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Cotton production is a crucial agricultural industry, a raw material source for the textiles sector and 
a major source of livelihood for more than 30 million farmers globally. The yield and quality of cotton 
(Gossypium) are influenced by different types of stress and diseases. Deep Learning as a solution for 
disease prevention, detection, and management can increase the yield, reduce the cost and improve 
the quality of crop. This study presents a robust method using 10-fold cross-validation with the 
YOLOv8 DL model for precise cotton leaf disease recognition. The k-fold cross-validation mitigates 
overfitting by training the model on diverse data subsets, which leads to enhanced generalizability 
while ensuring reliable performance. The proposed method achieved 99.60% and 100% as Top_1 and 
Top_5 accuracy, respectively. The method also achieved a recall of 99.53%, a precision of 99.53%, and 
an F1 score of 99.60%. During 10 trials, the method consistently performed with an average. Top_1 and 
Top_5 accuracy of 98.41% and 100% respectively, recall 98.53%, precision 98.39% and F1 score 98.42%.
This study is among the first to apply YOLOv8 classification with 10-fold cross-validation for multi-class 
cotton leaf disease identification using field-captured images.
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Precision agriculture has become increasingly significant in addressing challenges related to global food security, 
environmental sustainability, and economic efficiency1–3. Precision agriculture offers timely and accurate 
diagnosis of plant diseases, which can significantly reduce crop losses and enhance yield quality4,5. Cotton 
(Gossypium)is an essential cash crop and a cornerstone of the textile industry, providing raw materials for clothing 
and fabric production6,7. It is particularly important in countries like Pakistan, Bangladesh, and India, where it 
serves as a major economic driver8,9. In Pakistan, cotton contributes nearly 10% to the GDP and accounts for 
55% of foreign exchange earnings, with approximately 1.5 million people engaged in its value chain8. Similarly, 
India cultivates 24% of the world’s cotton-growing land, generating substantial revenue from crops9. Unlike 
synthetic fibres such as polyester and nylon, which are less environmentally friendly, cotton is biodegradable and 
can improve soil health when managed sustainably9. However, the crop is highly susceptible to various biotic and 
abiotic stresses, including bacterial, viral, and pest-induced diseases, which can cause severe economic losses7. 
The process, speed and cost of these stress detection and management is a major influence on crop yield and 
quality9,10 .Recent advancements in artificial intelligence (AI) and deep learning (DL) have transformed the 
agricultural sector, leading to the development of automated systems for recognizing plant diseases10–14. Among 
these advancements, the You Only Look Once(YOLO) architecture has become particularly well-known for its 
speed and accuracyaccuracy in object detection and classification tasks15,16. The latest YOLOv8 model features 
improved capabilities for precise and efficient classification, making it an excellent choice for diagnosing cotton 
leaf diseases across various environmental conditions15. Automated systems that utilize DL enable real-time 
monitoring and data analytics, allowing farmers and researchers to identify issues early and take corrective 
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actions17,18 These systems analyse spectral signatures to evaluate and classify cotton plants, offering insights into 
crop diseases, pests, and environmental stressors. Ultimately, this improves crop management and optimizes 
production9.

Many different DL models are prevalent for real-time disease detection in cotton plants, which are 
mentioned in Table 1. CDDLite-YOLO model is one such model achieving an average precision of 90.6% with 

References Objectives Dataset used Results Limitations

Elaraby et 
al., 2022b20

DL model for stress detection in five 
different crops, i.e., cucumber, corn, 
wheat, grape, cotton

54k images of fourteen different crops from 
Plant Village dataset

Accuracy 98.83%, Sensitivity (sens.) 
98.78%, F Score 98.47%, Precision 
(precision) 98.67%, and Specificity 
(spec.) 98.53%

Real-time implementation testing 
required

Pan et al., 
202421

CDDLite-YOLO model for cotton 
plant stress detection + enhancing acc. 
with minimum YOLO parameters

1530 natural field images of cotton plant (38% 
verticillium wilt, 34% anthracnose, and 28% 
fusarium wilt)

(Mean Average Precision) mAP 
achieved is 90.60% with 3.6G FLOPS 
and 1.8 M parameters + identification 
speed of 222.22 FPS

Only 78.10% mAP for verticillium 
detection

Ahmed, 
202122

Transfer learning based Custom CNN 
i.e., DCPLD-CNN for cotton leaf 
disease detection.

