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Antibody–Drug Conjugates (ADCs) are a promising cancer treatment that deliver toxic drugs directly 
to cancer cells, reducing harm to healthy tissue. A key feature of newer ADCs is the “bystander 
effect,” in which nearby cancer cells are also affected by passive diffusion. However, the mechanisms 
underlying this effect remain unclear. Using computer simulations, this study investigates how the 
drug’s ionization state and the linker connecting it to the antibody influence its ability to cross cell 
membranes. The results show that the ionization state of the drug impacts its membrane permeability, 
as charged molecules encounter resistance when moving through the membrane’s hydrophobic 
core. Moreover, the study reveals that the linker increases the drug’s overall size and hydrophobicity, 
thereby hindering its diffusion to adjacent cells. This finding suggests that linker design can 
significantly influence the efficacy of antibody–drug conjugates (ADCs) by limiting their ability to reach 
neighboring cancer cells. These insights enhance our understanding of ADC mechanisms and provide a 
valuable foundation for the optimization of next-generation ADC therapies targeting breast cancer.
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Antibody–Drug Conjugates (ADCs) stand at the forefront of targeted cancer treatment, holding promise 
as a replacement for conventional chemotherapies1. ADCs are sophisticated agents involving the binding 
of antibodies to specific target antigens on tumor cells. The classical mechanism of action starts with the 
internalization of the ADCs, followed by linker breakdown and the release of cytotoxic payloads within tumor 
cells, inducing cell death. However, recent studies indicate that, depending on the nature of the linker and the 
payload, the internalization of ADCs is not the only way to exert the activity. ADCs can be cleaved extracellularly, 
releasing the payload, which can then enter the cellular cytosol via passive diffusion2. Intriguingly, certain ADCs 
demonstrate a bystander effect, wherein the released cytotoxic agent can eradicate adjacent tumor cells that do 
not express the target antigen by passive diffusion through the cellular membrane3–6. Although this property is 
not yet fully understood, factors like the chemical features of the payload and the rest of linker moieties may 
influence the bystander effect and overall efficacy of the ADC2,7,8.

While the bystander effect holds great potential for enhancing therapeutic results, experimental studies to 
investigate this phenomenon face challenges9. Among these, a significant difficulty lies in achieving optimal 
spatial and temporal resolution of the bystander mechanism, particularly in relation to the diffusion of the 
payload across the cellular membrane10,11. Traditional experimental techniques often lack the necessary 
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resolution to accurately capture transient and localized events such as payload diffusion and distribution after 
internalization. In fact, observing interactions between targeted and neighboring cells at the molecular level in 
real-time remains technically difficult12.

In silico approaches offer valuable solutions to address the challenges of studying passive diffusion. In 
particular, homology modelling, molecular docking, and atomistic and coarse-grained molecular dynamics 
(MD) simulations may be applied for a full characterization of the structure—activity relationship of ADCs for 
research and development13. MD simulations provide precise control over chemical, structural, and topological 
parameters of ADCs, enabling atomistic-scale insights into their interactions with cellular components, including 
the cell membrane, as well as their dynamics. Furthermore, these tools present a cost-effective and time-
efficient alternative to expensive experimental studies. Despite the wealth of theoretical models in the literature, 
employing non-equilibrium dynamics14,15, metadynamics16, quantum-based models17 or chemometric tools18, 
there is a gap in the in silico exploration of the specific payloads/linkers integral to ADC therapies. This study 
aims to fill this gap by providing new insights into payloads and linker behavior through in silico simulations. 
It should be noted that passive diffusion of the payload and/or linker through the membrane lipid bilayer may 
represent a simple mechanism to study the bystander effect. Other possible mechanisms, not studied here, 
include extracellular cleavage followed by diffusion in the tumor interstitium, active efflux pumps, and transfer 
via extracellular vesicles. However, passive diffusion may be more amenable to theoretical atomistic analysis, 
potentially providing sufficient detail to differentiate compounds with and without a bystander effect.

Our attention centers on three important cytotoxic payloads—deruxtecan, auristatin, and maytansinoid—
widely used for breast cancer treatment. The prevalent deruxtecan variants, specifically S-8201a (DXd1) and 
DXd2, are integral components of ADCs due to their derivation from exatecan. Deruxtecan, recognized 
as a potent topoisomerase I inhibitor, stands out for its ability to induce DNA damage within cancer cells, 
demonstrating pronounced efficacy, particularly against HER2-positive breast cancer, a formidable tumor 
subtype19. Auristatin payloads, comprising monomethyl auristatin E and F (MMAE and MMAF), belong to 
a potent class of microtubule-disrupting agents, effectively arresting cell division and triggering apoptosis in 
cancer cells20. Maytansinoid payloads form part of ado-trastuzumab emtansine, the first ADC approved for the 
treatment of solid tumors3. Clinical trials featuring ADCs with these payloads demonstrate significant tumor 
regression and improved patient outcomes. Current investigations also explore combinations of these ADCs 
with other drugs, highlighting their potential synergy21. We chose these closely related payload groups due 
to experimental evidence of the bystander effect in one member of each group. That is the case for DXd1 and 
MMAE, demonstrating bystander effect. In the case of emtansine, the linker is not cleaved from the maytansinoid, 
resulting in the release of a molecule containing a zwitterion species in physiological pH conditions, which is 
supposed to inhibit diffusion through a membrane and, consequently lacks bystander effect22.

