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Primary progressive aphasia (PPA) is a neurodegenerative syndrome characterized by progressive 
decline in speech and/or language. There are three PPA subtypes with distinct speech-language 
profiles. Early diagnosis is essential for optimal provision of care but differential diagnosis by PPA 
subtype can be difficult and time consuming. We investigated the diagnostic utility of a novel 
electroencephalography (EEG)-based biomarker in conjunction with machine learning. Individuals 
with semantic, logopenic, or nonfluent/agrammatic variant PPA and healthy controls (n = 10 per 
group) listened to a continuous narrative while EEG responses were recorded. The speech envelope 
and linguistic features representing core language processes were extracted from the narrative speech 
and temporal response function (TRF) modeling was used to estimate the neural responses to these 
features. Although TRF modeling has shown promise for clinical applications, research is lacking 
regarding its diagnostic utility in populations like PPA. This study sought to provide preliminary 
evidence to address this gap. The resulting TRFs for channel Cz were used as input to machine learning 
algorithms for classification of PPA vs. healthy controls, three-way classification by PPA subtype, 
classification of a single PPA subtype relative to the other two (e.g., semantic vs. logopenic/nonfluent 
variant), and pairwise classification by PPA subtype. F1 scores were highest for the latter tasks (F1’s 
from 0.73 to 0.74), with better-than-chance classification in all tasks. Additional analyses determined 
that the TRF beta weights significantly improved classification over preprocessed EEG waveforms 
alone for all but one task (PPA vs. healthy controls). Our preliminary findings demonstrate the 
potential utility of this approach for differential diagnosis of PPA, warranting further investigation.
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Primary progressive aphasia (PPA) is a neurodegenerative syndrome characterized by the progressive 
deterioration of language and/or speech1,2. Although additional cognitive, behavioral, and motoric deficits 
emerge over time, speech and language deficits are the primary contributors to impaired activities of daily 
living in early stages of disease. There are three PPA subtypes, each with a distinct speech-language profile1. 
The semantic variant (svPPA) is associated with a loss of core semantic knowledge, leading to deficits in word 
retrieval and word comprehension. The logopenic variant (lvPPA) is associated with impaired phonological 
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processing, with associated deficits in word retrieval and repetition. Lastly, the non-fluent variant (nfvPPA) is 
characterized by impaired expressive grammar and/or motor speech impairment.

Early and accurate diagnosis is essential for optimal provision of care for individuals with PPA, both in terms 
of speech-language services and potential forthcoming pharmacological interventions. With regard to speech-
language intervention, the most appropriate restitutive interventions differ by PPA subtype3–5. Interventions 
targeting word retrieval may be most relevant for svPPA and lvPPA, whereas interventions targeting motoric 
aspects of speech and/or grammar may be of most benefit in nfvPPA. For disease-modifying treatments, it 
is important to note that PPA subtypes are associated with distinct underlying pathological profiles6. As a 
consequence, early clinical diagnosis contributes to pathological prediction which, in turn, may facilitate 
identification of appropriate pharmacological interventions as they become available. However, differential 
diagnosis by PPA subtype can be challenging, even for experienced speech-language clinicians.

Differential diagnosis by PPA subtype
In standard clinical care, differential diagnosis by PPA subtype requires comprehensive cognitive-linguistic 
assessment7. Diagnostic assessment typically requires hours of testing with tasks requiring overt responses (e.g., 
naming pictures, yes/no responses, repeating words and phrases), which may lead to fatigue and potentially 
compromise the validity and reliability of the results. Perhaps more importantly, even after comprehensive 
cognitive-linguistic assessment, a definitive diagnosis may be elusive. Whereas svPPA and nfvPPA are typically 
straightforward to differentiate behaviorally, distinguishing lvPPA from nfvPPA can be challenging due to 
overlapping clinical features, including reduced speech fluency in both subtypes8,9. Fluency is a multidimensional 
construct, reflecting motor speech, grammar, word finding, and prosody. Thus, although the source of impaired 
fluency in lvPPA and nfvPPA differs (deficits in phonological processing vs. motor speech and/or grammar, 
respectively), the two PPA subtypes may present similarly, particularly in mild, early stages10. Moreover, 
phonological paraphasias, which are common in lvPPA, can be difficult to distinguish from apraxic speech 
sound errors, which are common in nfvPPA. Differentiating lvPPA from svPPA also presents challenges, as 
anomia is a core feature for both subtypes. Moreover, additional overlapping clinical features emerge over time; 
for example, in lvPPA, semantic deficits may become apparent with progression11.

Differential diagnosis using biomarkers and machine learning
Given the challenges of differential diagnosis based on behavioral assessment, clinicians and researchers 
seek alternative or complementary tools for confirming a diagnosis12. Blood, cerebrospinal fluid (CSF), and 
neuroimaging (e.g., magnetic resonance imaging [MRI] and positron emission tomography) biomarkers have 
shown promise for identifying the underlying etiology of PPA13–27. To further improve diagnostic accuracy 
and efficiency, researchers have used neuroimaging biomarkers with machine learning (ML)13,14,19,26. 
Most studies using neuroimaging with ML have focused on structural MRI14,19,26, although resting-state 
electroencephalography (EEG)/magnetoencephalography (MEG), which reflects network dynamics, has also 
been used with ML for PPA subtype classification28–30. Although each of these studies achieved high classification 
accuracy for some diagnostic tasks (e.g., differentiating lvPPA vs. controls), poorer classification accuracy was 
achieved for other tasks (e.g., differentiating nfvPPA vs. lvPPA).

EEG has fewer contraindications relative to MRI and MEG (which exclude patients with implanted metal, for 
example) and is significantly less expensive (cost to record EEG data is negligible compared to the hundreds of 
dollars per hour for MRI and MEG). However, only one study has used ML with EEG for classification of PPA. 
Moral-Rubio et al.28 used resting-state EEG data as input into seven ML classification algorithms (random forest, 
decision tree, k-nearest neighbors (kNN), support vector machine (SVM), elastic net, Gaussian Naive Bayes, 
and multinomial Naive Bayes). They achieved good classification of controls vs. PPA (F1 = 0.83), and relatively 
worse, but still better-than-chance, four-way classification of controls vs. lvPPA vs. nfvPPA vs. svPPA (F1 = 0.60).

In sum, although the use of neuroimaging biomarkers with ML classification algorithms has proven useful for 
differential diagnosis, the identification of novel, reliable biomarkers and accompanying analytical approaches 
will continue to benefit the field. Biomarkers derived using techniques that are non-invasive and affordable, 
such as EEG, are particularly valuable. Despite the language-based nature of PPA syndromes, the utility of 
neuroimaging data obtained during language processing tasks has yet to be evaluated. Considering the nature of 
PPA and the distinct language phenotypes associated with each PPA subtype, a language-based EEG biomarker 
could prove particularly effective for differential diagnosis.

