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Rare diseases, such as Mucopolysaccharidosis (MPS), present significant challenges to the healthcare 
system. Some of the most critical challenges are the delay and the lack of accurate disease diagnosis. 
Early diagnosis of MPS is crucial, as it has the potential to significantly improve patients’ response to 
treatment, thereby reducing the risk of complications or death. This study evaluates the performance 
of different machine learning (ML) models for MPS diagnosis using electronic health records (EHR) 
from the Abu Dhabi Health Services Company (SEHA). The retrospective cohort comprises 115 
registered patients aged ≤ 19 Years old from 2004 to 2022. Using nested cross-validation, we trained 
different feature selection algorithms in combination with various ML algorithms and evaluated 
their performance with multiple evaluation metrics. Finally, the best-performing model was further 
interpreted using feature contributions analysis methods such as Shapley additive explanations (SHAP) 
and Local Interpretable Model-Agnostic Explanations (LIME). We found that Naive Bayes trained on 
the domain expert selected features reported a superior performance with an accuracy of 0.93 (0.08), 
AUC of 0.96 (0.04), F1-score of 0.91 (0.1), and MCC of 0.86 (0.16). SHAP and LIME analysis that were 
conducted on the best-performing model highlighted key features related to dental manifestations 
and respiratory infections which are commonly presented in MPS patients, such as acute gingivitis, 
accretions on teeth, dental caries, acute pharyngitis, acute tonsillitis, and acute bronchitis. This 
study introduces a cost-effective screening approach for MPS disease using non-invasive EHR, which 
contributes to the advances in digital screening tools for the early diagnosis of rare diseases.
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Rare diseases are complex, chronic, life-threatening (majority), and disabling conditions1–3. 50% to 75% of rare 
diseases target children, of whom 30% don’t live to celebrate their fifth birthday1,4. While 80% of rare diseases 
are genetic diseases, the rest are caused by external factors such as environment, infectious, or unknown1,5–7. 
Globally, the disease is categorized as a rare disease when it affects fewer than 1 in 2,000 in the European Union 
or less than 200,000 in the USA1,3–5. Recently, more than 7,000 rare diseases have been identified, affecting more 
than 350 to 400 million people worldwide1,4,5,8. Out of the 7,000 cases, only 5% have an approved treatment9. 
Rare diseases impose several unique challenges on the economy and healthcare system. In 2016, the USA 
Healthcare Cost and Utilization Project (HCUP) reported that the overall estimated cost related to rare diseases 
is $768 billion, comparable with $880 billion for common diseases3,6.

Patients living with RDs faced multiple challenges due to the lack of accurate and timely diagnosis; on 
average, physicians took approximately 7.6 years in the USA and 5.6 years in the U.K. to accurately diagnose 
the diseases, with multiple misdiagnoses throughout the way4,7,10. This delay in rare disease diagnosis can be 
explained by several aspects, such as limitations in disease perception, limited knowledge of the disease by 
the primary physician due to the small size of the affected population, and unavailable diagnostic tests and 
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facilities.6,9,10. Unfortunately, the delay in finding the proper disease diagnosis can lead to the death of the 
patients after undergoing a painful journey of mistreatment and misdiagnosis10. Moreover, it is important to 
note that a lot of patients still live with the rare condition without being properly diagnosed11.

Those challenges motivated the launch of several initialize dedicated to early rare disease diagnosis and 
screening, such as the Korean Genetic Diagnosis Program for Rare Diseases (KGDP) Phase I and II6, International 
Rare Diseases Research Consortium (IRDiRC)7, and Alabama Genomic Health Initiative (AGHI)12. Most of 
those initialized focused on screening patients by targeting highly suspicious individuals, as recommended 
by their healthcare providers12. This is followed by confirming the case using conventional methods such as 
genome-based or exome-based gene panel/genomic sequencing6,11–13. In a similar vein and with the availability 
of electronic records, several works focused on utilizing the disease phenotype, image, and fluids to build disease 
diagnosis support systems14. Notably, one study proposed a phenotypic similarity algorithm based on calculating 
the one-to-all rank. The study focused on finding the patients’ disease phenotype and comparing it with existing 
and annotated diseases7. Medical records or electronic health records (EHRs) are equally important in disease 
diagnosis as the conventional methods. Those records provide an efficient and cost-effective way for early disease 
diagnosis to improve patient outcomes and disease management15. Unfortunately, to date, only a limited number 
of studies and efforts have been allocated to utilizing EHRs in rare disease landscapes.

