Table 4 Comparative study of IHDLM-CADEFST model on ToN-IoT and Edge-IIoT dataset20,21,22,35,36,37,38.
Dataset | Approach | \(\:{A}{c}{c}{{u}}_{{y}}\) | \(\:{P}{r}{e}{{c}}_{{n}}\) | \(\:{R}{e}{c}{{a}}_{{l}}\) | \(\:{{F}1}_{{S}{c}{o}{r}{e}}\) |
---|---|---|---|---|---|
ToN-IoT dataset | dAE | 87.78 | 90.70 | 87.03 | 85.05 |
HDBSCAN | 97.13 | 88.87 | 85.50 | 82.00 | |
CALR | 92.74 | 90.41 | 83.65 | 86.42 | |
DNN | 94.17 | 88.66 | 81.92 | 81.45 | |
CART | 77.00 | 90.08 | 86.33 | 84.46 | |
XGBoost | 96.50 | 88.32 | 84.94 | 81.23 | |
CNN-RNN | 91.97 | 89.88 | 83.00 | 85.82 | |
RepuTE algorithm | 99.18 | 87.34 | 81.10 | 82.77 | |
Neural network | 97.12 | 87.02 | 81.95 | 83.85 | |
SVM | 90.97 | 89.56 | 81.94 | 86.88 | |
IHDLM-CADEFST | 99.45 | 91.01 | 87.61 | 88.51 | |
Edge-IIoT dataset | EDLM-PSOFS | 94.06 | 92.76 | 92.13 | 93.96 |
GA-LSTM | 95.39 | 95.61 | 93.48 | 89.79 | |
EfficientNetB0 | 91.02 | 90.61 | 91.11 | 93.38 | |
RF | 93.42 | 92.17 | 91.45 | 93.36 | |
KNN | 94.60 | 94.88 | 92.77 | 89.27 | |
SVM | 90.28 | 90.01 | 90.54 | 92.66 | |
XGBoost | 93.37 | 91.39 | 89.54 | 91.86 | |
LightGBM | 93.02 | 89.73 | 90.69 | 92.32 | |
TabPFN | 96.86 | 92.35 | 89.95 | 90.63 | |
Voting classifier | 89.95 | 94.67 | 92.50 | 92.95 | |
IHDLM-CADEFST | 99.19 | 95.12 | 95.12 | 95.12 |