In recent years, temporal response function (TRF) modeling has gained traction as an ecologically-valid 
approach for characterizing neural processing of acoustic and linguistic features of continuous speech31,32. In TRF 
modeling, a linear function is estimated to map acoustic and/or linguistic features of speech to neurophysiological 
data. The accuracy of the resulting TRF can be tested by comparing the observed neurophysiological data with 
the TRF-predicted response, providing a measure of the fidelity of the neural representation in the brain. The 
TRF itself provides additional information about the time course of processing that specific feature. Researchers 
have argued that the TRF approach has potential as a tool for improving clinical diagnosis33,34,but TRF-derived 
measures have not been evaluated as diagnostic tools. In the current study, we sought to provide preliminary 
evidence regarding the diagnostic utility of TRF modeling and ML algorithms for differential diagnosis of PPA 
subtypes.

Current study
In this proof-of-concept study, we examined the utility of ML classification algorithms for diagnosis of PPA 
using EEG data collected while participants listened to 30 one-minute segments of a continuous speech narrative 
(15 minutes each from two audiobooks). TRF modeling was used to derive a linear function to map acoustic 
and linguistic features of the audiobook onto each participant’s EEG data. TRFs were estimated separately for 
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the delta (1–4 Hz) and theta (4–8 Hz) EEG frequency bands, as they have been argued to support different 
levels of speech processing (e.g., delta band: word- and phrase-level representations, theta band: syllable-level 
representations32). Our first research question was whether the TRF holds promise for classifying participants by 
clinical subtype. Our second research question examined whether TRFs provided additional benefit compared to 
using the (preprocessed) EEG data alone. In other words, do the TRF-derived beta weights improve classification 
compared to the EEG data alone (without TRF mapping to the acoustic and linguistic features)? We predicted 
that the TRF beta weights would outperform the EEG-only data because they reflect processing of the acoustic 
and linguistic features of the continuous narrative. EEG waveforms, on the other hand, contain neural activity 
both related and unrelated to processing the narrative. The study workflow is presented in Figure 1.

Method
Participants
Participants included 10 healthy, age-, education-, and hearing-matched control participants, 10 individuals 
with svPPA, 10 individuals with nfvPPA, and 10 individuals with lvPPA (Table 1; note that control participants 
and participants with lvPPA are also presented in33). Participants with PPA were recruited as part of a speech-
language intervention trial conducted by the Aphasia Research and Treatment Lab at the University of Texas 
at Austin35–38. Individuals with PPA were required to have a Mini-Mental State Exam39 score greater than 
15 and to meet criteria for one of the canonical subtypes of PPA based on international consensus criteria1. 
Clinical diagnosis was based on comprehensive neurological and cognitive-linguistic assessment. Exclusion 
criteria for controls included a history of stroke, neurodegenerative disease, severe psychiatric disturbance, or 
developmental speech and language deficits. Due to the acoustic nature of the stimuli, hearing thresholds at 
500, 1000, 2000, and 4000 Hz were collected for both ears. The pure tone average across frequencies and ears 
is reported in Table 1 for each participant group. The study was approved by the Institutional Review Board of 
the University of Texas at Austin and participants provided written informed consent. The study was conducted 
in accordance with relevant guidelines and regulations. Because control participants were not recruited as part 
of the larger clinical trial, they were paid $15/hour for their participation. All participants were native English 
speakers who spoke English as their primary language.

Stimuli and task
Stimuli consisted of 15-minute segments from each of two audiobooks, Alice’s Adventures in Wonderland50, and 
Who Was Albert Einstein?51, the latter of which has been validated for use in stroke-induced aphasia52. Each 
audiobook was divided into 15 one-minute tracks, ensuring that each track started and ended with a complete 
sentence. Stimuli were presented binaurally using insert earphones (ER-3A, Etymotic Research, Elk Grove 
Village, IL). After listening to each track, participants were asked two multiple choice questions to encourage 
close attention to the audiobook (accuracy presented in Table 1). These questions were not evaluated for their 
validity in assessing story comprehension, though we note that an analysis of variance revealed significant 
differences across the groups (F (3, 26) = 8.21, p < 0.001); post hoc comparisons performed using Tukey’s 
Honestly Significant Difference test indicated that individuals with lvPPA and svPPA performed significantly 
worse than control participants, and individuals with svPPA also performed significantly worse than individuals 
with nfvPPA. To mitigate fatigue, participants were given the opportunity to take a break between tracks and 
were instructed to press the spacebar when they were ready to move on. For two participants with svPPA and 
five participants with nfvPPA, data were only available for the 15 tracks from Alice’s Adventures in Wonderland 
(see Supplementary Materials, Supplementary Table 1), creating an imbalance in samples between subtypes. 
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Figure 1.  Study workflow. EEG data were acquired while participants listened to 30 one-minute tracks of 
a continuous narrative. Acoustic features were derived from the audio. Additionally, for each word in the 
stimulus, linguistic feature values were derived using natural language processing (NLP). Acoustic and 
linguistic features were used to estimate a TRF to map feature values to a participant’s EEG responses. The 
resulting TRF beta weights were then used as input to a ML-based classifier.
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Healthy controls svPPA lvPPA nfvPPA

Demographic information

  Age (years) 65.9 (s = 6.4, range = 58–79) 65.1 (s = 7.6, range = 54–76) 68.6 (s = 8.8, range = 55–81) 70.2 (s = 6, range = 61–78)

  Sex (F/M) 9/1 4/6 5/5 4/6

  Handedness (Right/Left) 10R 10 R 10 R 10 R

  Education (years) 15.2 (s = 2.3, range = 12–18) 17.4 (s = 3.2, range = 12–22) 16.1 (s = 2.1, range = 12–18) 16 (s = 3, range = 12–22)

  Hearing threshold, pure tone average** 18.6 (s = 11.5, range = 8.8–
45.0)

22.9 (s = 15.1, range = 6.9–
54.4) 18.4 (s = 8.2, range = 3.1–31.9) 26.8 (s = 10.0, range = 10.6–

41.2)

  Race, ethnicity 10 White, non-Hispanic 10 White, non-Hispanic 10 White, non-Hispanic 10 White, non-Hispanic

General cognition

  MMSE (30)a 25.8/26, 29.5/30* 24.0 (s = 4.0, range = 16–28)+ 23.7 (s = 3.3, range = 18–27)+ 26.6 (s = 2.8, range = 22–
30)+

Verbal memory

  CVLT total (36)a – 16.7 (s = 6.5, range = 10–30) 15.1 (s = 6.7, range = 7–28) 24.9 (s = 5.7, range = 16–32)

  CVLT recall (9)a – 1.7 (s = 2.2, range = 0–6) 2.8 (s = 2.9, range = 0–9) 7.1 (s = 1.9, range = 3–9)