Given the scarcity of rare diseases and the challenges associated with their diagnoses, recent research has 
turned towards leveraging artificial intelligence (AI) technologies to predict RD conditions. Brasil et al.4 explored 
the potential and challenges of using AI in various aspects of rare diseases. It looked into how AI could be 
used for diagnosing and understanding rare diseases, developing treatments, maintaining patient registries, and 
managing health records. The study highlighted the significant impact AI could have on people affected by rare 
diseases. Although various medical decision support systems exist to guide diagnosis and medical treatment, 
the majority utilized statistical approaches, not AI techniques16,17. AI technologies are not widely used in rare 
disease diagnosis due to the complexity of rare disease characteristics and the limited number of patients with 
similar phenotypes, disease severity, presentation, and progression18. Therefore, our study will be the first to fill 
the gap by training different AI models and comparing their performance using EHR data to diagnose patients 
with mucopolysaccharidosis (MPS), a rare metabolic disease.

Mucopolysaccharidoses (MPS) are a group of inherited inborn errors of metabolism disorders caused by 
different enzyme deficiencies involved in the breakdown of glycosaminoglycans. MPS is a progressive multisystem 
disorder with a heterogeneous spectrum of symptoms that varies based on the severity and the subcategory 
of MPS. The patients with MPS present with recurrent respiratory tract infections (upper respiratory tract 
infection, acute tonsilitis, pharyngitis, bronchiolitis, bronchitis, pneumonia) as well as recurrent otitis media. 
The other clinical presentations of these disorders are coarse facial features, macrocephaly, corneal clouding, 
inguinal or umbilical hernia, hepatosplenomegaly, valvular heart disease, dysostosis multiplex, limitation of 
joint movement, and gibbus deformity. In the severe form of the disease, they might present with hydrocephalus 
and developmental delay19–21.

In recent years, research efforts have been directed toward employing AI techniques in various healthcare 
applications such as: disease diagnosis, drug discovery and development, precision medicine, and clinical trials. 
Garavand et. al22 used machine learning to build a diagnostic model for coronary artery disease (CAD) based 
on clinical examination features. They compared different ML models for their effectiveness in diagnosing 
CAD cases, highlighting the potentials of SVM and RF ML models in detecting CAD patients from clinical 
examination data. Moreover, Ghaderzadeh et. al23 reviewed various studies that focus on the use of AI to 
address the antimicrobial resistance in the discovery and development of drugs, which showed the capabilities 
of AI models in recognizing new antimicrobial compounds, enhance existing drugs to takle the antimicrobial 
resistance, and forecasting drug resistance.

Concerning the utilization of AI techniques in precision medicine, Pudjihartono et al.24 discussed the 
strengths and weaknesses of different feature selection methods, namely filter, wrapper, and embedded methods, 
that could be used to overcome the curse of dimensionality challenge presented in the genotype data to build 
more accurate disease risk prediction models based on patients genetic data, contributing to the advances of AI 
tools in precision medicine. Additionally, a study by Carlier et al.25 applied ML approaches in designing an in 
silico clinical trial for a pediatric rare disease. They examined bone morphogenetic protein (BMP) treatment for 
congenital pseudarthrosis of the tibia (CPT) diseasee; by proposing an unsupervised ML model, namely ward 
hierarchical clustering, to cluster the virtual subject population into different groups based on their response to 
the BMP treatment along with the supervised Random Forest ML algorithm to identify the potential biomarkers 
in predicting the effectiveness of the therapy. Overall, AI-based methods have resolved many challenges in the 
field of healthcare.

Although AI has had noticeable and successful applications in healthcare, there is still a lack of research 
directed toward applying machine learning models—subfields of AI—for MPS early diagnosis in specific and 
rare diseases in general. In this study, we aim to fill the gap by implementing and comparing the performance of 
different machine learning models trained on de-identified and unstructured patients’ diagnosis data extracted 
from the Abu Dhabi Health Services Company (SEHA) healthcare system for early diagnosis of MPS diseases. 
Furthermore, we will explain and interpret the best model internal behavior and decision using SHapley Additive 
exPlanations (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME) methods to understand and 
report the features that directed the model decision and its clinical validity. The key contributions of this work 
can be summarized as follows. 

	1.	 This is the first study to utilize AI and EHR data for MPS early diagnosis.
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	2.	 We trained and compared the performance of nine machine learning models across five feature selection 
methods: four automated feature selection methods and one feature selection based on domain experts’ 
knowledge.

	3.	 We interpreted the best-performing model using SHAP and LIME, and clinically validated its outcomes 
using domain expert feedback.

	4.	 Our work validates the applicability of machine learning for MPS diagnosis using only disease symptoms. 
This offers a non-invasive and cost-effective screening for MPS patients using EHR.