The dataset used in the Cotton Plant and Leaf 
Disease recognition study was collected from 
a specified source [38]

Accuracy 98.77% + validation acc. of 
88.99% and 98.77% for 100 and 500 
iterations, respectively

More robust testing specific to 
cotton plant dataset needed

Gao et al., 
202423

DL model for cotton plant stress 
detection

Datasets for the study were collected from 
diversified sources through manual collection 
and internet crawling techniques

94% accuracy, 95% mAP, and speed 
of 49.7 FPS

Further study is needed to 
maintain performance on larger 
datasets and reduce computational 
resource consumption

Bharathi et 
al., 202424

Random tree based- adaptive fire-hawk 
DL model i.e., DQRR-AFH

Hybrid database by combining 1710 natural 
field and internet images of cotton plant

98.88% accuracy, 99.21% F1 score, 
97% precision + Performance 
comparison with WL-CNN, ECPRC, 
and DT models

Only two class classifications are 
performed

Li et al., 
202425

CFNet-VoV-GCSP-LSKNet-YOLOv8s 
model for cotton stress detection 6 public datasets from Kaggel 89.9% precision, 90.70% recall, and 

93.7% mAP(0.5)

The study does not address the 
limitations explicitly, focusing 
more on the proposed method’s 
enhancements and performance 
metrics.

Nazeer et 
al., 202426

Develop a dataset of cotton leaf images 
to support automated disease detection 
systems + DL model for detection of 
Cotton Leaf Curl Disease (CLCuD)

Hybrid dataset of Kaggle images and natural 
self-collected 1349 images of cotton leaf 99% accuracy achieved Model restricted to Leaf curl 

disease in cotton plant

Latif et al., 
20218

Develop an automated technique for 
detecting cotton leaf diseases using DL

The study utilized 1000 self-collected datasets 
of cotton diseases labelled and augmented by 
an expert for training and testing purposes

Achieved an accuracy of 98.8% using 
Cubic SVM

The model applied to four classes 
only, which are Areolate Mildew, 
Myrothecium leaf spot, and 
Soreshine

Kolachi et 
al., 202327

Identification of blight and curl disease 
in cotton plant using a custom YOLO 
DL model

Natural dataset from farmer’s fields of 
Sindh, Pakistan. It consists of healthy leaves, 
bacterial blight, and curl virus images. 1000 
images were sourced from Kaggle, GitHub, 
and Google to enhance the dataset’s diversity 
and size. After augmentation, a total of 5046 
images were formed

The YOLOv5 model achieved 92% 
accuracy in disease classification

Only two class classifications are 
performed: bacterial blight and 
curl virus

Zhu et al., 
202228

Develop a cotton disease identification 
method based on pruning on VGG16, 
ResNet164, and DenseNet40 to address 
deployability issues on resource-
limited smart devices

PlantVillage consists of 14 types of plants with 
54,306 images of healthy and diseased leaves

The compressed models (size 2.2 MB) 
achieved high accuracies, with 
DenseNet40-80-T achieving 97.23%

Lack of detailed discussion on the 
potential challenges or drawbacks 
of the proposed pruning algorithm 
and compression strategies used 
for cotton disease identification 
based on DCNN models

Thivya et 
al., 20249

Develop a novel DL pipeline, CoDet, 
for cotton plant detection and disease 
identification

30k images collected from internet (25k for 
training and rest 5k for validation testing)

CoDet outperformed other models 
in comparative study using different 
matrics

More robust testing needed 
considering Indian environment 
and physiochemical traits of 
cotton plant

Rai and 
Pahuja, 
202329

Deep-CNN for cotton stress detection Hybrid dataset of 2293 natural images and 
Kaggle images 97.98% accuracy achieved Real time performance testing 

needed

Rai and 
Pahuja, 
202430

Using DL methods for cotton stress 
identification

Two different datasets from Kaggle of 2310 
and 1711 images respectively

99.48% accuracy and 99% sens. 
achieved More robust testing needed

Shahid et 
al., 202431

GoogleNet, VGG19, AlexNet, and 
InceptionV3 for identification of 
cotton plant stress

Natural dataset from Balochistan, Pakistan 
covering all the 3 phases i.e., sowing, 
germination and maturity

Accuracy achieved by GoogleNet, 
AlexNet, and InceptionV3 is 93.40%, 
93.40%, and 91.80% respectively

The accuracy is low as compared 
to the other models

Kukadiya et 
al., 202410

Pre-trained VGG16 and InceptionV3 
used to detect early cotton leaf diseases

1786 images of 4 different types i.e., blight, 
curl, wilt and healthy from PlantVillage 
dataset

Training and Testing accuracy of 98% 
and 95% achieved respectively

It focused only on four cotton 
diseases

Islam et al., 
202319

Hybrid DL models by combining 
Transfer learning with Xception, 
Inception V3, VGG 16 and 19

2310 images from Kaggle dataset

VGG-16 achieved an accuracy 
of 90.22%, while VGG-19, 
Inception-V3, and Xception achieved 
higher accuracies of 96.74%, 97.83%, 
and 98.70%, respectively

Only binary classification 
achieved, more robust testing 
needed

Table 1.  The following table explores the study in terms of author and year of publication (reference), 
objectives of the study, dataset used for the study, results of the study and limitations of the study.
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easy deployment on resource-constrained devices. These advancements ensure timely disease detection and 
intervention, which are crucial for maintaining cotton yield and quality10. Additionally, techniques such as 
model pruning minimize computational overhead, allowing deployment on mobile devices without sacrificing 
accuracy. These advancements enable farmers to proactively tackle crop issues, leading to improved yield 
optimization9.