Visuospatial processing

  Benson figure copy (17)a – 16.5 (s = 0.7, range = 15–17) 15.5 (s = 1.8, range = 11–17) 14.4 (s = 3.6, range = 6–17)

  Benson figure recall (17)a – 8.3 (s = 3.5, range = 2–14) 9.1 (s = 3.8, range = 2–14) 10.9 (s = 4.3, range = 6–17)

  Benson figure recognition (Correct / Incorrect )a – 8 Correct/ 2 Incorrect 10 Correct/ 0 Incorrect 7 Correct/ 3 Incorrect

Phonological working memory

  Forward digit spana – 6.5 (s = 1.3, range = 5–9) 4.5 (s = 0.8, range = 3–6) 4.4 (s = 1.5, range = 1–6)

  Backward digit spana – 4.6 (s = 2.2, range = 0–8) 3.1 (s = 0.6, range = 2–4) 2.9 (s = 1.1, range = 1–4)

  Western Aphasia Battery Repetition (100)b – 92.3 (s = 6.1, range = 82–100) 74.6 (s = 10.3, range = 61–94) 87.5 (s = 8.7, range = 66–98)

Auditory word comprehension

  PPVT short (16)a – 9.3 (s = 3.2, range = 5–13) 14.9 (s = 1.2, range = 13–16) 15 (s = 1.4, range = 12–16)

  Verbal fluency

  Letter fluency (d)a – 6.8 (s = 6, range = 0–22) 7.7 (s = 2.8, range = 4–13) 4.8 (s = 2.7, range = 2–9)

  Category fluency (Animals)a – 7.2 (s = 4.7, range = 3–18) 10.3 (s = 3.7, range = 5–16) 11.2 (s = 4.9, range = 2–18)

Aphasia severity

  Western Aphasia Battery Aphasia Quotient (100)b – 84.5 (s = 8.4, range = 70.6–
93.6)

84.2 (s = 4.2, range = 78.7–
90.9) 83.3 (s = 9.1, range = 65–96)

Object knowledge

  Pyramids & Palm Trees: Picturesc – 76.9 (s = 14.4, range = 55.8–
98.1)

92.7 (s = 4.1, range = 82.7–
98.1)

99.3 (s = 2.3, range = 92.9–
100)

Naming

  Boston Naming Testa – 22.2 (s = 15.1, 
range = 5–53.3)

59.0 (s = 25.9, range = 15–
93.3)

86.7 (s = 17.5, range = 40–
100)

Syntactic processing

  Auditory sentence-picture matching (%)d – 95.3 (s = 9.9, range = 68.8–
100)

89.4 (s = 8.2, range = 72.9–
100)

90.9 (s = 7.5, range = 79.2–
100)

  NAT (%)e – 89.8 (s = 13.7, range = 66.7–
100)

71.7 (s = 24.3, range = 8.3–
91.7)

64 (s = 19.9, range = 16.7–
86.7)

Reading

  Regular word reading (%)f – 92.2 (s = 15.3, range = 44.4–
100)

95.0 (s = 11.1, range = 66.7–
100)

92.2 (s = 11.5, range = 55.6–
100)

  Irregular word reading (%)f – 60.0 (s = 26.6, range = 0–100) 74.4 (s = 21.1, range = 22.2–
100)

82.8 (s = 19.6, range = 33.3–
100)

Spelling

  Regular word spelling (%)f – 74.0 (s = 28.4, range = 0–100) 76.0 (s = 24.8, range = 20–100) 80.0 (s = 15.9, range = 40–
100)

Continued
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We chose to use F1 for ranking classifier performance in order to minimize issues related to this imbalance (see 
Analyzing model performance for definition and justification for using F1).

EEG data collection and preprocessing
While participants listened to the audiobooks, EEG data and audio were sampled at 25,000 Hz using a 32-channel 
(10–20 system) BrainVision actiCHamp active electrode system and BrainVision StimTrak, respectively (Brain 
Products, Gilching, Germany). The data were re-referenced offline using the common average reference. EEG 
data were preprocessed using EEGLAB 2019.153 in MATLAB 2016b (MathWorks Inc., Natick, MA, USA). Data 
were downsampled to 128  Hz, then filtered from 1 to 15  Hz using a non-causal, Hamming windowed-sinc 
FIR filter (high pass filter cut-off = 1  Hz, filter order = 846; low pass filter cut-off = 15  Hz, filter order = 212). 
Channels whose activity was > 3 standard deviations from surrounding channels were rejected and replaced 
via spherical spline interpolation. Large artifacts were suppressed using artifact subspace reconstruction54, with 
sixty seconds of manually-defined clean data used as calibration data. Lastly, independent component analysis 
using the infomax algorithm was performed to correct for eye movement, muscle, and electrocardiographic 
artifacts, with components manually identified for correction. The cleaned EEG data were further filtered into 
the delta (1–4 Hz) and theta (4–8 Hz) bands, as these two frequency bands have been identified as important for 
speech processing but may support different aspects of processing. Specifically, the delta band has been linked 
to processing longer speech units (e.g., words and phrases) and the theta band has been linked to processing 
shorter speech units (e.g. syllables)32.

Acoustic feature derivation
Cortical tracking of the speech envelope has proven sensitive to hearing impairment in neurotypical older 
adults55 and multiband envelope tracking has been shown to differ significantly between individuals with lvPPA 
and neurotypical older adults33. Thus, we investigated whether TRFs reflecting cortical tracking of acoustic 
features would be successful in PPA classification. Two acoustic features, the multiband speech envelope and 
broadband envelope derivative, were calculated for each of the audio tracks to be used for TRF modeling.

Multiband speech envelope  The multiband speech envelope reflects syllable, word, and phrase boundaries as 
well as prosodic cues56,57. To derive the multiband speech envelope, auditory stimuli from the audiobooks were 
first filtered through 16 gammatone filters to produce 16 bands58. The absolute value of the Hilbert transform 
in each of the 16 bands comprised the multiband stimulus envelope, which was then raised to a power of 0.6 
to mimic the compression characteristics of the inner ear59. This resulted in 16 band-specific speech envelopes. 
TRFs were estimated for each of the 16 bands. The TRF beta weights were averaged across the 16 bands for ML 
classification.