This work investigates the behavior of these payloads using well-established in  silico models at atomic 
resolution. Despite significant advancements in ADC development, the mechanistic understanding of the 
bystander effect remains incomplete. Previous research has often focused on either clinical observations or 
limited computational models. More recently, computational methods based on artificial intelligence, specifically 
utilizing Graph Attention Networks (GATs), a deep learning approach designed for processing graph-structured 
data, has been used to model and optimize the bystander effect in ADC23. More than this, the study provides the 
first comprehensive in silico atomic-level analysis of how both payload ionization and linker design influence the 
bystander effect in ADCs. The atomic-level simulations reveal the specific structural and energetic factors that 
modulate membrane permeability and, consequently, bystander killing. These insights offer a new framework 
for rational ADC design, aiming to enhance therapeutic outcomes in breast cancer.

Results
We aim to elucidate how both the ionization state of payloads and the presence of linkers influence the bystander 
effect in ADCs. Specifically, we investigate whether payloads with different charge states and linker sizes are 
capable of passively diffusing through a lipid bilayer—an essential step for bystander killing. Additionally, 
other parameters were evaluated for their potential influence on the likelihood of a bystander effect, including 
hydrogen-bonding capacity, free energy barriers (such as flip-flop and desorption), and the molecular size of 
different payloads, as measured by their radius of gyration (Rg).

Some of the payloads examined in this study (Fig.  1) contain ionizable groups that become charged at 
physiological pH values between 5 and 7. To determine the ionization state of the payloads under these conditions, 
their corresponding pKa values were evaluated, as detailed in the Methods section. Specifically, DXd2 features 
an alkyl-amino group that becomes protonated to form –NH3

+, while MMAF contains a carboxylate group that 
remains deprotonated at these pH levels. Additionally, the Lys-SMCC-DM1 combination of an uncleavable linker 
and payload may result in a zwitterionic species after lysosomal ADC digestion. Throughout the remainder of 
this description, these molecules are considered in their ionized states as determined by the pKa analysis.

Evaluation of the pKa
The following pKa values were obtained for the ionizable molecules: DXd2, 10.4 ± 2.4; and MMAF, 2.2 ± 0.9. Lys-
SMCC-DM1 has two ionizable groups with calculated pKa (COO−) = 2.2 ± 0.9 and pKa (NH3

+) = 9.0 ± 0.9. These 
results are indicative that, at physiological pH, DXd2 is protonated, MMAF is deprotonated, and Lys-SMCC-
DM1 is zwitterionic.

Molecular dynamics simulation results
Before presenting the simulation data, it is important to note that understanding passive diffusion of payloads 
across a lipid bilayer requires assessing both flip-flop across the membrane and desorption from the membrane–
water interface. Here, the initial steps taken to prepare the systems are described, including pKa determination, 
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force field selection, and the assembly of POPC bilayers with solvated payloads. Extensive MD simulations were 
performed to capture steady-state configurations, followed by potential of mean force (PMF) calculations to 
quantify the free energy barriers for crossing (flip-flop) and leaving (desorption) the bilayer.

Figure  2a schematically illustrates the passive diffusion process targeted in the simulations. After the 
internalization of the ADCs and the release of the cytotoxic drug within the tumor cells the bystander effect may 
proceed by passive diffusion of the payload across the lipid bilayer (Fig. 2b). The lipid bilayer structure used in 
all cases is composed of 64 Palmitoyl-Oleoyl-Phosphatidylcholine (POPC) (see Methods section). In all cases, 
unrestricted MD simulations resulted in the adsorption of the payload at the interface between the lipid polar 
head groups and the hydrocarbon core of the lower (extracellular) leaflet of the bilayer.

