Table 3 Comparison analysis of CREA-HDLMOA model with existing approaches on CIC-IDS2017 dataset.
CIC-IDS2017 dataset | ||||
---|---|---|---|---|
Approach | \(\:\varvec{A}\varvec{c}\varvec{c}{\varvec{u}}_{\varvec{y}}\) | \(\:\varvec{P}\varvec{r}\varvec{e}{\varvec{c}}_{\varvec{n}}\) | \(\:\varvec{R}\varvec{e}\varvec{c}{\varvec{a}}_{\varvec{l}}\) | \(\:\varvec{F}{1}_{\varvec{S}\varvec{c}\varvec{o}\varvec{r}\varvec{e}}\) |
J48 consolidated | 91.94 | 93.39 | 92.02 | 93.59 |
LIBSVM | 98.44 | 93.34 | 90.26 | 92.68 |
MLP Method | 93.70 | 93.29 | 90.52 | 93.28 |
Naïve Bayes | 91.20 | 90.89 | 91.57 | 90.83 |
CNN-LSTM | 92.38 | 89.40 | 90.95 | 91.74 |
5-layer AE | 98.97 | 90.09 | 92.32 | 93.18 |
XGBoost-SVM | 97.51 | 91.21 | 90.49 | 91.91 |
CREA-HDLMOA | 99.31 | 95.41 | 93.67 | 94.38 |