Results
Our cohort includes registered patients aged 2 to 19 years old at SEHA from 2004 to 2022 (Fig. 1). A total of 
106 patients (37 MPS patients and 69 control) were eligible to be included in the study. For those patients, we 
extracted 1186 historical medical diagnoses such as dental caries on smooth surface penetrating into dentin, 
acute pharyngitis due to other specified organisms, epistaxis, diarrheal, obesity, etc., to train the various machine 
learning models. Using nested cross-validation, we trained different combinations of the ML models and feature 
selection algorithms. Across the five cross-validation folds, the dataset had an average skewness of 2.53 (± 0.09) 
and kurtosis of 4.42 (± 0.46) before balancing. After applying SMOTE, the skewness increased to 2.98 (± 0.08) 
and kurtosis to 6.89 (± 0.48).

Table 1 presents the average performance of the nine algorithms on the unseen / testing data as reported 
by the nested cross-validation. The Naive Bayes (NB) model trained on the domain experts’ features reported 
the overall best results, with Accuracy 0.93 (s.e. 0.08), Area Under the Receiver Operating Characteristics 
Curve (AUC): 0.96 (s.e. 0.04), Mathew’s Correlation Coefficient (MCC) 0.86 (s.e. 0.16), F1-score 0.91 (s.e. 0.1), 
Negative Predictive value (NPV) 0.98 (s.e. 0.03), Positive Predictive value (PPV) 0.86 (s.e. 0.15), Specificity (SP) 
0.90 (s.e. 0.12), and Sensitivity (SE) 0.97 (s.e. 0.06). Figure 2 illustrates the ROC curve of NB for each of the five 
cross-validation folds. Moreover, Fig. 3 shows the best-case confusion matrix for NB for each of the five cross-
validation folds. In each matrix, the model achieves a high count of true-positives and true-negatives showing 
that the classifier consistently distinguishes MPS versus control with few misclassification. For the AdaBoost 
model, the highest AUC reported is 0.95 by training the model using Chi-Square and expert features. For the 
decision tree, KNN, and MLP, mutual information features provided the best results over all the evaluation 
metrics (decision tree: Accuracy: 0.87, AUC: 0.9, F1-score: 0.75, and MCC: 0.84; KNN Accuracy: 0.84, AUC: 
0.9, F1-score: 0.7, and MCC: 0.81 and MLP: Accuracy: 0.93, AUC: 0.95, F1-score: 0.84, and MCC: 0.9). While 
for Gradient Boosting and Random Forest, the best-reported results were based on the models trained on the 
Chi-square features; where Gradient Boosting reported Accuracy: 0.87, AUC: 0.92, F1-score: 0.74, and MCC: 
0.84 and Random Forest reported Accuracy: 0.85, AUC: 0.91, F1-score: 0.72, and MCC: 0.83. Finally, for SVC, 
select from a model based on logistic regression features selection stated the highest performance reported for 
detecting MPS patients: Accuracy: 0.86, AUC: 0.92, F1-score: 0.75, and MCC: 0.84.

After finding the best model based on the best-reported performance in the evaluation metrics, which is NB 
trained on the domain expert, we conduct further analysis to understand and interpret the models’ decisions and 
explain why the model reached the reported conclusions using the SHAP and LIME summary plots. Figure 4 
shows the importance of the features in order from highest to lowest reported by SHAP analysis. Following is 
the order of top 15 features from the most important to the least: acute gingivitis, plaque-induced, accretions 
on teeth, body mass index (BMI) pediatric, greater than or equal to 95th percentile for age, chronic gingivitis, 
plaque-induced, dental caries on smooth surface penetrating into dentin, acute pharyngitis, unspecified, 
acute tonsillitis due to other specified organisms, dental caries extending into dentine, acute tonsillitis due to 
other specified organisms, acute tonsillitis, unspecified, acute pharyngitis, acute bronchitis, nasal congestion, 
chronic rhinitis, and wheezing. Additionally, the feature importance of the best performing model is visualized 
using LIME method in Fig. 5. The top 15 features ordered by LIME from the most important to the least are: 
accretions on teeth, acute pharyngitis, unspecified, acute gingivitis, plaque-induced, acute pharyngitis, chronic 
gingivitis, plaque-induced, dental caries extending into dentine, dental caries on smooth surface penetrating 
into dentin, body mass index (BMI) pediatric, greater than or equal to 95th percentile for age, nasal congestion, 
acute tonsillitis due to other specified organisms, acute bronchitis, chronic rhinitis, acute tonsillitis due to other 
specified organisms, acute upper respiratory infection, and acute tonsillitis.