This study presents a systematic workflow for identifying and classifying cotton leaf diseases using the 
YOLOv8m classification model. The dataset used in this study is a high-resolution “SAR-CLD 2024” image 
dataset. This dataset consists of seven categories of leaf images, i.e., healthy, herbicide-infected, leaf hopper 
jassids, bacterial blight, red leaf, curl virus, and variegated leaves. Preprocessing is integrated before k-fold 
cross-validation, ensuring higher reliability and robustness of the model in diverse conditions. The following 
objectives are identified for this study:

	1.	 To identify the area of research that includes the AI-based diagnosis of cotton leaf diseases.
	2.	 To utilize the YOLOv8 deep learning architecture to accurately classify multiple cotton leaf diseases using 

real-field images.
	3.	 To implement a k-fold cross-validation approach to reduce overfitting, improve robustness, and ensure the 

model performs consistently across diverse subsets of data.
	4.	 To achieve high model performance, ensuring reliable and balanced disease classification, which minimizes 

false predictions.

By utilizing advanced DL techniques, the proposed system has significant potential to improve crop management 
practices and alleviate the negative impacts of cotton diseases on crop performance19. Furthermore, this study 
thoroughly assesses the performance of the model, establishing a foundation for future innovations in automated 
plant disease detection systems.

Recent developments in DL-assisted disease detection in plants
Recent advancements in the detection of cotton leaf disease and machine vision classification, as shown in 
Table 1,have been significant. Search Query (“Cotton” AND “Deep Learning”) has been defined for extracting 
relevant studies from Frontiers, Web of Science, Science Direct, IEEEXplore, and Springer Link databases. The 
initial findings showed that there were limited publications specifically focused on disease detection in cotton 
leaves. Table 1 summarizes the studies, highlighting the authors, publication years, study objectives, the dataset 
used, results, and identified limitations.

The above study concluded that most approaches identified and classified a maximum of four classes. While 
these models achieved good accuracy, their effectiveness was limited due to the few classes in the dataset. 
Additionally, most studies relied on a single DL model. To the best of our knowledge, no prior study has applied 
k-fold cross-validation specifically with YOLO-based architectures, particularly YOLOv8, for multi-class cotton 
leaf disease classification using field images. Our approach overcomes these limitations and produces a robust, 
high-accuracy model to mitigate them.

Materials and methods
The proposed work follows the workflow shown in Fig. 1. It starts with collecting data from the “SAR-CLD-2024” 
(https://data.mendeley.com/datasets/b3jy2p6k8w/2) dataset32which contains images categorized into seven 
classes, of diseases and healthy leaves. During the pre-processing stage, the dataset is resized and organized into 
a standardized format suitable for classification. The workflow uses k-fold cross-validation, which divides the 
dataset into multiple folds to ensure robust training and evaluation. The YOLOcls8m architecture is employed 
for neural network training to classify the images. Finally, the process includes a validation phase, where the 
predictions are assessed for performance.

Dataset and preprocessing
The dataset was sourced from the SAR-CLD-2024 dataset, which contains high-quality images of cotton disease. 
Dataset of 2137 images from the NCRI (National Cotton Research Institute), Gazipur. The images are taken by 
a smartphone (Redmi Note11s). This robust dataset covered 7 different classes, including both biotic and abiotic 
stresses.

The leaves from all 7 classes are illustrated in Fig.  2, and the names of the cotton diseases and their 
corresponding images are shown in Table 2.

To apply the YOLO classification model to the obtained dataset, the data must be organized into three folders: 
“train”, “val”, and “test”. Each folder contains seven subfolders, each named after one of the seven classes, with the 
corresponding images for that class. Figure 3 illustrates the format used by YOLO to classify the dataset.

Several preprocessing steps are applied to ensure consistency in the model’s learning efficiency. All images 
were resized to 640 × 640 pixels, matching the input size of the YOLOv8architecture.The dataset was split 
using Python, with the data randomly divided into training (69%), validation (12%), and testing (19%) sets. 
A significant number of images were allocated for testing to assess the accuracy of the trained model. Table 3 
outlines the distribution of the dataset into training, validation, and testing subsets for each individual class.