Figure  2c illustrates the cases of MMAE and MMAF as representative examples of positive and negative 
bystander effects, respectively. All the molecules exhibit a similar profile relative to the lipid layer, consistent 
with the visual representation shown in the figure. The averaged mass density profiles along the bilayer normal 
of all systems, as depicted in Fig. 2d, provide insight into the relative positioning of payloads within the bilayer 
interior across the simulations. These payload molecules are amphiphilic compounds that partition comfortably 
in the amphiphilic interface of one of the lipid leaflets. All the payloads contain hydrogen-bond donors capable 
of forming hydrogen bonds with an oxygen atom acceptor in the lipid molecules, namely, the two non-bridging 
oxygen atoms in the phosphate group and the two carbonyl oxygen atoms of the acyl chains.

In Table 1, the number of available hydrogen bond donors in each payload is listed along with the number of 
hydrogen bonds averaged over the production trajectory. The number of hydrogen bonds were calculated using 
the following criterion: the distance donor–acceptor atoms is less than 0.35 nm and the angle between hydrogen 
donor–acceptor is below 30°. This number is higher in the protonated molecules DXd2 and Lys-SMCC-DM1 
than for the unprotonated DXd1 and DM1, respectively, as anticipated due to the additional hydrogen atom in 
the amine group and its geometric proximity to the negatively charged lipid phosphate group.

The box plot Fig. 3a shows the statistics of hydrogen bonds occurrence along the simulation time for each of the 
payload studied. An important difference between the payloads with and without bystander effect is the presence 
of charged groups in the latter case. This feature involves the occurrence of electrostatic interactions between 
those charged groups and the positively charged choline and/or negatively charged phosphate groups of the lipid 

Fig. 1.  Chemical structure of the payloads studied. Ionizable groups are highlighted (circles). Payloads lacking 
linker moieties include deruxtecan (DXd1 and DXd2) and auristatins (MMAE and MMAF). The emtansine 
payload incorporates a non-cleavable linker (Lys-SMCC-DM1). The maytansinoid base molecule (DM1) is 
compared with the reference Lys-SMCC-DM1 payload. DXd1-linker and SMCC-DM1 are specifically analyzed 
to assess the role of the linker in the bystander effect (see main text for details).
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Payload Potential H-bond donorsa Averaged H-bondsb ΔG flip-flopc (kJ mol−1) ΔG desorptiond (kJ mol−1) Bystander effect AlogPe Rg
f (nm)

DXd1 3 1.3 20 ± 5 40 ± 5 Yes − 0.25 0.47 ± 0.02

DXd2 5 2.3 80 ± 5 40 ± 5 No − 0.15 0.49 ± 0.02

MMAE 4 0.7 15 ± 5 50 ± 5 Yes 3.10 0.55 ± 0.02

MMAF 3 0.6 75 ± 5 50 ± 5 No 2.70 0.56 ± 0.02

DM1 2 1.3 20 ± 5 55 ± 5 Yes 3.00 0.47 ± 0.02

Lys-SMCC-DM1 6 2.3 65 ± 5 75 ± 5 No 4.00 0.62 ± 0.02

DXd1-Linker 7 2.3 20 ± 5 80 ± 5 No 1.05 0.75 ± 0.02

SMCC-DM1 3 1.1 25 ± 5 75 ± 5 No 7.10 0.70 ± 0.02

Table 1.  Properties of the cytotoxic payloads studied. aNumber of potential hydrogen bond donors in each 
payload (based on the functional groups able to donate H-bonds). bAverage number of hydrogen bonds 
formed between the payload and lipids during the last 1 µs of the MD simulation (distance < 0.35 nm and 
angle < 30°). cFree energy barrier (in kJ mol⁻1) for the payload to traverse the hydrophobic interior of the lipid 
bilayer (flip-flop). dFree energy barrier (in kJ mol⁻1) for the payload to desorb from the lipid–water interface 
into the aqueous phase. eAlogP: Partition coefficient calculated via the ALogP model, indicating relative 
hydrophobicity. fRadius of gyration (in nm), reflecting the average molecular size of the payload over the MD 
trajectory.

 

Fig. 2.  The bystander effect and the in silico  approach in this study. (a) Schematic representation of the 
bystander effect. (b) Detail of a model of lipid bilayer: The lipid bilayer structure used in all cases corresponds 
to 64 Palmitoyl Oleoyl Phosphatidyl Choline (POPC). Image created using VMD software version 1.9.4. 
(c) Final snapshot of the production MD simulation for DM1 and MMAF payloads. Payload molecules are 
represented by VDW spheres, colored by atom type. POPC lipids are depicted as lines with the same coloring 
criterion and water is shown as a cyan surface representation. (d) Mass density profiles for the three payload 
systems. Profiles for the payload molecules were multiplied by ten to allow a better visualization: POPC in 
black, payload in red, and water in blue.
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molecules. Figure 3b illustrates these interactions, extracted from various MD snapshots. The positively charged 
NH3

+ group consistently resides at distances below 0.5 nm from the POPC phosphate groups. Additionally, the 
amine hydrogens participate in hydrogen bond with the carbonyl oxygen of the lipid tails, as depicted in Table 1 
and Fig. 3b. In the case of the MMAF negatively charged carboxylate group, a persistent interaction with the 
positively charged choline group is observed. Finally, a combination of these two interactions is present in the 
case of the zwitterionic Lys-SMCC-DM1 payload.

