Table 4 Regression Model Performance Metrics on Training and Testing Data.
MODEL | MAE | MSE | RMSE | R2 | ||||
---|---|---|---|---|---|---|---|---|
Testing | Training | Testing | Training | Testing | Training | Testing | Training | |
AdaBoost | 0.194 | 0.19 | 0.073 | 0.06 | 0.271 | 0.246 | 0.986 | 0.989 |
Decision Tree | 0.03 | 0.01 | 0.038 | 0.02 | 0.194 | 0.01 | 0.993 | 0.998 |
Extra Tree | 0.03 | 0.01 | 0.027 | 0.02 | 0.163 | 0.049 | 0.995 | 0.997 |
Gradient Boosting | 0.035 | 0.032 | 0.017 | 0.01 | 0.131 | 0.097 | 0.997 | 0.998 |
K-Nearest Neighbours | 0.295 | 0.225 | 0.176 | 0.107 | 0.42 | 0.327 | 0.967 | 0.98 |
Linear Regression | 0.481 | 0.473 | 0.349 | 0.34 | 0.591 | 0.583 | 0.935 | 0.937 |
Neural Network | 0.463 | 0.457 | 0.372 | 0.364 | 0.61 | 0.603 | 0.931 | 0.933 |
Random Forest | 0.027 | 0.009 | 0.026 | 0.002 | 0.16 | 0.047 | 0.995 | 0.999 |
XGBoost | 0.035 | 0.014 | 0.014 | 0.001 | 0.119 | 0.026 | 0.997 | 0.999 |
Stacking Ensemble (RF + XGB) | 0.026 | 0.012 | 0.013 | 0.001 | 0.11 | 0.024 | 0.998 | 0.999 |