Broadband envelope derivative  The broadband envelope derivative reflects acoustic onsets and offsets critical 
for identifying syllable, word, and phrase boundaries60. The auditory cortex, including the superior temporal 
gyrus, has been shown to be particularly sensitive to acoustic edges61. Considering that the superior temporal 

Healthy controls svPPA lvPPA nfvPPA

  Irregular word spelling (%)f – 30.0 (s = 31.5, range = 0–100) 38.0 (s = 27.5, range = 0–80) 61.0 (s = 24.7, range = 20–
100)

Apraxia of speech severity

  Apraxia of speech severity ratingg – 0 (s = 0, range = 0–0) 0.1 (s = 0.3, range = 0–1) 2.5 (s = 1.2, range = 1–4)

Multiple choice question accuracy

  Multiple choice question accuracy (%) 90.8 (s = 5.4, range = 81.7–
96.7)

58.2 (s = 22.9, range = 20.0–
81.7)

63.8 (s = 15.1, range = 36.7–
90.0)

78.8 (s = 16.8, range = 48.3–
98.3)

Table 1.  Demographic characteristics, results of neuropsychological assessments of cognitive and linguistic 
processing, and performance on comprehension questions used in the current study. Mean, standard deviation 
(s), and range are reported. F = female; M = male; R = right; L = left; MMSE = Mini Mental State Exam; CVLT 
= California Verbal Learning Test; PPVT = Peabody Picture Vocabulary Test; NAT = Northwestern Anagram 
Test. *Six controls were tested with the 26 item telephone-modified MMSE40 and four were tested on the 
traditional MMSE39. **Analysis of variance indicated that there were no significant differences across groups 
on pure tone average, F (3, 36) = 1.16, p = 0.338. Note that the pure tone average was not available for one 
participant with lvPPA. +Analysis of variance indicated that there were no significant differences across PPA 
subtypes on the MMSE, F (2, 28) = 2.62, p = 0.091. aAssessments from neuropsychological battery described 
in41–43. For the Boston Naming Test, the full 60-item version was only administered to individuals with 
svPPA and lvPPA. Individuals with nfvPPA received a shortened 30-item version. Percent correct is reported. 
bFrom44. cThe full 52-item Pyramids and Palm Trees test45 was only given to individuals with svPPA or lvPPA. 
Individuals with nfvPPA received a shorter version, developed by46 from the standard 52-item version. Percent 
correct is reported. dFrom10. eFrom47. The full 30-item version was only administered to individuals with 
nfvPPA. Individuals with lvPPA and svPPA received a shortened 12-item version. Percent correct is reported. 
fAdapted from the Arizona Battery for Reading and Spelling48. gSubjective clinician ratings from the Motor 
Speech Examination49.
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gyrus is a site of prominent atrophy in lvPPA62, we sought to determine whether cortical tracking of the broad-
band envelope derivative would be useful for PPA classification. Thus, we took the first temporal derivative of the 
broadband envelope to be used for TRF estimation. Only the positive values of the derivative were used.

Linguistic feature derivation
Linguistic features were selected that correspond to the core language domains implicated in PPA and used 
for PPA subtype classification. Specifically, we selected features reflecting phonological processing (significantly 
impaired in lvPPA), semantic processing (significantly impaired in svPPA), and syntactic processing 
(significantly impaired in nfvPPA). Critically, the specific linguistic features we selected to represent each of 
these levels of processing have been demonstrated to have better-than-chance prediction accuracy in previous 
studies utilizing TRF modeling63–65. Prosodylab-Aligner66 was used to temporally align phonemes and words 
with the audio tracks (i.e., for identification of phoneme and word onsets and offsets), with manual correction 
by expert linguists and highly trained research assistants. [Because of coarticulation, there is no “ground truth” 
for where one phoneme/word begins and another ends, and so we thus emphasized consistency in alignment by 
having the first author review each track, making edits as needed. We note that although “errors” in alignment 
would impact the accuracy of TRF modeling, this would be consistent across participants and therefore should 
not impact classification performance.] Phoneme and word onsets were subsequently used to temporally align 
linguistic features with the EEG responses.

Phonological feature: cohort entropy  Cohort entropy quantifies the degree of uncertainty regarding word iden-
tity at the current phoneme based on competition among words in the cohort (the list of words with the same 
phonemes up to that point in the word). It was derived at the phoneme level and mapped to phoneme onsets for 
TRF estimation. Notably, the first phoneme in each word lacks a feature value. A phoneme’s cohort entropy is 
defined as the Shannon entropy for the cohort of words consistent with the phonemic makeup up to that pho-
neme64. Each word’s entropy is defined as its word frequency multiplied by the natural log of its word frequency. 
To derive word frequency, the frequency count of the word was determined based on the SUBTLEX_us_2007 
corpus67 and then divided by the total number of words in the corpus, forming a probability distribution among 
the words; frequency is then defined as the natural logarithm of each word’s probability. For the ith phoneme in 
a word, the following formula was used to compute cohort entropy.

	

cohort∑
word

freq (word) · ln (freq (word))

Semantic features  These features were derived at the word level and were subsequently mapped to word onsets 
for TRF estimation.
Word frequency

Word frequency represents how frequently a word appears in the English language. As previously indicated, 
to derive word frequency, the frequency count of the word was determined based on the SUBTLEX_us_2007 
corpus67 and then divided by the total number of words in the corpus, forming a probability distribution among 
the words; frequency is defined as the natural logarithm of each word’s probability, assuming no prior context64. 
For any word w, its word frequency can be mathematically formulated as its natural log probability, ln (p (w)), 
where p represents probability as defined above, independent of context.
Semantic dissimilarity

Semantic dissimilarity represents how semantically dissimilar a word is compared to the preceding words 
in a sentence63. To calculate semantic dissimilarity, we first used the well-established NLP model GPT2 to 
derive a semantic feature vector for each word68. GPT2 was chosen because it is a widely used neural language 
model yielding contextualized word representations (i.e., “feature vector”)69 that are sensitive and accurate to 
preceding context. Computations were run on Google Colab Pro’s GPUs and TPUs. Semantic dissimilarity 
was then derived by taking each word’s GPT2 feature vector and obtaining 1 minus the correlation coefficient 
between that vector and the mean of the vectors for all previous words in the sentence. As such, the first word 
for each sentence does not have a feature value. Dissimilarity values ranged from 0 to 2, with larger values 
reflecting larger dissimilarity. SciPy was used to compute the mean feature vector across words and NumPy was 
used to compute the correlations across feature vectors. For the ith word in a text, its semantic dissimilarity is 
mathematically formulated as

	 1 − r [f (wi) , mean [f (wi−1) , f (wi−2) , . . . , f (w2) , f (w1)]]

where r represents Pearson’s correlation and f(w) represents a word’s feature vector.

Syntactic feature: syntactic surprisal  Syntactic surprisal was derived at the word level and subsequently mapped 
to word onsets for TRF estimation. Syntactic surprisal represents how surprising the part of speech (POS) tag 
of the current word is given the preceding words. A word’s syntactic surprisal is defined as the log probability 
of its POS tag conditioned on previous text65, where the next-word probability distribution was extracted using 
GPT270. As with semantic dissimilarity, GPT2 was chosen because of its contextualized word representations. 
To form the next-word probability distribution with GPT2, the text preceding the current word was fed into 
GPT2, which outputted logits. A softmax was applied to the logits to form a probability distribution. From this 
distribution, we decoded using the nucleus sampling algorithm70 with p = 0.9 (i.e., the smallest set of next-word 
predictions such that the cumulative probability was 0.9). Each word in this nucleus sample was then tagged with 
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the POS tagger from SpaCy’s en_core_web_lg model (https://spacy.io/models/en#en_core_web_lg). From this, 
counts of each POS tag were computed and then normalized to form the POS tag probability distribution. For 
the ith word of a text, its syntactic surprisal can be mathematically formulated as

	 ln [p [pos (wi) |wi−1, wi−2, . . . , w2, w1 ]]

where p(pos (wi) |wi−1, wi−2, . . . , w2, w1 ) is computed from the nucleus sampling outlined above.

