Table 4 Experimental results for related deep learning methods for cancer classification with omics data.

From: Interpretable graph Kolmogorov–Arnold networks for multi-cancer classification and biomarker identification using multi-omics data

Authors

Models

Pan-Cancer

Multi-Omics Data type

Accuracy

mRNA

miRNA

DNA methylation

Mostavi

et al., 202043

1D-CNN

34 Classes

\(\:\surd\:\)

-

-

95.50 ± 0.1

2D-Vanilla-CNN

94.87 ± 0.4

2D-Hybrid-CNN

95.70 ± 1.0

Ramirez

et al., 202044

GCNN-PPI graph

34 Classes

\(\:\surd\:\)

-

-

88.98 ± 0.9

GCNN-PPI + singleton graph

94.61 ± 1.0

Kaczmarek et al., 202245

GTN

12 Classes

\(\:\surd\:\)

\(\:\surd\:\)

-

93.56 ± 0.9

Proposed MOGKAN-PPI graph

32 Classes

\(\:\surd\:\)

\(\:\surd\:\)

\(\:\surd\:\)

96.28 ± 0.0035