K-fold validation
This technique is applied to divide the dataset into ‘k’ parts, named ‘folds’, to carry out a more accurate method 
of model performance. Each fold provides data for both training and validation. The k-fold cross-validation 
applied to object classification scenarios ensures robustness to the DL model, making it perfectly generalizable 
for various data splits. Cross-validation is particularly important in agriculture, as environmental conditions 
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may vary, causing the appearance of leaves and disease symptoms to differ from those seen in the training 
set33,34 (Sohail et al., 2023; Samuel et al., 2024). K-fold cross-validation, combined with DL architectures such as 
CNN and ResNet-152V2, has been shown to improve the predictive capabilities of the model for classifying and 
diagnosing cotton plant diseases, thus enhancing its effectiveness in real-world applications (Jai Vignesh et al., 
2023)35. Training dataset frequently suffers from overfitting,i.e., reduced performance on new, unknown images. 
K-fold cross-validation addresses this problem by evaluating the performance of the model across different 
data partitions. It ensures that the model does not simply memorize the training data but instead learns to 
generalize (Gayatri et al., 202)36. For further enhancement of the model’s robustness, a largely diversified dataset 
for cross-validation is used34 (Samuel et al., 2024; Kumar et al., 2024)34,37. To further strengthen the model, we 
employed the k-fold technique, creating ten distinct training, validation, and test folds. Each fold was randomly 
split to ensure variability in the dataset, with the random splitting and fold formation implemented using Python 
programming. An example of a k-fold process is shown in Fig. 4. The dataset is split into three categories, and 
the same process is done for ten different Folds. For each of the ten folds, the dataset was divided into three 
categories, with each fold containing a unique set of images.

Experimental setup
The output of an image classifier consists of a single class label and a confidence score. Image classification is 
particularly useful when the goal is to identify the class to which an image belongs without needing to pinpoint 
the exact location or shape of the objects within it. YOLOv8 models, specifically the yolov8m-cls.pt variant 
(Fig. 5) is designed for efficient image classification. The model assigns a class label and a confidence score to 
an entire image. This approach is especially valuable in applications where knowing the class of an image is 
sufficient, rather than requiring detailed information about the location or shape of objects it contains.

The YOLOv8m-cls model contains 141 layers, 15,781,303 parameters, 15,781,303 gradients, and 41.9 
GFLOPs. Out of these, we used 103 layers, 15,771,623 parameters, 0 gradients, and 41.6 GFLOPs. NVIDIA 
GeForce RTX 3050 Ti Laptop GPU, 4096MiB and Intel i7 12th gen processor were used to perform the desired 
experiment. Initial hyperparameters {Ir0 = 0.01, momentum = 0.937, Irf = 0.01, wgt_decay = 0.0005, warmup_
epochs = 0.0005, warmup_decay = 3.0, warmup_momentum = 0.8, warmup_bias_Ir = 0.1, box = 7.5, cls = 0.5, 
dfl = 1.5, pose = 12.0, kobj = 1.0, label_smoothing = 1.0, label_smoothing = 0.0, and nbs = 64} have been used.

Figure 6 illustrates the augmentation strategies of the YOLOv8 model. Default parameters {hsv_h = 0.015, 
hsv_s = 0.7, hsv_v = 0.4, degrees = 0.0, translate = 0.1, scale = 0.5, shear = 0.0, perspective = 0.0, flipud = 0.0, 
fliplr = 0.5, bgr = 0.0, mosaic = 1.0, mixup = 0.0, copy_paste = 0.0, auto_augment: randaugment, erasing = 0.4 and 
crop_fraction = 1.0} has been used.

These augmentation techniquesaddress the class imbalance present in the SAR-CLD-2024 dataset. It increases 
the representation of minority classes and helps the model to learn balanced features, which improves the 
generalization and reduces class-wise prediction bias.Additionally, the use of 10-fold cross-validation ensured, 
all classes were fairly represented across training and validation splits.

Fig. 1.  Schematic workflow of the research work.
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Results and validation
The model has been thoroughly tested and evaluated using a wide variety of matrices. The main metrics used 
are: precision, recall, F1 score, and mean Average Precision (mAP). The fundamental principles of two positives, 
i.e., True Positive (T.P.) and False Positive (F.P.) and two negatives, False Negative (F.N.) and False Positive (FP), 
have been used for the calculation of metrics.

•	 Accuracy is evaluated by calculating the percentage of correct predictions as a ratio of total predictions.

	
Accuracy = T.P. + T.N.