Data from SEHA from 12/11/2004 to 17/5/2022 
MPS: 41 patients; Control: 74 patients

MPS: 37 patients; Control: 69 patients

Total of 106 included with 1186 variables represent
previous diagnosis

1. Delete MPS patients with only diagnosis infromation
after diagnosis with MPS.
2. Delete patients without any diagnosis infroamtion.

Fig. 1.  Study cohort selection flow diagram. Patient selection criteria and training and testing sets splitting of 
the dataset.
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Models Metrics All Chi-Square Experts Select From Model Lasso Mutual Info BAT GA

AdaBoost

Accuracy 0.85 (0.13) 0.89 (0.09) 0.89 (0.10) 0.86 (0.14) 0.86 (0.14) 0.88 (0.08) 0.85 (0.07) 0.84 (0.11)

AUC 0.91 (0.10) 0.95 (0.06) 0.95 (0.04) 0.92 (0.10) 0.89 (0.12) 0.95 (0.06) 0.91 (0.05) 0.91 (0.09)

Matthews 0.71 (0.25) 0.77 (0.19) 0.77 (0.20) 0.73 (0.26) 0.72 (0.29) 0.75 (0.16) 0.71 (0.15) 0.69 (0.20)

F1-score 0.82 (0.15) 0.85 (0.12) 0.86 (0.12) 0.83 (0.15) 0.83 (0.17) 0.84 (0.10) 0.81 (0.09) 0.81 (0.12)

NPV 0.94 (0.09) 0.94 (0.06) 0.95 (0.07) 0.94 (0.09) 0.93 (0.11) 0.95 (0.07) 0.95 (0.07) 0.93 (0.04)

PPV 0.75 (0.18) 0.81 (0.13) 0.81 (0.14) 0.77 (0.18) 0.77 (0.19) 0.78 (0.09) 0.73 (0.10) 0.75 (0.17)

SP 0.81 (0.16) 0.88 (0.08) 0.87 (0.11) 0.83 (0.16) 0.84 (0.14) 0.85 (0.08) 0.81 (0.08) 0.81 (0.16)

SE 0.92 (0.11) 0.90 (0.11) 0.92 (0.11) 0.92 (0.11) 0.90 (0.16) 0.92 (0.11) 0.92 (0.11) 0.89 (0.06)

Decision Tree

Accuracy 0.84 (0.11) 0.85 (0.13) 0.83 (0.11) 0.86 (0.12) 0.84 (0.11) 0.87 (0.12) 0.84 (0.18) 0.83 (0.11)

AUC 0.87 (0.11) 0.88 (0.13) 0.88 (0.10) 0.88 (0.11) 0.89 (0.08) 0.90 (0.11) 0.84 (0.19) 0.83 (0.11)

Matthews 0.70 (0.20) 0.70 (0.27) 0.63 (0.25) 0.74 (0.22) 0.71 (0.20) 0.75 (0.22) 0.68 (0.35) 0.66 (0.21)

F1-score 0.80 (0.13) 0.81 (0.16) 0.75 (0.18) 0.84 (0.13) 0.81 (0.12) 0.84 (0.13) 0.80 (0.21) 0.76 (0.16)

NPV 0.93 (0.08) 0.93 (0.11) 0.89 (0.11) 0.96 (0.05) 0.95 (0.07) 0.95 (0.07) 0.90 (0.14) 0.89 (0.08)

PPV 0.79 (0.21) 0.75 (0.18) 0.74 (0.13) 0.77 (0.18) 0.75 (0.18) 0.79 (0.17) 0.78 (0.22) 0.81 (0.20)

SP 0.82 (0.19) 0.83 (0.13) 0.85 (0.09) 0.81 (0.18) 0.80 (0.17) 0.84 (0.17) 0.84 (0.20) 0.85 (0.18)

SE 0.86 (0.18) 0.90 (0.16) 0.78 (0.24) 0.95 (0.07) 0.92 (0.13) 0.92 (0.13) 0.84 (0.22) 0.78 (0.22)

NB

Accuracy 0.85 (0.10) 0.88 (0.08) 0.93 (0.08) 0.91 (0.09) 0.85 (0.12) 0.86 (0.06) 0.81 (0.11) 0.83 (0.13)

AUC 0.89 (0.09) 0.92 (0.09) 0.96 (0.04) 0.92 (0.07) 0.92 (0.12) 0.93 (0.07) 0.80 (0.12) 0.84 (0.13)

Matthews 0.71 (0.20) 0.75 (0.16) 0.86 (0.16) 0.80 (0.19) 0.69 (0.24) 0.73 (0.12) 0.60 (0.24) 0.66 (0.25)