Potential of mean force results
The potential of mean force (PMF) value was computed for two key steps in the diffusion process, namely, 
payload “flip-flop” across the bilayer interior and desorption from the lipid bilayer, as described in the Methods 
section. Figure 3c illustrates these two steps within the passive diffusion process. Initially, the payload crosses 
through the hydrophobic bilayer interior. Subsequently, upon completing this phase, the payload desorbs from 
the lipid polar/apolar interface, ultimately reaching the aqueous phase on the other side of the membrane. The 
reader is referred to the Supplementary Video, in which the process of the diffusion of the DXd1 (left) and DXd2 
(right) payloads (with and without bystander effect, respectively) across the lipid bilayer is observed.

The PMF simulations for both the flip-flop and desorption steps started for the initial structure obtained 
from unrestricted MD simulations (Fig. 2c). Figure 3d depicts the combined PMFs for each payload molecule, 
illustrating their perpendicular movement (in opposite directions) relative to the lipid bilayer surface during 
the flip-flop and desorption processes. Table 1 serves a complementary resource, providing the calculated ΔG 
energy barriers for these steps. These data provide valuable insights into the energetic demands associated with 
the transition of each payload molecule within the lipid bilayer. The three payload groups share a common 
observation: the ionized molecules present large barriers crossing the hydrophobic bilayer phase (80 kJ mol−1 for 
DXd2, 75 kJ mol−1 MMAF, and 65 kJ mol-1 for Lys-SMCC-DM1). This circumstance, typical in drug permeability 
through membranes, allows us to explain the lack of bystander effect behavior of those payloads, as they remain 
retained on one leaflet of the lipid bilayer. In contrast, electrostatically neutral payloads such as DXd1, MMAE, 
and DM1, which have shown a bystander effect24–27, present much lower energy barriers (20 kJ mol−1 for DXd1, 

Fig. 3.  Effect of H-bonding and electrostatic interactions in bystander effect. (a) Number of hydrogen bonds 
along the MD simulations. (b) Molecular structures illustrating the electrostatic interactions between charged 
payloads and POPC molecules. The payloads are depicted in ball-stick representation colored by atom type, 
and the POPC as sticks with the same pattern scheme. Image created using VMD software version 1.9.4. 
(c) Schematic representation of the two steps for the payload permeation by passive diffusion through the 
lipid bilayer. (d) PMF profiles for the payloads’ permeation of POPC. Top: Deruxtecan derivatives. Center: 
Auristatin derivatives. Bottom: Maytansinoid derivatives. (e) Correlation between the size of the linker, 
expressed as radius of gyration (Rg), and the energy barriers (ΔG) of the two stages during the passive diffusion 
process.
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15 kJ mol−1 for MMAE and 20 kJ mol−1 for DM1compared to the ionized compounds). The desorption step to 
enter the water phase presents free energy barriers in the range 40–55 kJ mol−1 for linker-cleaved payloads. The 
zwitterionic Lys-SMCC-DM1 presents a larger barrier of around 75 kJ mol−1. Conversely, the uncleaved linkers 
DXd1-Linker and SMCC-DM1 show a relatively small flip-flop energy barrier (20 kJ mol−1 and 25 kJ mol−1 for 
the DXd1-Linker and SMCC-DM1 molecules, respectively).

The desorption energies are higher than the other molecules considered (80  kJ mol−1 for DXd1-Linker 
and 75  kJ mol−1 for SMCC-DM1). The similarity observed between the Lys-SMCC-DM1, DXd1 linker, and 
SMCC-DM1 suggests that the linker contributes to the effect beyond merely the presence of ionizable groups. 
Hydrophobicity and molecular size are recognized as factors that influence the molecular permeability15,28. 
Hydrophobicity can be estimated using the AlogP fragmental model, which is based on empirical data from 
a large set of molecules29. The radius of gyration (Rg), averaged over the production MD simulation, provides 
an estimate of the molecular size. Table 1 summarizes the values for AlogP and Rg for the different payloads. 
Interestingly, payload size appears to negatively impact the desorption process. Larger values, corresponding to 
the uncleaved linker payloads (Lys-SMCC-DM1, SMCC-DM1 and DXd1-Linker), correlate with the higher ΔG 
values for the desorption process, as observed in Table 1 and Fig. 3e. However, the influence of hydrophobicity, 
as calculated with the AlogP model, seems to be marginal for both the flip-flop and the desorption steps. For 
instance, despite different AlogP values for DXd1 and MMAE (− 0.25 and 3.10, respectively; see Table 1) their 
flip-flop ΔG values are comparable (20 kJ mol−1 and 15 kJ mol−1, respectively; see Table 1). A similar observation 
can be made when comparing the AlogP values of DM1, SMCC-DM1 and DXd1-Linker molecules (3.0, 7.1 
and 1.05, respectively; see Table 1) with their flip-flop ΔG values (20 kJ mol−1, 25 kJ mol−1 and 20 kJ mol−1, 
respectively; see Table 1).