T.P. + F.P. + T.N. + F.N.
*100� (1)

Fig. 2.  The individual image of the seven classes. (A) Healthy Leaf, (B) Bacterial Blight, (C) Curl Virus, (D) 
Leaf Variegation, (E) Jassids by Leaf Hopper, (F) Red Leaf and (G) Herbicide Growth Damage.
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•	 Precision is evaluated by calculating the percentage of correct positive predictions as a ratio of all positive 
predictions.

	
Precision = T.P.

T.P. + F.P.
*100� (2)

•	 Recall is evaluated by calculating the percentage of true positives as a ratio of all real positives.

	
Recall = T.P.

T.P. + F.N.
*100� (3)

•	 F1 Score is evaluated by calculating the Harmonic Mean of precision and recall.

Fig. 3.  Format of dataset for YOLO classification.

 

Sr. No. Disease name Number of images

A Healthy Leaf 257

B Blight (bacteria) 250

C Curl (virus) 431

D Leaf Variegation 116

E Jassids by Leaf Hopper 225

F Red Leaf 578

G Herbicide Growth Damage 280

Total 2137

Table 2.  Number of images in individual class.
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F1 = 2*Precision*Recall

1*Precision + Recall
*100� (4)

•	 Mean average precision (mAP): mAP is the mean of the Average Precision (AP) across all classes, where AP 
is the area under the precision-recall curve.

	
mAP = 1

n

∑ n

k=1
AP (n)� (5)

	 mAP is typically evaluated at different IoU thresholds, such as 50% (mAP50) and between 50% and 95% 
(mAP50-95).

•	 mAP50 (B) This is the mAP calculated specifically for bounding box detection at an IoU threshold of 50%.

Fig. 5.  Shows the detailed architecture of the YOLOv8 classification model.

 

Fig. 4.  K-fold splitting of the dataset.

 

Disease name Train Validation Test Total

Bacterial blight 172 31 47 250

Curl virus 297 53 81 431

Healthy leaf 176 31 50 257

Herbicide growth damage 192 34 54 280

Leaf Hopper Jassids 155 28 42 225

Leaf redding 398 72 108 578

Leaf variegation 79 14 23 116

Total 1469 263 405 2137

Table 3.  Distribution of images in train, validation, and test.
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Evaluation of YOLOv8
Figure 7 illustrates the plots depicting losses (both training and validation) and Top_1 and Top_5 accuracy for 
100 epochs. The losses decreased and stabilized at 0.1 and 1.2 for training and validation, respectively. The value 
of these losses demonstrates that effective learning with minimum overfitting is achieved. The Top_1 accuracy 
exhibits a rapid increase from approximately 80% to around 99%, demonstrating the strong ability of the model 
to predict the correct class on the first attempt. The Top_5 accuracy remains consistently at 1.0, signifying that 
the model consistently includes the correct label within its Top_5 predictions. Table 4 illustrates trial metrics, 
and Table 5 illustrates best trials.

The 100% Top-5 accuracyachieved by the model is expected in this case due to the limited number of classes 
(8) and strong performance of the trained model. Since Top-5 accuracy only checks whether the correct label 
appears in the top five predictions, such results are common when the model learns well-separated features. 
However, Top-1 accuracy remains the primary indicator of model effectiveness, as it reflects the model’s ability 
to correctly predict the disease in a single attempt.

A consistently high performance with 98.41% accuracy, 98.39% precision, 98.53% recall, and 98.42% of 
F1_Score is achieved throughout the 10 trials as illustrated in Table 4. The second trial yielded the best results, 
achieving the highest accuracy at 99.60%, while the other trials also had strong performance. This suggests that 
the model is robust (Fig. 10), with minor variations in the results likely due to differences in conditions (Figs. 11, 
12, 13, 14).

Despite achieving high accuracy values (Top-1: 99.60%, Top-5: 100%), the proposed model does not suffer 
from overfitting. This conclusion is supported by multiple observations drawn from model behavior and data 
characteristics. Firstly, the model was evaluated using 10-fold cross-validation, ensuring that each subset of data 
is used for both training and validation. The performance remained consistentacross all folds, which reflects the 
robustness and generalizability of the model.Secondly, the confusion matrix generated during validation shows 
minimal misclassifications, which confirms that the model maintains its classificationabilities on unseen data.
Also, the SAR-CLD-2024 dataset, without any augmentations, containing real-worldunique images, is used to 
train the model. No synthetic data or repetition was used during training, which guarantees that the model has 
learnt diverse and realistic field conditions.

Principal Component Analysis (PCA) was performed on the deep feature vectors extracted from the final 
layer of the YOLOv8 classifier. As shown in Fig. 8, the embeddings from different classes have formed distinct 
and well-separated clustersin the plot. This evidence confirms that the model has effectively learnt discriminative 
features and is not merely memorizing the training data.

