Table 4 Regression Model Performance Metrics on Training and Testing Data.

From: Integrating data-driven and physics-based approaches for robust wind power prediction: A comprehensive ML-PINN-Simulink framework

MODEL

MAE

MSE

RMSE

R2

Testing

Training

Testing

Training

Testing

Training

Testing

Training

AdaBoost

0.194

0.19

0.073

0.06

0.271

0.246

0.986

0.989

Decision Tree

0.03

0.01

0.038

0.02

0.194

0.01

0.993

0.998

Extra Tree

0.03

0.01

0.027

0.02

0.163

0.049

0.995

0.997

Gradient Boosting

0.035

0.032

0.017

0.01

0.131

0.097

0.997

0.998

K-Nearest Neighbours

0.295

0.225

0.176

0.107

0.42

0.327

0.967

0.98

Linear Regression

0.481

0.473

0.349

0.34

0.591

0.583

0.935

0.937

Neural Network

0.463

0.457

0.372

0.364

0.61

0.603

0.931

0.933

Random Forest

0.027

0.009

0.026

0.002

0.16

0.047

0.995

0.999

XGBoost

0.035

0.014

0.014

0.001

0.119

0.026

0.997

0.999

Stacking Ensemble (RF + XGB)

0.026

0.012

0.013

0.001

0.11

0.024

0.998

0.999