Table 1 Overview of the hyperparameter search space and optimal parameters identified using GridSearchCV.
Algorithm | Hyperparameter space | Best hyperparameters |
---|---|---|
KNN | n_neighbors: 3, 5, 7, 9 | n_neighbors: 9 |
Metric: Euclidean, Manhattan, Minkowski | Metric: Manhattan | |
SVM | C: 0.1, 1, 10, 100 | C: 10 |
Kernel: linear, rbf | Kernel: rbf | |
Gamma: scale, auto | Gamma: scale | |
Random forest | n_estimators: 100, 200, 300, 400, 500, 600 | n_estimators: 600 |
max_depth: none, 10, 20, 30, 40, 50, 60 | max_depth: 20 | |
min_samples_split: 2, 5, 10 | min_samples_split: 5 |