Fig. 6.  Augmentations of YOLO model shows the different types of augmentations used internally by the 
YOLOv8m classify model to classify the leaf for example the defalt settings are {hsv_h = 0.015, hsv_s = 0.7, 
hsv_v = 0.4, degrees = 0.0, translate = 0.1, scale = 0.5, shear = 0.0, perspective = 0.0, flipud = 0.0, fliplr = 0.5, 
bgr = 0.0, mosaic = 1.0, mixup = 0.0, copy_paste = 0.0, auto_augment: randaugment, erasing = 0.4, and crop_
fraction = 1.0}.
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Comparative evaluation of YOLOv8 with YOLOv11
To further evaluate the effectiveness of the proposed YOLOv8 model, a comparative analysis with YOLOv11, 
which is a recently released version of the YOLO architecture, is conducted. Both models were trained and 
validated on the same dataset using identical parameters, including batch size, epochs, and input resolution.

As shown in Fig.  9, YOLOv8 consistently outperformed YOLOv11 in key performance metrics, 
includingtrain_loss, val_loss, top1 accuracy and top5 accuracy. This suggests that although YOLOv11 is a newer 
version in the YOLO series, it may not yet be fully optimised for image classification tasks, particularly in the 
context of fine-grained agricultural disease detection.

Comparison of classification metrics between YOLOv8 and YOLOv11 on cotton leaf disease classes.YOLOv8 
demonstrates smoother convergence, supporting its use for the proposed method.Our experiments revealed that 
YOLOv11 struggled to achieve stable convergence, as shown in Fig. 9, with fluctuating loss curves and lower 
accuracy.In contrast, YOLOv8 offersa well-balanced architecture and consistent results across multiple datasets, 
especially in our use case, making it more suitable for deployment in real-world agricultural scenarios.It is also 
important to note that YOLOv9 and YOLOv10 do not provide support for image classification tasks, which 

Fig. 7.  Best trial validation results show the four graphs, including two metrics and two loss graphs. All four 
graphs show excellent results; both losses are equivalent to zero. Top_1 and Top_5 accuracy of 99.60% and 
100% is achieved respectively.
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further supports the selection of YOLOv8 for our study.These findings justifythe selection of YOLOv8 in our 
study over newer yet less stable alternatives like YOLOv11.

Table 5 highlights the peak performance of the DL model during its most successful trial in diagnosing cotton 
diseases. In this best trial, the model achieved a Top_1 accuracy of 99.60%, indicating that it correctly identified 
the disease as its top prediction nearly every time. The Top_5 accuracy remained at 100%, ensuring that the 
correct diagnosis was always included within the top five predictions. The recall was 99.55%, demonstrating the 
exceptional ability of the model to correctly identify nearly all actual disease cases, minimizing the likelihood of 
missed diagnoses. With a precision of 99.53%, the model demonstrated that nearly all of its positive predictions 
were accurate, effectively reducing the number of false positives. F1_Score of 99.60% balanced out the precision 
and recall results, proving the efficiency of the model in cotton disease detection. This best trial underscores the 
superior performance of the model, which shows its potential as a highly reliable tool for precision agriculture 
(Figs. 10, 11, 12, 13 and 14).

Table 6 reveals the strength and high accuracy of the proposed model in diagnosing cotton diseases. The 
Top_1 accuracy of the model was equal to 98.41%, meaning that in almost all cases, the disease was predicted 
correctly as the top prediction. The Top_5 accuracy grew to 100%, ensuring the correct disease was always 
present among the first five predictions and emphasizing the reliability of the model. The model performed 
pretty well on the test set: 98.53% Recall, meaning it had the ability to effectively identify almost all cases of 
disease, which minimizes missed diagnoses; 98.39% precision, meaning most positive predictions by the model 
are correct, thus avoiding false positives. This makes the F1-score 98.42%, indicating that this model is highly 
effective and consistent over ten separate trials. These indicators support the ability of the model to accurately 
and reliably diagnose cotton diseases, being of use in precision agriculture.

Figure 15 is a confusion matrix presenting the validation performance of a classification model on different 
diseased leaves. True labels have been mapped on the x-axis, prediction labels have been mapped on the y-axis, 
true classifications are illustrated on the diagonal cells, and the off-diagonal cells illustrate misclassifications. 
This model performs the job extremely well in classification, where it is able to identify “Curl Virus” in 53 out 
of 53 samples, “Leaf Redding” in 72 out of 72, and “Herbicide Growth Damage” in 34 out of 34. However, out of 
the 263 samples, the model made just one confusion between the classes “Healthy Leaf ” and “Bacterial Blight”. 
Figure 14 illustrates the normalised confusion matrix (best validation) (Fig. 16).

