reflecting its stable climatic conditions characterized by consistent sunshine 
and predominantly clear skies. The best performance is achieved in summer for 1-hour ahead forecasts (CRPS: 
0.0327), followed by spring, fall, and winter. The highest CRPS is observed in winter for 24-hour ahead forecasts 
(CRPS: 0.112). A similar seasonal pattern is evident for Hebie, China, where the temperate climate ensures 

Time Model Summer Spring Fall Winter

1 h

Q-CNN-GRU 0.0327 0.0346 0.0356 0.0361

Q-LSTM 0.0421 0.0423 0.0430 0.0456

Q-GRU 0.0400 0.0410 0.0420 0.0430

6 h

Q-CNN-GRU 0.0609 0.0648 0.0655 0.0669

Q-LSTM 0.0700 0.0710 0.0720 0.0760

Q-GRU 0.0617 0.0672 0.0685 0.0734

12 h

Q-CNN-GRU 0.0734 0.0772 0.0790 0.0831

Q-LSTM 0.0755 0.0800 0.0825 0.0943

Q-GRU 0.0772 0.0795 0.0810 0.0932

24 h

Q-CNN-GRU 0.0883 0.1052 0.1100 0.1117

Q-LSTM 0.0903 0.1150 0.1180 0.1450

Q-GRU 0.1052 0.1110 0.1155 0.1439

Table 1.  CRPS values for the three models (Q-CNNGRU, Q-LSTM, Q-GRU) across all four seasons (summer, 
winter, fall, spring) and forecasting horizons (1 h, 6 h, 12 h, 24 h) for Alice springs, Australia.
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that spring and summer results are closely aligned, while winter shows the weakest performance. In contrast, 
the Netherlands presents an intriguing case where forecasts in winter outperform those in summer (e.g., 
CRPS: 0.0386 for 1-hour ahead in winter versus 0.0842 in summer). This seemingly counterintuitive result is 
consistent with the findings of40which attributed the improved winter precision to the predictability of overcast 
days. In contrast, summer forecasts are less accurate due to the higher variability in solar irradiance, a factor 
also highlighted in24. Furthermore, transitional seasons, such as spring, exhibit increased variability, leading 
to reduced forecast accuracy for longer horizons (e.g., CRPS: 0.1487 for 24-hour ahead forecasts in spring, 
which is the worst of all). These findings show the importance of considering regional climatic conditions when 
evaluating photovoltaic forecasting models. Regions with consistent solar irradiance, such as Alice Springs, 
achieve superior performance because of reduced variability, while areas like northern Europe, where cloud 
cover and seasonal changes dominate, require more robust modeling approaches to account for variability and 
enhance forecast reliability.

Comparative study for CRPS values in solar forecasting
Our findings demonstrate notable advancements in solar power forecasting, particularly with the Q-CNN-GRU 
model. For instance, in Alice Springs, the model achieves a CRPS of 0.0327 for a 1-hour forecast, which is 
significantly lower than the AnEn model’s CRPS of 0.15 for similar timeframes in Italy as depicted in Table 4. 
Although the accuracy of the models depends on the location of the plant and the year under consideration, 
the Q-CNN-GRU model highlights its precision over other models, such as Bayesian Model Averaging (BMA), 
SHADECast, and SolarSTEPS, which generally focus on percentage improvements rather than absolute CRPS 
values. Additionally, the Q-CNN-GRU model shows robust performance over longer horizons, with a CRPS of 
0.0883 for a 24-hour forecast in Alice Springs. Regional variations are also observed, with slightly higher CRPS 
values in Hebei, China, reflecting challenges commonly found in the literature. Overall, our model provides 
highly accurate forecasts that are comparable to other advanced models, particularly for short-term horizons, 
while demonstrating adaptability across diverse geographical contexts.

