Table 4 Comparative study of IHDLM-CADEFST model on ToN-IoT and Edge-IIoT dataset20,21,22,35,36,37,38.

From: An intelligent deep representation learning with enhanced feature selection approach for cyberattack detection in internet of things enabled cloud environment

Dataset

Approach

\(\:{A}{c}{c}{{u}}_{{y}}\)

\(\:{P}{r}{e}{{c}}_{{n}}\)

\(\:{R}{e}{c}{{a}}_{{l}}\)

\(\:{{F}1}_{{S}{c}{o}{r}{e}}\)

ToN-IoT dataset

dAE

87.78

90.70

87.03

85.05

HDBSCAN

97.13

88.87

85.50

82.00

CALR

92.74

90.41

83.65

86.42

DNN

94.17

88.66

81.92

81.45

CART

77.00

90.08

86.33

84.46

XGBoost

96.50

88.32

84.94

81.23

CNN-RNN

91.97

89.88

83.00

85.82

RepuTE algorithm

99.18

87.34

81.10

82.77

Neural network

97.12

87.02

81.95

83.85

SVM

90.97

89.56

81.94

86.88

IHDLM-CADEFST

99.45

91.01

87.61

88.51

Edge-IIoT dataset

EDLM-PSOFS

94.06

92.76

92.13

93.96

GA-LSTM

95.39

95.61

93.48

89.79

EfficientNetB0

91.02

90.61

91.11

93.38

RF

93.42

92.17

91.45

93.36

KNN

94.60

94.88

92.77

89.27

SVM

90.28

90.01

90.54

92.66

XGBoost

93.37

91.39

89.54

91.86

LightGBM

93.02

89.73

90.69

92.32

TabPFN

96.86

92.35

89.95

90.63

Voting classifier

89.95

94.67

92.50

92.95

IHDLM-CADEFST

99.19

95.12

95.12

95.12