F1-score 0.81 (0.13) 0.84 (0.10) 0.91 (0.10) 0.88 (0.12) 0.81 (0.14) 0.83 (0.07) 0.73 (0.15) 0.79 (0.15)

NPV 0.94 (0.06) 0.95 (0.07) 0.98 (0.03) 0.95 (0.07) 0.92 (0.08) 0.97 (0.05) 0.86 (0.10) 0.90 (0.09)

PPV 0.76 (0.17) 0.78 (0.09) 0.86 (0.15) 0.84 (0.13) 0.76 (0.16) 0.74 (0.09) 0.75 (0.18) 0.75 (0.19)

SP 0.83 (0.15) 0.85 (0.08) 0.90 (0.12) 0.90 (0.08) 0.84 (0.13) 0.81 (0.08) 0.85 (0.10) 0.83 (0.16)

SE 0.89 (0.12) 0.92 (0.11) 0.97 (0.06) 0.92 (0.11) 0.87 (0.13) 0.95 (0.07) 0.74 (0.18) 0.84 (0.14)

Gradient Boosting

Accuracy 0.85 (0.14) 0.87 (0.11) 0.86 (0.12) 0.84 (0.14) 0.83 (0.12) 0.86 (0.12) 0.84 (0.12) 0.86 (0.14)

AUC 0.89 (0.08) 0.92 (0.06) 0.92 (0.07) 0.90 (0.10) 0.89 (0.11) 0.89 (0.07) 0.91 (0.08) 0.90 (0.12)

Matthews 0.70 (0.29) 0.74 (0.21) 0.72 (0.22) 0.67 (0.29) 0.66 (0.26) 0.72 (0.25) 0.67 (0.25) 0.72 (0.29)

F1-score 0.81 (0.17) 0.84 (0.12) 0.82 (0.13) 0.79 (0.18) 0.78 (0.15) 0.82 (0.15) 0.79 (0.16) 0.82 (0.18)

NPV 0.92 (0.10) 0.95 (0.08) 0.92 (0.08) 0.89 (0.11) 0.92 (0.11) 0.94 (0.09) 0.91 (0.10) 0.92 (0.10)

PPV 0.76 (0.19) 0.77 (0.13) 0.79 (0.17) 0.77 (0.19) 0.72 (0.14) 0.77 (0.17) 0.74 (0.15) 0.79 (0.22)

SP 0.84 (0.14) 0.84 (0.12) 0.86 (0.14) 0.85 (0.13) 0.81 (0.11) 0.84 (0.14) 0.84 (0.09) 0.85 (0.15)

SE 0.87 (0.15) 0.92 (0.11) 0.87 (0.13) 0.82 (0.17) 0.87 (0.18) 0.89 (0.15) 0.84 (0.17) 0.87 (0.15)

K-Neighbors Accuracy 0.77 
(0.15)

0.83 (0.11) 0.81 (0.09) 0.78 (0.15) 0.81 
(0.14)

0.84 (0.10) 0.73 
(0.15)

0.67 
(0.03)

AUC 0.85 (0.11) 0.89 (0.10) 0.88 (0.07) 0.86 (0.11) 0.86 (0.13) 0.90 (0.09) 0.84 (0.14) 0.82 (0.08)

Matthews 0.60 (0.22) 0.70 (0.18) 0.67 (0.14) 0.63 (0.23) 0.62 (0.28) 0.70 (0.17) 0.57 (0.23) 0.48 (0.05)

F1-score 0.75 (0.13) 0.81 (0.11) 0.79 (0.09) 0.76 (0.15) 0.76 (0.17) 0.81 (0.10) 0.73 (0.14) 0.67 (0.03)

NPV 0.96 (0.05) 0.96 (0.05) 0.98 (0.04) 0.97 (0.07) 0.90 (0.09) 0.96 (0.05) 0.97 (0.06) 0.98 (0.05)

PPV 0.64 (0.17) 0.72 (0.15) 0.67 (0.12) 0.66 (0.20) 0.71 (0.19) 0.72 (0.12) 0.59 (0.18) 0.51 (0.02)

SP 0.67 (0.24) 0.77 (0.16) 0.72 (0.13) 0.68 (0.24) 0.80 (0.15) 0.78 (0.13) 0.60 (0.22) 0.51 (0.06)

SE 0.94 (0.08) 0.95 (0.07) 0.97 (0.06) 0.94 (0.13) 0.84 (0.15) 0.95 (0.07) 0.97 (0.06) 0.97 (0.06)