Discussion
ADCs have emerged as some of the most active drugs in cancer treatment1. This study demonstrates the critical 
influence of payload ionization and linker characteristics on ADC design, particularly regarding their effects 
on membrane permeability and the bystander effect. The results highlight the importance of understanding the 
fundamental mechanisms of passive diffusion, including the flip-flop and desorption processes, to optimize the 
therapeutic efficacy of ADCs.

Mechanisms of passive diffusion
Passive diffusion across cell membranes consists of two primary processes: flip-flop and desorption. The flip-flop 
mechanism involves the movement of molecules from the aqueous phase into the hydrophobic core of the lipid 
bilayer and vice versa. This process is pivotal for the transport of payloads into cells, as the energy required to 
traverse the membrane depends on the molecular nature of the payload. Neutral payloads, such as DXd1 and 
MMAE, exhibit relatively low flip-flop energy barriers (approximately 15–20 kJ mol−1), which facilitates their 
movement across the membrane, resulting in a positive bystander effect. In contrast, payloads with ionizable 
groups, such as DXd2 and MMAF, show significantly higher flip-flop energy barriers (around 75–80 kJ mol−1), 
which impedes their passive diffusion and leads to a negative bystander effect. This discrepancy is attributed to 
the increased difficulty charged groups face when crossing the lipid bilayer.

Our results specifically indicate that the flip-flop step acts as the rate-limiting factor for all the payloads 
considered in this study. While desorption also plays a role in releasing the payload from the lipid bilayer, the 
energy barriers for this process were relatively similar across all cases studied (approximately 40–55 kJ mol−1). 
This observation highlights the predominance of the flip-flop mechanism in determining the bystander effect, 
suggesting that optimizing this process could enhance ADC efficacy.

The role of linker chemistry
An intriguing result emerged from the analysis of the uncleavable Lys-SMCC-DM1 payload, which demonstrated 
similar energy barriers for both the flip-flop and desorption processes, around 70 kJ mol−1. This similarity can be 
attributed to the interplay between the electrostatic effects of ionized groups and the molecular hydrophobicity of 
the payload. The zwitterionic nature of Lys-SMCC-DM1 facilitates electrostatic and hydrogen bond interactions 
with lipid molecules, impeding the flip-flop process. At the same time, the increased hydrophobicity of the 
maytansinoid payload and the linker promotes favorable interactions with lipid hydrocarbon tails, aiding the 
flip-flop process. As a result, the energetic barrier for Lys-SMCC-DM1 is slightly lower than that observed 
for ionizable payloads like DXd2 and MMAF (65  kJ mol−1versus 80  kJ mol−1and 75  kJ mol−1, respectively). 
Furthermore, the linker chemistry appears to influence both the flip-flop and desorption processes. For example, 
the linker-free maytansinoid DM1, a neutral molecule, exhibits a low desorption energy barrier comparable to 
that of DXd1 or MMAE, suggesting its potential for a bystander effect. In contrast, neutral uncleaved linkers 
such as DXd1-Linker and SMCC-DM1 hinder the desorption of the drug from the lipid bilayer interior. This 
is reflected in desorption energy barrier values of 75–80 kJ mol−1, which are associated with the absence of a 
bystander effect. This observation highlights the negative impact of increased hydrophobicity and linker size on 
the desorption process, particularly in the maytansinoid Lys-SMCC-DM1, which presents a desorption barrier 
of 75 kJ mol−1.

Implications of ionization and linker properties
The results indicate that the ionization state of payloads can significantly limit their passive diffusion across 
the lipid bilayer. The two payloads with ionizable groups—DXd2 and MMAF—are relatively insensitive to 
physiological pH gradients due to their respective pKa values (DXd2: 10.4 ± 2.4; MMAF: 2.2 ± 0.9). As a result, 
they remain in their ionized forms, which hinders their escape from the lipid bilayer. Only under extreme pH 
conditions (pH > 10.4 for DXd2 or pH < 2.2 for MMAF) might the neutral forms become accessible, increasing 
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the likelihood of passive diffusion of the payload through the bilayer. Additionally, linkers with bulky structures 
or permanent charges have been observed to increase the desorption barrier and hinder bilayer transport. This 
is in agreement with Giugliani et al. 7 and Ogitani et al.26,27, who reported that greater structural complexity in 
the payload reduces the probability of its release into neighboring cells. Taken together, these findings suggest 
that payload neutrality and linker simplicity favor bilayer permeability, thereby enhancing the bystander effect.