Time Model Summer Spring Fall Winter

1 h

Q-CNN-GRU 0.0377 0.0458 0.0462 0.0489

Q-LSTM 0.0505 0.0513 0.0532 0.0559

Q-GRU 0.0401 0.0487 0.0490 0.0532

6 h

Q-CNN-GRU 0.0789 0.0843 0.0872 0.1226

Q-LSTM 0.0910 0.0975 0.1008 0.1258

Q-GRU 0.0843 0.0918 0.0940 0.1235

12 h

Q-CNN-GRU 0.0988 0.1016 0.1050 0.1205

Q-LSTM 0.1155 0.1170 0.1205 0.1320

Q-GRU 0.1100 0.1123 0.1158 0.1280

24 h

Q-CNN-GRU 0.1121 0.1129 0.1182 0.1318

Q-LSTM 0.1250 0.1300 0.1355 0.1485

Q-GRU 0.1135 0.1205 0.1258 0.1485

Table 3.  CRPS values for the three models (Q-CNNGRU, Q-LSTM, Q-GRU) across all four seasons (summer, 
winter, fall, spring) and forecasting horizons (1 h, 6 h, 12 h, 24 h) for hebei, China.

 

Time Model Winter Fall Summer Spring

1 h

Q-CNN-GRU 0.0386 0.0650 0.0842 0.1274

Q-LSTM 0.0842 0.1034 0.1185 0.1274

Q-GRU 0.1185 0.0950 0.1034 0.1274

6 h

Q-CNN-GRU 0.0658 0.0875 0.1255 0.1261

Q-LSTM 0.0875 0.1100 0.1255 0.1261

Q-GRU 0.1255 0.1025 0.1261 0.1261

12 h

Q-CNN-GRU 0.0803 0.0994 0.1300 0.1448

Q-LSTM 0.0994 0.1225 0.1367 0.1448

Q-GRU 0.1300 0.1378 0.1390 0.1448

24 h

Q-CNN-GRU 0.0884 0.1075 0.1367 0.1487

Q-LSTM 0.1487 0.1498 0.1507 0.1512

Q-GRU 0.1367 0.1385 0.1448 0.1487

Table 2.  CRPS values for the three models (Q-CNNGRU, Q-LSTM, Q-GRU) across all four seasons (summer, 
winter, fall, spring) and forecasting horizons (1 h, 6 h, 12 h, 24 h) for bill, the Netherlands.
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Reliability diagram
The reliability diagrams depicted in Figs. 3 and 4, and Fig. 5 offer valuable insights into the model’s probabilistic 
performance, complementing the results from the Continuous Ranked Probability Score (CRPS). The Observed 
Probability.

(y-axis) reflects the actual likelihood of events occurring within the predicted quantile, while the Nominal 
Probability (x-axis) represents the predicted confidence level. The Perfect Reliability Line (dashed black 
line) marks the ideal calibration, where the predictions perfectly match the observations, and the Observed 
Probability Curve (blue line) illustrates the alignment of the model’s predictions with the observed outcomes. 
The 90% Consistency Bars (shaded pink region) indicate the acceptable range of prediction uncertainty. In the 

Fig. 3.  Reliability diagrams related to one-hour PV power forecasts across different seasons in the Alice 
Springs, Australia: (a) Spring, (b) Summer, (c) Winter, (d) autumn. Consistency bars for a 90% confidence level 
around the ideal line are individually computed for each nominal proportion.

 

Region Lead time CRPS Model Ref.

Italy 1–6 h 0.15 AnEn Alessandrini et al.41

USA (CO) 4 h 2–36% impr. BMA Doubleday et al.42

USA (CA) 15 m 2.81 kW SkyGPT Nei et al.l43. 

Switzerland 15–120 m 15% impr. SHADECast Carpentieri et al.44

Switzerland Intraday 9% impr. SolarSTEPS Carpentieri et al.45

Table 4.  CRPS values from the literature for solar forecasting across regions, lead times, and models.
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Netherlands (Spring & Summer), the blue curve deviates significantly from the perfect reliability line, indicating 
poor calibration, which corresponds to higher CRPS values due to increased variability, likely caused by 
fluctuating weather conditions. In Fall & Winter, the reliability improves, with winter showing the best reliability, 
potentially due to reduced weather variability. When comparing this to Alice Springs (arid climate) and Hebei, 
China (monsoon-influenced continental climate), both regions demonstrate better performance during spring 
and summer, when variability is lower. However, reliability drops in winter, particularly in Alice Springs, though 
it remains superior to that in the Netherlands. These observations highlight that forecast reliability improves 
in stable weather conditions with reduced variability, as seen in the fall and winter for the Netherlands, and 
in summer for Alice Springs and Hebei. The higher variability during spring and summer in the Netherlands 
poses a challenge to the forecast model’s reliability, suggesting the need for the inclusion of additional weather 
variables. Ongoing work with the Hebei dataset focuses on improving reliability through feature augmentation, 
which could provide valuable insights for improving the model in other regions, such as the Netherlands. This 
analysis underscores the importance of seasonal variability in forecast reliability and demonstrates the potential 
for model improvement through feature augmentation to enhance calibration.