Logistic 
Regression

Accuracy 0.83 (0.13) 0.86 (0.11) 0.88 (0.08) 0.84 (0.11) 0.84 (0.12) 0.85 (0.10) 0.85 (0.13) 0.87 (0.14)

AUC 0.93 (0.07) 0.92 (0.13) 0.95 (0.06) 0.93 (0.08) 0.91 (0.10) 0.93 (0.09) 0.90 (0.13) 0.92 (0.11)

Matthews 0.69 (0.22) 0.72 (0.21) 0.78 (0.14) 0.70 (0.20) 0.69 (0.22) 0.72 (0.18) 0.71 (0.24) 0.75 (0.27)

F1-score 0.81 (0.13) 0.83 (0.12) 0.85 (0.09) 0.81 (0.12) 0.81 (0.13) 0.82 (0.10) 0.82 (0.14) 0.84 (0.16)

NPV 0.94 (0.06) 0.93 (0.07) 0.98 (0.03) 0.95 (0.05) 0.93 (0.07) 0.96 (0.05) 0.94 (0.09) 0.94 (0.09)

PPV 0.73 (0.19) 0.78 (0.17) 0.77 (0.14) 0.74 (0.17) 0.75 (0.17) 0.73 (0.12) 0.75 (0.15) 0.78 (0.19)

SP 0.78 (0.19) 0.84 (0.14) 0.83 (0.13) 0.80 (0.16) 0.81 (0.16) 0.80 (0.14) 0.81 (0.15) 0.84 (0.16)

SE 0.92 (0.07) 0.89 (0.11) 0.97 (0.06) 0.92 (0.07) 0.89 (0.12) 0.95 (0.07) 0.92 (0.11) 0.92 (0.11)
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Discussion
Mucopolysaccharidosis (MPS) represents a group of rare inherited metabolic disorders characterized by 
the deficiency of lysosomal enzymes essential for the degradation of glycosaminoglycans (GAG), leading to 
their accumulation within cells and subsequent systemic symptoms26,27. MPS encompasses seven subtypes, 
each associated with distinct enzyme deficiencies and clinical manifestations28. The prevalence of MPS varies 
significantly across different populations, with certain ethnicities exhibiting higher incidences29. The infrequency 
of MPS poses significant challenges in diagnosis and management, further complicated by the wide spectrum 
of clinical presentations.

To the best of our knowledge, this is the first study that trained and compared the performance of different 
machine learning models to predict MPS cases. We trained nine machine learning models, namely, AdaBoost, 
Decision Tree, Gaussian Naive Bayes, Gradient Boosting Classifier, K-nearest Neighbors’ Algorithm, Logistic 
Regression, Multi-layer Perceptron Classifier, Random Forests, and Support Vector Classification in a 
combination of five features selection methods: Chi-square feature selection, domain experts feature set, select 
from the model (logistic Regression), Lasso 5-fold feature selection, Mutual information, Bat Algorithm, Genetic 
Algorithm using patients past medical history from SEHA medical records, UAE. The models were compared 
using various evaluation metrics such as accuracy, Area Under the Receiver Operating Characteristics Curve, 
F1-score, Matthews Correlation Coefficient, Negative Predictive Value, Positive Predictive Value, Specificity and 
Sensitivity on the unseen datasets.

Overall, NB trained using domain expert features reported the highest performance Accuracy 0.93 (s.e. 0.08), 
AUC 0.96 (s.e. 0.04), Mathew’s coefficient 0.86 (s.e. 0.16), F1-score 0.91 (s.e. 0.1), NPV 0.98 (s.e. 0.03), PPV 
0.86 (s.e. 0.15), SP 0.90 (s.e. 0.12), and SE 0.97 (s.e. 0.06). Figures 4 and 5 represent the features selected by the 
NB model to detect MPS patients at early stages based on expert features. Both SHAP and LIME identified a 
highly consistent set of key features. The highest selected feature, interestingly, were the dental manifestations 
of the disease, mainly acute gingivitis, accretions on teeth, chronic gingivitis, and dental caries. It is well known 
that patients with MPS present with dental anomalies, deviations in eruption, malocclusions, TMJ pathology, 
macroglossia, gingival hyperplasia, and increased risk of caries and periodontal disease30. One of the studies 
reported 76% of patients with MPS IV had experienced dental caries and all patients with MPS showed evidence 
of a generalized unspecified enamel defect, and 43% of them exhibited marginal gingivitis31.

Patients with MPS have poor oral hygiene. These findings maybe as result of difficulties in maintaining 
oral hygiene since some of these patients have intellectual disabilities or restriction of joint movement which 
might affect their brushing techniques, poor follow up with dentist since they do have multiple significant co-
morbidities. Some of the dental procedure require general anesthesia which is challenging in those patients 
because of airway involvement of the disease. Most of the time given the complexity of the disease, their follow 
up is also limited to tertiary centers31–34.