These findings are consistent with previous studies, which highlight how both the chemical properties of the 
payload and the linker influence drug release, diffusion, and ultimately, the bystander effect2,7. At the same time, 
these results reinforce the hypothesis that modifying the physicochemical properties of both the payload and 
the linker could be a viable strategy to optimize the efficacy of ADCs in cancer therapies23,30,31. A reduction in 
the energy barriers for both flip-flop and desorption could potentially enhance the therapeutic index of ADCs, 
facilitating improved delivery of cytotoxic agents to neighbouring cells and reducing off-target effects.

Computational findings compared with previously reported experimental works
The computational findings align with previously reported experimental data, supporting the validity of the 
applied approach. The observed bystander effect in DXd1 and MMAE is consistent with experimental studies 
demonstrating their ability to diffuse across membranes7,26,27. While direct experimental studies on DXd2 and 
MMAF payloads are not available (to the best of our knowledge), several studies have investigated the general 
impact of molecular charge on membrane permeability. For instance, Liu et al. and Yamaguchi et al. reported 
that charged molecules display restricted diffusion across zwitterionic membranes, consistent with those utilized 
in this work32,33.

Broader implications
The insights gained from this study have broad implications for ADC design and optimization. Our findings 
provide both theoretical and practical knowledge for researchers and clinicians working on targeted cancer 
therapies. By integrating computational modeling with drug development strategies, this study is highly relevant 
for oncologists, clinical researchers exploring novel ADC therapies for cancer, and medical chemists focusing 
on linker chemistry and payload optimization. Furthermore, computational biologists and bioinformaticians 
involved in in silico drug discovery, as well as professionals in the pharmaceutical industry working on ADC-
based treatments, will benefit from these results. Academic institutions studying targeted cancer therapies and 
membrane transport mechanisms can also leverage these findings to guide future research in ADC development.

Looking ahead, future studies could explore the role of membrane components such as cholesterol, 
which influences passive diffusion by modulating membrane fluidity and permeability. Increased cholesterol 
content generally reduces membrane fluidity and enhances hydrophobicity, decreasing permeability to 
molecules ranging from small species like molecular oxygen to larger nanoparticles34,35. However, the effects 
of cholesterol are complex and may depend on factors such as the specific lipid composition of the membrane 
and the physicochemical properties of the diffusing molecules. Investigating these aspects will further refine our 
understanding of ADC transport mechanisms and aid in the design of more effective therapies.

Methods
Structural models
Structure of anti-HER2 ADC payloads
Three cytotoxic payloads currently used in ADC therapies have been examined, namely, deruxtecan (DXd1 
and DXd2)26, auristatins (MMAE and MMAF)36, and emtansine3. The two deruxtecan derivatives differ in the 
hanging group resulting from the linker cleavage process. The presence of a self-immolative group as part of the 
DXd1 ADC linker system leads to a primary hydroxyl group, whereas DXd2 retains an amino group coming 
from the tetrapeptide cleavage step37. Auristatins MMAE and MMAF are composed of five amino acids. MMAE 
consists of norephedrine, dolaproline, dolaisoleuine, valine, and monomethyl valine. In MMAF, the C-terminal 
norephedrine is replaced by phenylalanine, resulting in a carboxylate end group. For those auristatins, the lowest 
energy cis conformer, which corresponds to the drug bioactive form, was selected38,39. Regarding the emtansine 
payload, it has been considered the non-cleavable linker as part of the simulated molecule (Lys-SMCC-DM1). 
In addition to the maytansinoid base molecule (DM1) taken for comparison with the reference Lys-SMCC-DM1 
payload40, two additional compounds have been studied to assess the role of the linker in the bystander effect. 
The first compound was constructed by integrating the tetrapeptide linker found in deruxtecan into the DXd1 
payload, simulating a scenario where it remains attached to the drug molecule post-cleavage (DXd1-Linker in 
Fig. 1)26. The second compound corresponds to a neutralized version of the zwitterionic Lys-SMCC-DM1, in 
which the NH3

+ and COO- charged groups have been substituted with CH3 groups (SMCC-DM1 in Fig. 1).

pKa estimation procedure
Given the relevance of payload ionization, first-principles models have been applied to estimate their pKa data. 
Specifically, the Born-Haber thermodynamic cycle was chosen to estimate the pKa values for the ionizable 
molecules (see Fig. 4a)41. A mathematical expression to calculate the free energy (∆Gaq) of the equilibrium 
reaction: HA (aq) ⇌ A− (aq) + H+ (aq) can be derived from the cycle in Fig.  3a: ∆Gaq =Ggas