Meteorological analysis and site-specific weather variability
To explain the reliability degradation patterns observed in Figs. 3 and 4, and 5, we conducted a comprehensive 
meteorological analysis using ERA539 reanalysis data examining seasonal weather variability across our three 
study sites. The analysis reveals distinct climate-driven patterns that directly correlate with solar forecasting 
challenges.

As shown in Table 5, Utrecht, Netherlands exhibits a maritime temperate climate with consistently high total 
cloud cover ranging from 64.1% in spring to 74.2% in winter, and the lowest annual variability (σ = 0.042). This 

Fig. 4.  Reliability diagrams related to one-hour PV power forecasts across different seasons in Bill, the 
Netherlands: (a) Spring, (b) Summer, (c) Winter, (d)autumn. Consistency bars for a 90% confidence level 
around the ideal line are individually computed for each nominal proportion.
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indicates stable atmospheric conditions, particularly in winter, which are favorable for reliable solar forecasting, 
while transitional periods like spring introduce moderate uncertainty. Alice Springs, Australia presents an arid 
continental regime with strong seasonal contrasts—summer cloud cover is lowest (16.6%), supporting optimal 
forecast conditions, while increased winter cloudiness (35.2%) reflects greater atmospheric instability and 
reduced predictability. Hebei Province, China shows the highest seasonal cloud cover variability (σ = 0.134), 
indicative of a monsoon-influenced regime. Winter offers the clearest conditions (25.4%), but summer brings 
a sharp increase to 56.6%, suggesting a significant rise in forecast difficulty during the monsoon season. Sky 
condition distributions Fig.  6 and the forecast difficulty heatmap Fig.  7 confirm that reliability is governed 
more by atmospheric stability than by absolute cloud cover. Both persistently clear and overcast conditions 
enable accurate forecasting, while transitional periods marked by mixed sky conditions consistently impair 
performance. These findings strenghten the need for climate-aware forecasting systems that dynamically adapt 
prediction strategies based on site-specific and seasonal atmospheric patterns, rather than relying solely on 
historical averages.

Multivariate forecast
A multivariate forecast case study was conducted on a dataset from China, where exogenous variables were used 
to improve the performance of the model. A sensitivity analysis was performed, as described in the following, to 
select the most relevant variables for the multivariate forecasting task.

Sensitivity analysis
In this experiment, sensitivity analysis was applied to the PV Power Output Dataset (PVOD), which includes 
14 features derived from Numerical Weather Prediction (NWP) data and local measurements, along with 
timestamps. The dataset, originating from Hebei province, China, captures the temporal and spatial variability 
of solar power generation. Sensitivity analysis assessed the impact of each input feature, such as temperature, 

Fig. 5.  Reliability diagrams related to one-hour PV power forecasts across different seasons in Hebei, china: 
(a) Spring, (b) autumn, (c) Winter, (d) Summer. Consistency bars for a 90% confidence level around the ideal 
line are individually computed for each nominal proportion.
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humidity, irradiance, and wind speed, on the forecasted solar power output. By calculating the correlation 
coefficients between each feature and the power output, we identified the variables with the most significant 
influence on the model’s predictions. Although advanced feature selection methodologies utilizing machine 
learning techniques for predictor weighting and optimization have been demonstrated to enhance forecasting 
performance, as evidenced by Alaoui et al.46 who employed random forest and XGBoost algorithms for 
systematic variable selection in meteorological applications, our correlation-based sensitivity analysis provides 

Fig. 7.  Forecast difficulty heatmap by site and season, color intensity indicates qualitative difficulty levels: low, 
medium, high, and very high, derived from seasonal cloud cover variability and sky condition diversity.