MLP

Accuracy 0.90 (0.13) 0.89 (0.10) 0.91 (0.10) 0.90 (0.11) 0.84 (0.10) 0.93 (0.06) 0.91 (0.09) 0.87 (0.13)

AUC 0.95 (0.06) 0.95 (0.07) 0.94 (0.07) 0.95 (0.06) 0.92 (0.07) 0.95 (0.06) 0.95 (0.06) 0.93 (0.08)

Matthews 0.81 (0.24) 0.78 (0.21) 0.81 (0.19) 0.80 (0.21) 0.67 (0.19) 0.84 (0.13) 0.82 (0.17) 0.74 (0.23)

F1-score 0.88 (0.15) 0.86 (0.13) 0.88 (0.12) 0.88 (0.13) 0.80 (0.11) 0.90 (0.08) 0.88 (0.11) 0.84 (0.14)

NPV 0.96 (0.05) 0.95 (0.07) 0.94 (0.06) 0.95 (0.05) 0.92 (0.06) 0.97 (0.04) 0.96 (0.06) 0.92 (0.05)

PPV 0.84 (0.20) 0.81 (0.16) 0.87 (0.15) 0.84 (0.18) 0.74 (0.12) 0.86 (0.10) 0.85 (0.15) 0.83 (0.20)

SP 0.87 (0.18) 0.87 (0.12) 0.91 (0.12) 0.88 (0.15) 0.83 (0.11) 0.91 (0.06) 0.90 (0.12) 0.87 (0.18)

SE 0.95 (0.07) 0.92 (0.11) 0.90 (0.11) 0.92 (0.07) 0.87 (0.09) 0.95 (0.07) 0.92 (0.11) 0.86 (0.10)

Random Forest

Accuracy 0.85 (0.12) 0.85 (0.11) 0.82 (0.14) 0.85 (0.12) 0.84 (0.11) 0.83 (0.13) 0.87 (0.15) 0.83 (0.12)

AUC 0.90 (0.11) 0.91 (0.09) 0.90 (0.08) 0.90 (0.10) 0.88 (0.10) 0.90 (0.10) 0.91 (0.10) 0.90 (0.10)

Matthews 0.73 (0.21) 0.72 (0.20) 0.70 (0.19) 0.73 (0.21) 0.70 (0.20) 0.70 (0.22) 0.74 (0.30) 0.65 (0.23)

F1-score 0.83 (0.12) 0.83 (0.12) 0.81 (0.11) 0.83 (0.12) 0.81 (0.12) 0.81 (0.13) 0.84 (0.18) 0.78 (0.15)

NPV 0.96 (0.05) 0.96 (0.05) 0.98 (0.03) 0.96 (0.05) 0.95 (0.05) 0.96 (0.06) 0.93 (0.11) 0.89 (0.07)

PPV 0.75 (0.17) 0.74 (0.17) 0.71 (0.16) 0.75 (0.17) 0.74 (0.17) 0.72 (0.18) 0.80 (0.21) 0.76 (0.18)

SP 0.80 (0.17) 0.80 (0.16) 0.74 (0.23) 0.80 (0.17) 0.80 (0.17) 0.77 (0.19) 0.85 (0.15) 0.84 (0.16)

SE 0.95 (0.07) 0.95 (0.07) 0.97 (0.06) 0.95 (0.07) 0.92 (0.08) 0.95 (0.07) 0.90 (0.16) 0.81 (0.16)

SVC

Accuracy 0.83 (0.11) 0.85 (0.13) 0.85 (0.10) 0.86 (0.10) 0.85 (0.11) 0.86 (0.10) 0.79 (0.13) 0.81 (0.18)

AUC 0.93 (0.05) 0.92 (0.09) 0.92 (0.09) 0.92 (0.09) 0.91 (0.10) 0.90 (0.13) 0.85 (0.13) 0.88 (0.15)

Matthews 0.70 (0.18) 0.71 (0.25) 0.71 (0.20) 0.75 (0.16) 0.72 (0.20) 0.72 (0.22) 0.57 (0.27) 0.62 (0.35)

F1-score 0.81 (0.11) 0.82 (0.15) 0.82 (0.12) 0.84 (0.10) 0.83 (0.12) 0.82 (0.14) 0.73 (0.16) 0.77 (0.21)

NPV 0.97 (0.05) 0.94 (0.09) 0.95 (0.08) 0.98 (0.03) 0.96 (0.05) 0.94 (0.09) 0.87 (0.11) 0.88 (0.13)