TRF modeling
TRF estimation was conducted using EEG data that were z-scored to each participant’s mean across channels. 
TRFs were constructed to map each track’s acoustic or linguistic features to a participant’s corresponding 
EEG data, with separate TRFs estimated for each acoustic and linguistic feature. For the multiband envelope, 
TRFs were estimated separately for each of the 16 frequency bands, then averaged across those bands. For the 
broadband envelope and linguistic features, a single TRF was estimated. Each TRF was estimated by minimizing 
the least-squares distance between EEG values predicted from a given feature and the participant’s observed 
EEG data. Time lags of − 500 to 1000 ms were used. TRFs were derived using regularized linear ridge regression 
and validated using leave-one-out cross-validation, implemented in the mTRF Toolbox71. The resulting TRFs 
represented a vector of beta weights that were then used as input to the ML algorithms described below.

Classification
Classification tasks
The broadest task was to classify each participant as either a control participant or an individual with PPA 
(controls vs. PPA). Differential classification across participant groups (four-way classification, controls vs. 
svPPA vs. lvPPA vs. nfvPPA) and by PPA subtype (three-way classification, svPPA vs. lvPPA vs. nfvPPA) was also 
pursued. Additionally, we sought to classify one type of PPA by ruling out the other two types of PPA (svPPA vs. 
nfvPPA and lvPPA; lvPPA vs. svPPA and nfvPPA; nfvPPA vs. svPPA and lvPPA), which would be clinically useful 
in cases where overall PPA diagnosis is conferred and one PPA subtype is suspected. This is also a common 
methodology for multiclass classification that enables superior performance by ML classification algorithms. 
Lastly, we sought pairwise (two-way) classification by PPA subtype (svPPA vs. lvPPA; svPPA vs. nfvPPA; and 
lvPPA vs. nfvPPA), which would be useful in cases where PPA diagnosis is conferred and narrowed down to one 
of two possible subtypes.

Reading in EEG and TRF data
All participants had EEG data from 30 EEG channels, but only data from channel Cz (10–20 electrode system 
placement72) were fed into ML classification algorithms (see ML classification algorithms) because a single 
vector concatenating all channels (i.e., 30 channels × 8307 timestamps) would be too large for our computational 
constraints. Channel Cz was selected based on its common use for analysis and display purposes in previous 
TRF literature73,74. Further, it is not as susceptible to bias by hemispheric differences, which is particularly 
important in a population like PPA, where there is asymmetric neurodegeneration. Lastly, Cz has also been 
linked to language-related ERPs, such as the N40075,76. Participant-level data were reorganized into track-level 
data, resulting in 1095 tracks (33 participants with 30 tracks and 7 participants with 15 tracks) that were used 
for training and evaluating the ML classification algorithms. The number of data points (1095) used for training 
exceeds any in the literature on automated approaches to PPA classification. The number of data points for each 
subgroup overall is presented in Supplementary Table 1. The results reported in the main text reflect classification 
performance at the track-level. In the Supplementary Materials, we also report the classification performance 
when track-level predictions are merged into individual-level predictions (Supplementary Table 2).

TRF beta weights were available for every audio track. As with EEG data, each participant’s channel Cz TRF 
beta weights were used to build a ML-based classifier. Standardization of both TRF and EEG data is discussed in 
the “ML classification algorithms” section. We note that the input to the model was a single vector, both for each 
classification task’s TRF-based model and the EEG-based model. The “Hyperparameter tuning” section describes 
the process used to select the single acoustic/linguistic feature and the single ML classification algorithm used in 
each classification task’s model.

ML classification algorithms
It is common practice to test a variety of classification algorithms to achieve the best classification performance77–82. 
In this study, we evaluated nine ML classification algorithms from the Python ScikitLearn package83: decision 
tree, random forest, extremely randomized trees (aka ExtraTrees), SVM, kNN, logistic regression, Gaussian Naive 
Bayes, Adaboost, and Multilayer Perceptron (MLP). This is similar to the seven ML classification algorithms 
used by28 for PPA classification. Note that kNN, SVM, and MLP required prior scaling as these algorithms are 
based on the notion of distance between data points; scaling here refers to standardizing all input TRF/EEG by 
subtracting the mean and scaling to unit variance. The other six ML classification algorithms did not require 
any preprocessing of the TRF beta weights or EEG data as they are not based on distance between data points.

Cross validation
At the participant level, the data were split into 5 stratified outer folds, where 80% of each fold was designated 
for training and 20% was designated for testing. Special care was taken to ensure this was done at the participant 
level instead of the track level so that results generalize across individuals. In other words, all tracks for a given 
participant were either in the training set or the test set (not both). The classifier’s predictions on each outer fold’s 
test set were merged to form a set of predictions for all data points, which were then compared to ground truth 
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(see “Analyzing model performance”). This use of cross validation ensures the reported results are applicable 
across all participants in our sample. This is in contrast to the 80–20 train-test split, where the classifier would be 
trained on 80% of the data and only evaluated on 20% of the data (i.e., results only reflect a fifth of the dataset). 
Our decision to use cross validation instead of train-test split is motivated by the small N of our dataset.

Hyperparameter tuning
For each classification task’s model, we built a classifier for each possible combination of EEG frequency band, 
single acoustic/linguistic feature used to derive TRF weights, and single classification algorithm into which 
the TRFs were fed. The combination that resulted in the best performance on the nested cross-validation per 
classification task is reported in Tables 2, 3, 4, 5, 6. The classification performance for all classifiers constructed 
(i.e., each combination of frequency band, acoustic/linguistic feature, and classification algorithm) is reported 
for each classification task in Supplementary Tables 3–12, and the best classification performance for delta and 
theta bands, specifically, is reported in Supplementary Table 13. The percentage of classifiers outperforming the 
random sampling baseline is reported in Supplementary Table 14 (see “Analyzing model performance”). For 
each classifier built, we used 5-fold nested cross validation to determine the internal hyperparameters of the ML 
classification algorithm. For each of the five outer folds, its training set is split into five stratified inner folds (i.e., 
running a 5-fold cross validation on an outer fold’s training set, where 80% of each fold’s training set is designated 
for training and 20% is designated for validation). When evaluating a particular set of hyperparameters, 
classification performance was computed for each inner fold (i.e., trained on the inner fold’s training set and 
evaluated on the inner fold’s validation set) and then averaged. This process was repeated for several sets of 
hyperparameters, from which the best performing hyperparameters were identified. Note that only the outer 
fold’s training set was used to determine the best hyperparameter combination. Then, only the best performing 
hyperparameters were used to train a model on all of the outer fold’s training data, which was evaluated on the 
outer fold’s test set (which was not seen/used in the hyperparameter tuning process, thus giving an unbiased 
estimate of the hyperparameter’s true performance). This process was then repeated for the 2nd outer fold and 
so on, where each outer fold may select different hyperparameters from its training set, which was then evaluated 
on its test set. Finally, each outer fold’s test set predictions were merged to form a set of predictions for all data 
points, which were then compared to ground truth (see “Analyzing model performance”). This nested cross 
validation process allows us to optimize each classifier’s hyperparameters without compromising the validity of 
its evaluation and generalization to new patients. In sum, for each classification task, the inner folds were used 
for selecting the model’s best hyperparameter combination and the outer folds were used for final evaluation of 
the model itself.