(
A−)

−
6.28 − Ggas (AH) + Eaq

(
A−)

− Egas

(
A−)

− 265.9 − Eaq (HA) + Egas (HA) + RT ln [24.46], where 
G represents the sum of electronic and thermal free energies and E are electronic energies. All calculations were 
performed using the Gaussian 16 software42 using the M06-2X functional43. For conformational analysis after 
geometry optimization of the molecular structures, the 6-31G(d) and 6-31G + (d) basis sets were used for bases 
and acids, respectively, for frequency calculations on the optimized structures. The SMD implicit solvent model 
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was used for the systems in aqueous solution44. The −6.28 and −265.9 values correspond to Ggas

(
H+)

 and 
∆Ggas

(
H+)

, respectively, extracted from the literature45.

In silico strategy for passive diffusion study
Conventional MD simulations face challenges in effectively capturing diffusion across the cell membrane, 
primarily because they often fail to reach the necessary timescales during simulations. Typically, conventional 
MD simulations are limited to short time scales, often in the nanosecond to microsecond range. As a result, they 
might not fully capture the entire diffusion process, especially for larger and complex molecules like cytotoxic 
payloads. To overcome this limitation, a simulation specialized strategy tailored to investigate this process has 
been implemented.

Force field
The GROMOS 53A7 united atom force field has been selected for all the components of the system46,47. The 
original force field was substantially enhanced in the ATB 3.0 implementation and validated against a broad 
range of experimental data, primarily enthalpies of solvation48. Although the mathematical forms used to 
represent interatomic interactions in the GROMOS 53A7, CHARMM36, and AMBER force fields appear similar 
and are typically calibrated using comparable experimental or computational data, the strategies guiding their 
optimization differ significantly. For instance, force fields like GROMOS have traditionally prioritized fitting 
parameters to reproduce thermodynamic properties—such as vaporization enthalpies, liquid densities, and 
solvation characteristics of small compounds. In contrast, force fields like AMBER and CHARMM tend to focus 
on accurately replicating molecular structural features.

Furthermore, the parameter development methods vary across force fields. CHARMM and AMBER employ 
detailed schemes that assign distinct bonded and non-bonded parameters based on each atom’s chemical 
environment, resulting in a large number of highly specific parameters. Meanwhile, GROMOS adopts a 
more generalized approach by treating molecules as assemblies of functional groups, applying a more limited 
parameter set. The former approach aims to capture fine-grained molecular details, while the latter emphasizes 
generalizability and reduces the risk of overfitting.

For small organic molecules commonly used in medicinal chemistry, particular emphasis is placed 
on accurately reproducing the free energy of solvation—the energy change associated with transferring a 
molecule from the gas phase into a solvent such as water. This property is especially valuable because it can 
be experimentally measured for a wide range of compounds and serves as a reliable benchmark for evaluating 
solute–solvent interactions. These interactions are crucial in biological contexts, such as ligand binding to 
proteins or compound partitioning into biological membranes, both of which involve transitions from aqueous 
solvation to more hydrophobic, less polar environments.

Structure of the lipid bilayer system
The lipid bilayer structure employed corresponds to that described by Poger et al.49, composed of 64 Palmitoyl 
Oleoyl Phosphatidyl Choline (POPC) lipids per monolayer. The structure was obtained from the Automated 
Topology Builder (ATB) website (https://atb.uq.edu.au). It uses a united atom representation of the lipid 
molecule, which accurately reproduces various experimental structural data of the bilayer in the biologically 
relevant liquid-crystalline phase (see Fig. 2b).

Constructing the simulation systems
The POPC bilayer structure was contained within a box with dimensions of [6.5, 6.5, 8.1] nm. As previously 
mentioned, this bilayer was equilibrated according to the specifications outlined by Poger et al.49. Each payload 

Fig. 4.  Methodology to obtain pKa and initial composition of simulated systems. (a) Born-Haber 
thermodynamic cycle for pKa calculation. HA corresponds to the protonated species. (b) On the left the POPC 
and solvated DXd1 boxes in the upper and lower positions are observed; on the right the composition used 
initially for the DXd1/POPC system is depicted.
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was placed in a separated water box of dimensions [6.5, 6.5, 5.0] nm using the tools provided in the GROMACS 
v.2023.2 software suite (http://www.gromacs.org)50. The solvated payload was subjected to a minimization 
protocol and a 10 ns equilibration step through MD simulation, during which all solute atoms were restrained 
to facilitate the relaxation of the water molecules surrounding the payload. To maintain the box dimensions, the 
simulations were performed in the NVT ensemble at a temperature of 310 K. Once equilibrated, the simulation 
box was combined with the POPC bilayer, as shown in Fig. 4b.