 

Fig. 6.  Seasonal sky condition distributions by site: (a) Utrecht, Netherlands, (b) Hebei Province, China, (c) 
Alice Springs, Australia. Stacked bars represent the percentage of clear, few clouds, scattered, broken, and 
overcast conditions observed across seasons.
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a robust and interpretable foundation for identifying key predictors in solar power forecasting.Features with 
higher correlation were prioritized in the forecasting model, improving its accuracy and efficiency. This process 
allows us to identify the most important drivers of solar power generation, ensuring that the model is focused on 
the most relevant factors, while minimizing the impact of less influential features. Ultimately, sensitivity analysis 
will guide the development of a more robust and precise forecasting model for solar power. The analysis of the 
bar chart in Fig. 8 and the correlation heatmap in Fig. 9 highlights that solar irradiance variables, including 
lmd_totalirrad, nwp_globalirrad, and nwp_directirrad, exhibit the strongest positive correlations with power 
generation, with correlation coefficients reaching as high as 1.0, 0.93, and 0.92, respectively. These findings 
confirm that solar irradiance is the primary driver of power output in photovoltaic systems. Temperature variables, 
such as nwp_temperature and lmd_temperature (both 0.43), have a moderate positive impact, reflecting their 
secondary role in influencing power production. Wind speed (nwp_windspeed: 0.55, lmd_windspeed: 0.38) 
shows a weaker but noticeable positive correlation, suggesting a limited contribution to power generation. On 
the other hand, variables like nwp_humidity (-0.38) and pressure variables (nwp_pressure: -0.16, lmd_pressure: 
-0.18) have minimal or negative correlations, indicating their inverse or negligible effects on power output. Wind 
direction has no significant correlation with power production. Therefore, in our multivariate case, we chose the 
solar irradiance variables as exogenous input parameters for the model.

Evaluation for multivariate forecasting
The results in Table  6, Fig.  10, and Fig.  11 clearly demonstrate that the multivariate Q-CNN-GRU model, 
which incorporates additional solar irradiance variables alongside historical solar power data (NWP and LMD 
irradiance variables), consistently outperforms the univariate model that relies solely on historical solar power 
data. This conclusion is supported by both the CRPS values and reliability diagrams. The reliability diagrams 
highlight the improved calibration of the multivariate forecasts, with the observed probability curve (blue line) 
closely aligning with the perfect reliability line or within consistency bars. This improved calibration indicates that 
the multivariate model effectively captures the underlying variability and uncertainty in solar power forecasting. 
Furthermore, the CRPS values reinforce these findings, as the multivariate model exhibits significantly lower 
scores across all forecasting horizons (1 h, 6 h, 12 h, 24 h) and seasons. An additional bar chart illustrates the 

Fig. 8.  Ranking of 13 input parameters derived from numerical weather prediction (NWP) data and local 
measurements, based on the value of correlation coefficient (R).
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percentage improvement in CRPS values when transitioning from the univariate to the multivariate model. 
Significant improvements are observed, particularly for the 1-hour horizon, where summer (> 20%) and winter 
(~ 18%) show the largest gains. This shows the importance of including solar irradiance variables, as they enable 
the multivariate model to better capture seasonal and short-term variability that the univariate model could not. 
Although the improvements are less pronounced for longer horizons, the multivariate approach consistently 
outperforms the univariate model across all seasons and horizons. This demonstrates the value of integrating 
external weather variables, which enhance forecast accuracy, especially during highly variable conditions such as 
fall and winter in case of Hebei, china. These results highlight the potential of feature augmentation, specifically 
the incorporation of solar irradiance variables, in improving both the reliability and accuracy of solar power 
forecasts. Such advancements are particularly critical for addressing challenges in regions with high variability 
in weather conditions.

Conclusion
In this paper, we evaluate the effectiveness of a hybrid deep learning model that combines a Convolutional Neural 
Network (CNN) and a Gated Recurrent Unit (GRU) to generate intra-day probabilistic quantile predictions. The 
model’s performance is analyzed using datasets from three geographically distinct locations: the Netherlands, 
Australia, and China. Predictions are made for various time horizons, including 1-hour, 6-hour, 12-hour, and 
24-hour intervals, across all four seasons.