Analyzing model performance
Recall, precision, and F1 score were metrics of interest. A class’ recall reflects the proportion of true positive 
cases predicted as positive relative to all true positive cases (e.g., how many individuals with PPA were classified 
as having PPA). Precision reflects the proportion of true positive cases predicted as positive relative to all 
predicted positive cases (e.g., for all samples classified as PPA, how many actually had PPA). Lastly, F1 score 
reflects the harmonic mean of its precision and recall, ranging from 0 to 1, where 1 reflects perfect classification. 
F1 was used to evaluate each model’s performance in lieu of accuracy for two reasons. First, for many of the 
selected classification tasks, there was an uneven class distribution; for example, for the classification task of 
svPPA vs. lv/nfvPPA, there were twice as many lv/nfvPPA samples as svPPA samples. Using the macro (i.e., 
unweighted) average of each class’ F1 is ideal for use in situations where there is class imbalance because it gives 
equal weighting to both the dominant and non-dominant class, avoiding artificial inflation of the F1 score by the 
dominant class (which could potentially have a higher F1 score). Using accuracy, as many previous studies have 
done, can result in a classifier achieving seemingly good performance by always predicting the dominant class; 
for example, given that there are three times as many PPA samples as controls, our classifier for controls vs. PPA 
would achieve 75% accuracy by classifying every sample as PPA. For F1, however, this would correspond to a 
much lower score. Unlike accuracy, F1 also balances the need for simultaneously good precision and recall. To 
show that our classifiers achieved meaningful, above-chance performance, F1 scores were derived by randomly 
sampling each prediction using the uniform distribution and the sample-label distribution (Supplementary 
Table 14). These baselines were computed through ScikitLearn’s DummyClassifier model, where its strategy 
parameter was set to either “uniform” or “stratified”.

For all classification tasks, McNemar tests from the mlxtend package84 were used to compare the best EEG-
only model that used EEG waveforms as input against the best model that used TRF beta weights as input in 
order to determine whether the derivation of the TRF beta weights provided additional benefit to classification 
performance. From the predictions of the best TRF-based and the best EEG-only classifiers, a 2 × 2 contingency 
table was formed using the mcnemar_table function from the mlx_extend package. From this contingency table, 
the McNemar test statistic and corresponding p-value was computed using the mcnemar function from the 
mlextend package.

Results
Classification using TRF beta weights
Our first research question was whether TRF beta weights can be used to successfully classify individuals with 
PPA across the classification tasks described above. First, for classification of samples as healthy controls or PPA, 
we achieved an F1 score of 0.60 (Table 2), which outperformed random sampling predictions by either a uniform 
or sample-label distribution by 0.14 (Supplementary Table 4). Based on precision and recall, PPA samples were 
more likely to be accurately classified than control samples. Second, for four-way classification by participant 
group (controls vs. svPPA vs. lvPPA vs. nfvPPA), we achieved an F1 score of 0.34 (Table 3), which outperformed 
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our baseline of randomly sampling predictions by 0.10 (Supplementary Table 14). Based on precision and recall, 
control (Precision = 0.41, Recall = 0.39) samples were more likely to be accurately classified than the other groups 
(Precision and Recall ranging from 0.28 to 0.40). Next, for differential classification of samples by PPA subtype, 
we achieved an F1 score of 0.48 (Table 4), which outperformed our baseline of randomly sampling predictions 
by more than 0.16 (Supplementary Table 14). Based on precision and recall, however, confidence in this model’s 
classification would be relatively low, regardless of how a sample was classified. Subsequently, we sought to 
classify one PPA subtype by ruling out the other two PPA subtypes (Table 4). For classification of samples as 
svPPA or lvPPA/nfvPPA, we achieved an F1 score of 0.67; for classification of samples as lvPPA or svPPA/nfvPPA, 

Task Feature Frequency band Algorithm Participant group Precision Recall F1 Accuracy

nfvPPA vs. lvPPA Semantic dissimilarity/Word frequency (tied) Delta Decision tree
nfvPPA 0.67/0.79 0.72/0.56

0.73 0.73/0.75
lvPPA 0.78/0.73 0.76/0.89

svPPA vs. nfvPPA Multiband envelope Theta Decision tree
svPPA 0.75 0.66

0.74 0.75
nfvPPA 0.74 0.81

svPPA vs. lvPPA Semantic dissimilarity Delta Naive Bayes
svPPA 0.69 0.83

0.74 0.74
lvPPA 0.81 0.66

Table 6.  Pairwise classification by PPA subtype with TRF beta weights as input. F1 refers to the macro average 
of both class’ F1 scores.

 

Task Feature Frequency band Algorithm Participant group Precision Recall F1 Accuracy

svPPA vs. lvPPA and nfvPPA Cohort entropy Theta Adaboost
svPPA 0.53 0.67

0.67 0.68
lvPPA and nfvPPA 0.80 0.69

lvPPA vs. svPPA and nfvPPA Semantic dissimilarity Delta Naive Bayes
lvPPA 0.72 0.60

0.73 0.76
svPPA and nfvPPA 0.78 0.86

nfvPPA vs. lvPPA and svPPA Word frequency Delta Naive Bayes
nfvPPA 0.54 0.54

0.68 0.74
lvPPA and svPPA 0.82 0.82

Table 5.  Classification of a single PPA subtype relative to the other two PPA subtypes with TRF beta weights as 
input. F1 refers to the macro average of both class’ F1 scores.

 

Feature Frequency band Algorithm Participant group Precision Recall F1 Accuracy

Word frequency Delta Extremely randomized trees

svPPA 0.45 0.51

0.48 0.51lvPPA 0.60 0.66

nfvPPA 0.42 0.22

Table 4.  Three-way classification by PPA subtype (svPPA vs. lvPPA vs. nfvPPA) with TRF beta weights as 
input. F1 refers to the macro average of all class’ F1 scores.