Simulation protocol
After system construction, the MD protocol involved the following steps:

	(a)	 Minimization of the entire system to eliminate possible atomic bumps, mainly among water molecules 
coming from the lipid and payload original boxes. The Steepest Descent algorithm was used until maxi-
mum force converged below 1,000 kJ mol-1 nm-1.

	(b)	 Equilibration of the minimized system with lipids and payload molecules restrained for 50 ns in the NPT 
ensemble to allow further relaxation of water molecules around the solutes.

	(c)	 MD simulation of approximately 2 μs in the NPT ensemble until a steady-state was observed, characterized 
by payload adsorption at the interface between the polar head groups and the hydrocarbon core of the lipid 
bilayer.

	(d)	 Production MD simulation of 1 μs in the NPT ensemble to collect and analyze structural data for each 
system.

Production MD simulations (step d) were performed in triplicate to assess the reproducibility of the observed 
structural properties. A time step of 2  fs has been selected, adopting the Single Point Charged model (SPC) 
for water molecules51 . Simulations were performed in two different ensembles, semi-isotropic NPT and NVT. 
The V-rescale thermostat with a time constant for coupling of 10 ps and a target temperature of 310 K for the 
equilibration and production stages in semi-isotropic NPT52,53 . In the case of semi-isotropic pressure coupling, 
the C-rescale scheme was followed by coupling separately the bilayer plane dimensions (X and Y) and the 
normal plane to the bilayer (Z dimension)54. Pressure, constant coupling and compressibility took the values of 
1 bar, 5 ps, 4.5 × 10–5 bar−1, respectively. The Verlet buffer cutoff scheme implemented in GROMACS was used to 
calculate the non-bonded interactions using a van der Waals cutoff of 1.2 nm. For the estimation of electrostatic 
interactions, the PME method was applied with a cutoff value of 1 nm, an interpolation order of 4 and a Fourier 
spacing of 0.1255. Periodic boundary conditions were applied at all three directions to remove surface effects and 
mimic the bulk state.

Potential of mean force (PMF) calculation
A combination of non-equilibrium pulling and umbrella sampling was used to evaluate the PMF of each payload. 
The process was initiated from the final structures obtained in the previous unrestricted MD simulations and 
performed the following steps:

	(a)	 Non-equilibrium payload pulling from the MD equilibrium configuration towards the bilayer interior was 
conducted. This involved using two reaction coordinates: the distance between the center of mass (COM) 
of the lower layer of P lipid atoms and the payload COM, and the center of mass of the charged group rel-
ative to the cylinder of phosphorus atoms in the lower lipid layer. Position restraints were imposed on the 
phosphorus atoms to prevent lipid molecule dragging. The designed protocol applied an umbrella potential 
with a force constant of K = 1,000 kJ mol−1 nm−1 to each coordinate, with a pulling velocity of 1 × 10–5 nm 
ps−1 over a total of 300 ns pulling simulation.

	(b)	 Non-equilibrium pulling from the MD equilibrium configuration of the payloads towards the nearby water 
solution phase was conducted using the same two coordinates. In this case, position restraints for the phos-
phorus atoms were not considered.

	(c)	 An umbrella sampling procedure was followed for each of those non-equilibrium MDs. From each pulling 
simulation, 72 frames equally spaced along the trajectory were extracted, corresponding to roughly a 0.4 Å 
separation between samples. Each frame underwent a simulation protocol similar to that described in the 
pulling steps, with coordinate velocities set to 0.0 nm ps−1 over a total of 30 ns time for each sample.

	(d)	 The PMF was estimated using the Weighted Histogram Analysis Method (WHAM)56. The trajectories col-
lected in the umbrella sampling procedure were subjected to WHAM analysis, considering information 
from both reaction coordinates. The last 20 ns of each window in the WHAM procedure were used, yielding 
the desired PMF and histograms of coordinate distribution along the total number of windows. Histogram 
distributions sufficiently overlapped in each coordinate were ensured.

Data availability
The atomistic structures of both DXd1 and DXd2 analogues were obtained from the Pubchem repository (Pu-
bChem CIDs: 118305111 and118305229). The atomistic structures of MMAE and MMAF were obtained from 
the PubChem repository (PubChem CIDs: 11542188 and 10395173). The three-dimensional structures of the 
maytansinoids DM1 and Lys-SMCC-DM1 were derived from the structural data in complex with tubulin pres-
ent in the Protein Data Bank (PDB) database (PDB Entry: 5SBA). All data supporting the findings in this study 
are available within the paper, the Supplementary Video, or from the corresponding author upon reasonable 
request.
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