The proposed model is benchmarked against state-of-the-art deep learning models, including the standalone 
Quantile Gated Recurrent Unit (Q-GRU) and Quantile Long Short-Term Memory (Q-LSTM). The evaluation 

Fig. 9.  Correlation Heatmap for 14 features derived from numerical weather prediction (NWP) data and local 
measurements, along with timestamps.
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employs metrics such as the Continuous Ranked Probability Score (CRPS) and reliability diagrams with 
consistency bars to assess both the sharpness and reliability of the probabilistic predictions.

Empirical results demonstrate that the proposed model consistently outperforms the alternatives, achieving 
the lowest CRPS across all time horizons and seasons. This shows the model’s exceptional capability to produce 
accurate and reliable probabilistic predictions under varying temporal and seasonal conditions. Furthermore, 
a case study conducted in a multivariate setting, with input variables selected based on sensitivity analysis, 
revealed significant performance improvements compared to the univariate approach.

By leveraging the strengths of ensemble deep learning architectures, this methodology represents a significant 
advancement in energy yield prediction for photovoltaic (PV) power plants. The results highlight its potential to 
transform solar power forecasting, contributing to more efficient and sustainable energy production strategies.

Site Spring Summer Autumn Winter Annual standard deviation coefficient of variation

Utrecht, Netherlands 0.641 0.693 0.714 0.742 0.042 0.480

Alice Springs, Australia 0.245 0.166 0.232 0.352 0.078 1.366

Hebei Province, China 0.398 0.566 0.372 0.254 0.134 1.047

Table 5.  Seasonal mean cloud fraction, annual standard deviation, and coefficient of variation for each study 
site.

 

Time Model Summer Spring Fall Winter

1 h

Q-CNN-GRU 0.0301 0.0385 0.0395 0.0410

Q-LSTM 0.0430 0.0445 0.0460 0.0475

Q-GRU 0.0345 0.0420 0.0425 0.0460

6 h

Q-CNN-GRU 0.0685 0.0740 0.0775 0.1065

Q-LSTM 0.0785 0.0835 0.0875 0.1115

Q-GRU 0.0715 0.0780 0.0810 0.1045

12 h

Q-CNN-GRU 0.0885 0.0920 0.0950 0.1075

Q-LSTM 0.1015 0.1035 0.1065 0.1165

Q-GRU 0.0965 0.0985 0.1015 0.1110

24 h

Q-CNN-GRU 0.1005 0.1010 0.1065 0.1155

Q-LSTM 0.1125 0.1175 0.1215 0.1335

Q-GRU 0.1015 0.1085 0.1135 0.1325

Table 6.  CRPS values in multivariate case for the three models (Q-CNN-GRU, Q-LSTM, Q-GRU) across all 
four seasons (summer, winter, fall, spring) and forecasting horizons (1 h, 6 h, 12 h, 24 h) for hebei, China.

 

Scientific Reports |        (2025) 15:27270 15| https://doi.org/10.1038/s41598-025-12797-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 10.  Reliability diagrams related to one-hour multivariate PV power forecasts across different seasons 
in Hebei, china: (a) winter, (b) Summer, (c) autumn, (d) Spring. Consistency bars for a 90% confidence level 
around the ideal line are individually computed for each nominal proportion.
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Data availability
The datasets used in this manuscript are publicly available and can be accessed through the following references: 
China (Hebei): https://doi.org/10.1016/j.solener.2021.09.050. Netherlands (Utrecht): ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​6​3​/​5​.​0​
1​0​0​9​3​9​. Australia( Alice Springs): https://dkasolarcentre.com.au/download? ​l​o​c​a​t​i​o​n​=​a​l​i​c​e​-​s​p​r​i​n​g​s​.​​

Code availability
The code used for the analysis and modeling in this study is available on GitHub. You can access it via the 
following link: ​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​L​o​u​i​​z​a​a​i​t​/​​S​e​a​s​o​n​​a​l​-​Q​u​a​​n​t​i​l​e​​-​F​o​r​e​c​a​s​t​i​n​g​-​o​f​-​S​o​l​a​r​-​P​h​o​t​o​v​o​l​t​a​i​c​-​P​o​w​e​r​-​u​s​i​n​
g​-​Q​-​C​N​N​-​G​R​U​.​​
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