 

Feature Frequency band Algorithm Participant group Precision Recall F1 Accuracy

Semantic dissimilarity Delta Logistic regression

Healthy controls 0.41 0.39

0.34 0.34
svPPA 0.40 0.35

lvPPA 0.30 0.36

nfvPPA 0.28 0.28

Table 3.  Four-way classification by participant group (controls vs. svPPA vs. lvPPA vs. nfvPPA) with TRF beta 
weights as input. F1 refers to the macro average of all class’ F1 scores.

 

Feature Frequency band Algorithm Participant group Precision Recall F1 Accuracy

Broadband envelope derivative Delta Decision tree
Healthy controls 0.45 0.35

0.60 0.71
PPA 0.77 0.84

Table 2.  Differentiation of healthy controls from individuals with PPA with TRF beta weights as input. F1 
refers to the macro average of both class’ F1 scores.
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we achieved an F1 score 0.73; and for classification of samples as nfvPPA or lvPPA/svPPA, we achieved an F1 
score 0.68. Each of these three classification tasks outperformed baselines by more than 0.15 (Supplementary 
Table 14). Based on precision and recall, our classifiers did a better job at ruling out one PPA subtype relative 
to the other two subtypes than it did at diagnosing that subtype (e.g., for the classification task of svPPA vs. 
lv/nfvPPA, the model had a much higher precision score and a slightly higher recall score for classifying a 
case as belonging to the lv/nfvPPA class than for classifying a case as belonging to the svPPA class). Lastly, we 
conducted pairwise classification by PPA subtype (Table 5). For differentiating nfvPPA from lvPPA, we achieved 
an F1 score of 0.73. Differentiation of nfvPPA from svPPA had an F1 score of 0.74, as did the differentiation of 
lvPPA and svPPA. Classifiers for pairwise classification by PPA subtype outperformed baselines by more than 
0.22 (Supplementary Table 14). Notably, although a relation between PPA subtypes and linguistic features most 
relevant for classification might be anticipated, this was not the case, as no clear pattern emerged regarding 
classification accuracy and the specific linguistic features used to derive TRF beta weights. Further, the different 
EEG frequency bands used as input to the models had no clear effect on classification accuracy and no single 
classification algorithm had the best performance across a majority of classification tasks.

Classification performance for TRF beta weights versus EEG
Our second research question was whether the use of TRF beta weights would improve classification performance 
over the use of (preprocessed) EEG waveforms alone. Accordingly, for each classification task, channel Cz of the 
EEG data was fed into ML classification algorithms. The outcomes from the best EEG-based classifier were then 
compared to the best TRF-based classifier (Tables 2, 3, 4, 5, 6). Equivalent or superior performance of EEG data 
relative to TRF beta weights for PPA classification would indicate that TRF modeling is not necessary. For every 
classification task except the broad classification of controls vs. PPA, the best TRF-based model outperformed 
the best EEG-based model at the 99.9% confidence level (Table 7). This provides preliminary evidence that TRF 
modeling is worth the time and expertise required to extract TRF beta weights because it improved predictive 
accuracy relative to EEG alone.

Discussion
In the current study, we explored the potential utility of temporal response function (TRF) modeling for 
classification of primary progressive aphasia (PPA) using electroencephalography (EEG) and machine learning 
(ML) classification algorithms in order to provide initial demonstration of the feasibility of the approach. 
Individuals with PPA and healthy controls listened to 30 minutes of continuous speech while EEG responses 
were recorded. TRF modeling was used to derive a linear function to map acoustic and linguistic features 
of the continuous speech onto the EEG data. Either the resulting TRF beta weights or (preprocessed) EEG 
data constituted input to the ML classification algorithms, which were used to perform a number of different 
classification tasks. We addressed two research questions in the current study.

Our first research question was whether TRF beta weights hold promise for use in PPA classification. The 
findings of the current study indicate that TRF beta weights may be useful for PPA classification, with better-
than-chance classification performance observed for all tasks, although success varied across classification tasks. 
The most successful models were pairwise classification of PPA subtypes, with the best classification performance 
observed for svPPA vs. nfvPPA and nfvPPA vs. svPPA (F1s = 0.74), followed by nfvPPA vs. lvPPA (F1 = 0.73). 
Relatively good classification performance was also observed for classifying lvPPA vs. svPPA/nfvPPA (F1 = 0.73), 
with poorer classification performance observed for nfvPPA vs. svPPA/lvPPA (F1 = 0.68), svPPA vs. nfvPPA/
lvPPA (F1 = 0.67), PPA vs. controls (F1 = 0.60), three-way classification by PPA subtype (F1 = 0.48), and four-
way classification (controls vs. svPPA vs. lvPPA vs. nfvPPA, F1 = 0.34). However, we would note that, clinically, 
a PPA diagnosis must be conferred before differential diagnosis by PPA subtype. Considering the hierarchical 
approach to diagnosis (general PPA diagnosis to specific subtype diagnosis), it is not as clinically relevant to be 
able to perform four-way classification. The poor classification of PPA vs. controls could potentially emerge from 
the heterogeneity in TRFs across the PPA subtypes, precluding clear differentiation from controls. The F1 score 
of 0.73 for classification of nfvPPA vs. lvPPA is especially notable, given that differential diagnosis of nfvPPA vs. 

Task Best EEG-based model’s F1 Best TRF-based model’s F1 p-value

Controls vs. PPA 0.56 0.60 0.026

Controls vs. svPPA vs. lvPPA vs. nfvPPA 0.27 0.34 < 0.001*

svPPA vs. lvPPA vs. nfvPPA 0.40 0.48 < 0.001*

svPPA vs. lvPPA and nfvPPA 0.51 0.67 < 0.001*

lvPPA vs. svPPA and nfvPPA 0.61 0.73 < 0.001*

nfvPPA vs. lvPPA and svPPA 0.54 0.68 < 0.001*

lvPPA vs. nfvPPA 0.58 0.73 < 0.001*

svPPA vs. nfvPPA 0.49 0.74 < 0.001*

lvPPA vs. svPPA 0.62 0.74 < 0.001*

Table 7.  Comparison of the best TRF and EEG models for all classification tasks. The best model is defined as 
the model with the highest F1 score (see “Hyperparameter tuning”), where F1 refers to the macro average of 
both class’ F1 scores (“Analyzing model performance”). *Indicates significant after Bonferroni correction, with 
alpha set at 0.05 (new threshold for significance = 0.0056).
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lvPPA can be challenging for clinicians8,9. Taken together, the findings are particularly promising for situations 
where a diagnosis of PPA has been established, but differential diagnosis by subtype remains elusive, particularly 
if diagnosis has been narrowed to one of two subtypes. These results provide preliminary evidence regarding the 
potential value of TRF-based biomarkers for facilitating differential diagnosis in PPA.