Prediction of the best trial shows the prediction of the validation set of best trial with an accuracy of 99.60%, 
and all 16 leaves in the above images are correctly classified. The output of the proposed approach shows the class 
of each cotton diseased leaf in the left corner of each image, as shown in Fig. 17.

Discussion
The methodology presented in this work employs a robust approach to classify cotton diseases using a DL model 
based on YOLOv8. Our results proved that DL, with the help of the YOLOv8 classification model and a 10-fold 
cross-validation technique, can diagnose diseases in cotton leaves for precision agriculture. The advantage of 
using SAR-CLD 2024 sourced from NCRI, Gazipur, has been robust testing on diverse leaf images in a real-

Metrics In percentage (%)

Top_1 accuracy 99.60

Top_5 accuracy 100

Recall 99.55

Precision 99.53

F1- Score 99.60

Table 5.  Metrics of best trial.

 

Results Accuracy Precision Recall F1-Score

Trial 1 98.10 97.48 98.44 97.73

Trial 2 99.60 99.53 99.55 99.60

Trial 3 98.50 98.58 98.55 98.57

Trial 4 98.50 98.60 98.92 98.75

Trial 5 97.30 97.24 97.84 97.53

Trial 6 97.70 98.04 97.71 97.84

Trial 7 98.90 98.82 98.84 98.88

Trial 8 98.50 98.68 98.33 98.34

Trial 9 98.10 98.24 98.21 98.28

Trial 10 98.90 98.75 98.93 98.76

Average 98.41 98.39 98.53 98.42

Table 4.  Metrics of all ten trials.
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time environment. This comprehensive coverage of conditions in the dataset is essential for creating a model 
capable of distinguishing between various diseases and stress factors. Additionally, the dataset is thoughtfully 
organized into training, validation, and testing sets, ensuring that the model undergoes a thorough evaluation, 
which is crucial for developing a reliable disease classification tool. Cross-validation helps deal with overfitting 
and enhances the generalizability of the model when exposed to different subsets of datasets for both training 
and testing. In contrast20, Elaraby et al. obtained an accuracy of 98.83% for multi-crop disease classification 
using the PlantVillage dataset21. Pan et al., in 2024, whose model CDDLite-YOLO achieved a mAP of 90.6%. 
Additionally22, Ahmed (2021) and23Gao et al. (2024) employed transfer learning and YOLOv8 to further 
improve cotton disease detection, with a development accuracy in both cotton pest and cotton disease detection 
set at 94%. A key aspect of the study is the use of k-fold cross-validation, which divides the dataset into multiple 
folds. This technique is essential for ensuring that the model performs robustly across various data subsets. It is 
particularly important in agricultural applications, where environmental variations can significantly impact the 
appearance of cotton leaves. By utilizing k-fold cross-validation, the model is exposed to a wide range of disease 
symptoms and ecological conditions, which enhances its ability to generalize and reduces the risk of overfitting. 
When combined with advanced DL architectures like YOLOv8, this method ensures that the model can perform 
effectively in real-world scenarios.

The YOLOv8m-cls model used for image classification in this study demonstrated high effectiveness. Both 
confidence and class labels are mapped for each image, ensuring that the measure of certainty of classification 
is also evaluated along with the predicted class. This feature is particularly beneficial in precision agriculture, 
where knowing the specific class of an image is often sufficient for decision-making without the need to 
localize individual objects within the image. The YOLOv8 architecture, consisting of 141 layers and millions 
of parameters, enables fast and accurate classification, making it well-suited for large-scale deployment in field 
conditions31. Shahid et al., (2024) used GoogleNet, achieving 93.40% accuracy and 95% F1_score, AlexNet 
achievedaccuracy 93.40%, and InceptionV3 achieving accuracy 91.80%29. Rai and Pahuja (2023) used DCNN 
to achieve 97.98% accuracy25Li et al., (2024) used CFNet-VoV-GCSP-LSKNet-YOLOv8s achieving 89.9% 

Fig. 8.  Principal Component Analysis (PCA) on the deep feature vectors extracted from the final layer of the 
YOLOv8 classifier.

 

Scientific Reports |        (2025) 15:35602 11| https://doi.org/10.1038/s41598-025-13147-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


precision26. Nazeer et al., (2024) identified curl disease with 99% accuracy.This study deals only with detecting 
Cotton Leaf Curl Disease. Many current datasets, such as those used by27Kolachi et al. (2023) and8Latif et al. 
(2021), are limited by the number of classes or environmental conditions they capture. While their model was 
effective for a specific application, the proposed model in this study surpasses these results by achieving a higher 
degree of accuracy in a more complex task, as the proposed model has seven classes in the dataset.