Our second research question was whether there was an added benefit of incorporating TRF beta weights 
compared to utilizing preprocessed EEG waveforms alone. The findings of the current study indicate that 
use of TRF beta weights leads to significantly better classification performance over EEG alone, except in the 
classification of PPA vs. controls, where performance was similar between TRF- and EEG-derived classifications. 
Overall, we provide preliminary evidence that TRF modeling is worth the additional effort compared to EEG 
data alone, although future work should focus on how to make TRF modeling accessible within clinical practice 
settings since the current methods require access to proprietary software and technical expertise.

Previous research on automated approaches to diagnosis of PPA with neuroimaging data have utilized a 
variety of different inputs to the models, including structural magnetic resonance imaging (MRI)14,26, functional 
connectivity from magnetoencephalography  (MEG)29, power spectral density from resting-state EEG30, and 
graph theory-derived measures from resting-state EEG28. Of most relevance to the current study is the work 
of Moral-Rubio and colleagues28, in which two classification tasks were performed (PPA vs. controls and four-
way classification of controls, svPPA, nfvPPA, and lvPPA). In that study, classification of PPA vs. controls was 
superior to our study (F1 = 0.83 vs. F1 = 0.60), as was four-way classification of controls, svPPA, nfvPPA, and 
lvPPA (F1 = 0.60 vs. F1 = 0.39). Although Moral-Rubio et al.28 achieved better classification performance for PPA 
vs. controls and for four-way classification for some ML algorithms, we extend their work by performing a larger 
number of classification tasks and using EEG data collected while participants engaged with language stimuli. 
Differences in the number of data points used for model training and in the model architectures themselves 
preclude direct comparison of classification performance across these studies. However, our results are largely 
consistent with previous research in supporting a potential role for automated approaches to PPA diagnosis.

Overall, we demonstrate that ML utilizing TRF-based biomarkers derived from EEG data holds promise 
as a means to support diagnostic decision-making in PPA. In contrast to automated approaches using MRI 
or MEG as input, EEG has the benefit of being affordable, with no contraindications for use. Further, EEG is 
non-invasive, as opposed to positron emission tomography or cerebrospinal fluid-based biomarkers that are 
currently used in standard clinical practice, making it a safer approach to informing diagnosis. These findings 
in PPA add to the evidence base suggesting a role of TRF modeling in improving diagnostic decision-making 
in clinical populations more broadly. Automated approaches developed to aid diagnosis hold potential for 
addressing health disparities associated with diagnosis/misdiagnosis as a function of race/ethnicity (see85 for 
discussion) or English-speaking status. For example, only ~8% of America’s speech-language pathologists speak 
a language other than English (ASHA 202386) and many standard assessment materials are developed in English 
only. The development of automated approaches to diagnosis in languages other than English could mitigate the 
influence of these factors.

Limitations and future directions
The current study marks an important step toward use of automated approaches to diagnosis of PPA, and the 
exploratory nature of this study presents multiple avenues for further research. The current study included 
a relatively small number of participants (n = 10 per participant group) that were not perfectly matched for 
demographic characteristics (e.g., there is a larger proportion of female participants in the control group than 
in the PPA groups), limiting the generalizability of findings (although we would note that the 1095 data points 
included in the ML classification is at least one order of magnitude larger than all previous research on automated 
classification of PPA). Future research should be conducted with a larger number of participants to further 
improve classification performance and generalizability to new samples. It will also be important to consider 
whether and to what extent the current approach improves upon the current gold standard cognitive-linguistic 
assessments used for diagnosis.

It was somewhat surprising that one of the poorest performing classification tasks was for classification 
of PPA vs. controls. This is also the only classification task where TRF beta weights did not outperform the 
EEG-only classification. As indicated previously, it is possible that this is a consequence of the heterogeneity 
of TRFs across PPA subtypes, making it difficult to clearly identify a TRF profile that distinguishes all PPA 
subtypes from controls. However, distinguishing neurotypical older adults from persons with PPA is likely to 
be the least relevant for standard clinical practice, as individuals with PPA are more likely to be misdiagnosed 
with a different neurodegenerative syndrome or psychiatric condition87,88, rather than classified as healthy. In 
other words, the potential utility of a TRF-based classifier for differentiating PPA vs. controls is likely limited. 
Instead, classification of PPA vs. Alzheimer’s dementia or PPA vs. severe clinical depression, for example, would 
be more clinically useful. Thus, future research may focus on the development of automated tools for differential 
diagnosis across neurodegenerative syndromes and/or other neurological or psychiatric conditions.

There is a great deal to be learned regarding factors contributing to the relative success of one TRF model 
over another. For example, in the current study, analyses were restricted to electrode Cz in order to determine 
whether the approach was useful for classification of PPA and PPA subtypes. Given the modest success in the 
current study, future work should seek to identify optimal electrode configurations that maximize classification 
success. Along these lines, an important next step is to apply more advanced deep learning approaches, such 
as convolutional neural networks, to PPA classification30. Applying more advanced deep learning approaches 
has the potential to improve classification performance while providing more interpretability, allowing for the 
identification of features of the input that most strongly contribute to classification accuracy. Contrary to the 
ML classification algorithms used in the current study, all channels of EEG data can be fed into deep learning 
classification algorithms (compared to only channel Cz in this paper); thus, it will be possible to identify which 
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channels (i.e., electrodes) are most useful for classification. Relatedly, due to the lack of interpretability offered 
by the ML models paired with the TRF beta weights in the current study, there are a number of questions that 
remain unanswered. For example, why was there no clear relation between classification accuracy and the specific 
linguistic features used to derive TRF beta weights, and why did certain features perform better than others? 
Future work should focus on developing a better understanding of the factors that influence classification, with 
a particular emphasis on identifying acoustic and linguistic features that maximize classification accuracy. The 
results of such work may provide valuable insights into nature and diagnosis of PPA syndromes as well as our 
understanding of the neural processing of the specific acoustic and linguistic features being modeled.

Conclusion
In the current study, we showed that TRF-derived beta weights for acoustic and linguistic features of a continuous 
narrative hold promise for use in PPA classification. In doing so, we demonstrate the potential clinical utility of 
this automated approach using a TRF-based biomarker derived from EEG. With recent efforts to draw attention 
to the amount of testing required of individuals with PPA89, automated approaches to diagnosis will likely 
continue to gain traction. The current study marks an important first step toward more automated approaches to 
diagnosis, particularly those using TRF modeling. It provides proof-of-concept for the utility of TRF modeling 
for use in clinical diagnostic decision-making, motivating future research seeking to fine-tune the specific 
parameters used for classification. Future work should seek to make these automated approaches more accessible 
to clinicians, moving this research a step closer to use in clinical practice.

Data availability
The data supporting the findings of this study are subject to HIPAA regulations. However, these data may be 
made available upon request and with the execution of appropriate data use agreements. Please contact the cor-
responding author, Heather Dial, for data use inquiries at hrdial@central.uh.edu.
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