The experimental results highlight the effectiveness of the proposed approach. The model achieved Top_1 
and Top_5 accuracy of 99.60% and 100% respectively. Top_1 accuracy demonstrates accurate detection in the 
first attempt and Top_5 accuracy demonstrated overall accuracy Minimisation of F.P. has been ensured by 
99.55% recall and 99.53% precision results. These metrics, along with an F1 score of 99.60%, underscore the 
exceptional performance and robustness of the model. The key aspect of the study is the utilization of 10-fold 

Fig. 10.  Accuracy vs. epochs of each trial: shows the accuracy Vs epochs for each trial, and the dark blue line 
shows the average of all ten trials.

 

Fig. 9.  Comparative analysis between YOLOv8 and YOLOv11.
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cross-validation, which offers a more robust performance than single train-test splits. By rotating through the 
dataset and using every sample as part of the training and validation set, the model was able to avoid overfitting, 
a common challenge in DL models for agriculture due to limited or skewed datasets. The k-fold approach, as 
shown by the consistent average Top_1 accuracy of 98.41% and recall of 98.53% across all trials, provided more 
robust and generalizable results.

Table  6 illustrates consistently high Top_1 and Top_5 accuracy, of 98.41% and 100% respectively, across 
10 trials. The values for precision, recall, and F1-score further support the reliability of the model, making it 
a promising tool for diagnosing cotton diseases in practical applications. The confusion matrix (Fig. 16) also 
highlights the excellent classification ability of the model, with very few misclassifications. This indicates that 
the model can reliably diagnose diseases such as “curl virus,” “leaf redding,” and “herbicide growth damage” with 
minimal error.

This study has been able to achieve an accurate and reliable model for cotton disease detection, which 
outperformed the majority of contemporary models when tested on a diverse range of metrics. 10-fold cross-
validation integration ensured robustness of the model for real-time usage.

Conclusion
This study proposed an efficient YOLOv8 classification model integrated with 10-fold cross-validation for 
improving the robustness and scalability of the model. This method has been able to outperform with 99.60% 
Top_1 accuracy, and 100% Top_5 accuracy. The method exhibited a high precision, recall, and F1-score level, 
which showed an accurate and robust approach to diagnosing multiple diseases on cotton leaves. The model 
could effectively use k-fold cross-validation to minimize overfitting, hence performing very well over different 
data subsets, a feature critical to practical agricultural systems. The proposed model exceeded the benchmark 
accuracies and remedies some limitations noted from available literature: low classes, controlled datasets, 
and inadequacy with adaptability to field conditions. This evidently showed its potential to be used as a very 
important tool in precision agriculture that will give timely disease detection with great accuracy, thus reducing 
crop losses while improving cotton yield. Future work will include more data collection from the field in real 
time and include environmental variables that might affect detection.

Fig. 11.  Graph of F1-score for each trial: shows the bar chart of the F1-score in each trial. The best trial was 
observed to be trial 2.
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Fig. 12.  Graph of precision for each trial: shows the bar graph of the precision of each trial. Trial two 
performed the best in all the trials.
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Fig. 13.  Graph of Recall for each trial: shows the bar chart of the recall of each trial. Trial two showed excellent 
results of 99.55% in all ten trials.
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Metrics In percentages (%)

Top_1 accuracy 98.41

Top_5 accuracy 100

Recall 98.53

Precision 98.39

F1-Score 98.42

Table 6.  Shows the average of all five metrics of ten trials. The average accuracy of ten trials is noted as 98.41%.

 

Fig. 14.  Graph of Accuracy for each trial: shows the bar chart of the accuracy of each trial. The best trial was 
trial two, which showed an outstanding accuracy of 99.60%.
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Fig. 15.  Confusion matrix of best trial validation shows the confusion matrix of the validation dataset done 
by the best trial. In this confusion matrix, all the images are correctly classified as the labels given to them, and 
only a single image was not correctly identified as the true value. Out of 263 images, only one image was not 
predicted correctly; otherwise, all the predictions were correct. The accuracy of the given matrix is 99.60%.
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Fig. 16.  Shows the normalized confusion matrix of the best trial. All the predictions are clearly done correctly, 
and only one image is not detected correctly.
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Data availability
The data is available at “https://doi.org/10.17632/b3jy2p6k8w.2 ​h​t​t​p​s​:​/​/​d​a​t​a​.​m​e​n​d​e​l​e​y​.​c​o​m​/​d​a​t​a​s​e​t​s​/​b​3​j​y​2​p​6​k​8​
w​/​2​”​.​​
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