PPV 0.72 (0.17) 0.75 (0.18) 0.73 (0.12) 0.75 (0.16) 0.74 (0.17) 0.76 (0.15) 0.69 (0.15) 0.73 (0.22)

SP 0.77 (0.18) 0.81 (0.16) 0.81 (0.11) 0.80 (0.16) 0.80 (0.16) 0.84 (0.11) 0.80 (0.14) 0.81 (0.19)

SE 0.95 (0.07) 0.92 (0.11) 0.92 (0.11) 0.97 (0.06) 0.95 (0.07) 0.90 (0.16) 0.79 (0.18) 0.81 (0.20)

Table 1.  The performance of different machine learning models for MPS prediction in the testing set.
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The other identified features of the disease were acute pharyngitis, acute tonsillitis, acute bronchitis, nasal 
congestion. Indeed, recurrent respiratory infection is the most common feature of these disorders. These features 
have been reported in most of the studies, it considered one of the early presentation of patients with MPS 
diseases in the first two year of life35–37.

Body mass index pediatric, greater or equal to the 95 percentiles, means that the cases are within the obese 
range of BMI. Patel et al studied the growth parameter of patients with MPS II and compared it with normal 
control. They have noted that 97% of studied patients had a BMI higher than the mean BMI of the normal 
control38. Another study investigated the natural history of growth parameter from untreated males followed 
prospectively in the Hunter Outcome Survey registry and found that BMI was above average throughout 
childhood until approximately 14–16 years of age39.

Fig. 2.  AUC curve of the best performing model across five folds.
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Most of these features are non-specific to MPS but the combination of these symptoms yields better prediction 
of MPS in our study. It also reflects the local practice of clinicians and their clinical documentation. Moreover, 
it highlights the significant burden of dental manifestations in our patients. In comparison, the data analysis 
of Hurler registry showed that umbilical and inguinal hernia as well as coarse facies and corneal clouding are 
among the early symptoms of patients with MPS I40.

On the other hand, based on the data from the registry of Hunter Outcome Survey the following symptoms 
were considered helpful in the diagnosis of the disease: facial dysmorphism, nasal obstruction or rhinorrhea, 
enlarged tongue, enlarged liver, enlarged spleen, joint stiffness which were given the weight of 2 while the other 
symptoms of hernia, hearing impairment, enlarged tonsils, airway obstruction or sleep apnea were given weight 
of 1. A mnemonic screening tool was developed based on these data with total score of 6 or greater with high risk 
of the MPS II41. Our model identified nasal congestion one of the high risk feature of the disease.

This research offers a cost-effective screening method for RD participants. It utilizes the current medical 
record system powered by AI models, eliminating the need for clinical experts to manually identify and flag 
suspicious undiagnosed cases. We validated the applicability of machine learning models for predicting MPS 
cases using patients’ past medical history from SEHA electronic health records, United Arab Emirates cohort. 
Our finding confirms the power of machine learning to detect rare disease cases, as reported by different 
evaluation metrics that are used to compare different ML models’ performance with unseen data.

Fig. 3.  Confusion matrix of the best performing model across five folds.
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Despite these strengths, our study has several limitations that could be improved upon in future studies. 
First, our study relies exclusively on diagnostic codes from a single healthcare system (SEHA) which is 
limited and may not capture relevant clinical differences. Additionally, because there are no prior studies on 
using machine learning to diagnose MPS using historical EHR data, we lacked an established benchmark for 

Fig. 4.  Variables Importance: Variable importance plot for Naive Bayes trained on the features extracted from 
a domain expert using SHAP analysis.
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comparison and validation. Moreover, the study did not incorporate demographic information or any other data 
modalities which might improve the model’s performance and report more significant predictors for diagnosing 
MPS patients. The study also does not distinguish between MPS subtypes, which ultimately subtype-specific 
outcomes or predictive features. Furthermore, the study’s heavy reliance on EHR, which tends to naturally have 
noise, missing data, could have affected the feature selection and model accuracy. Finally, external validation on 
multi-center, ethnically diverse cohorts is necessary to confirm generalizability before using this framework in 
border clinical settings.

Conclusion
In conclusion, this study presented a machine learning framework for the early diagnosis of MPS relying 
on patients’ historical medical diagnoses extracted from EHR data. We evaluated multiple ML models in 
combination with different feature selection algorithms to efficiently diagnose patients. Our results demonstrate 
that incorporating domain expert-selected features with a Naïve Bayes model achieved the highest diagnostic 
accuracy in identifying MPS patients. Additionally, the feature importance of the best-performing model 
supported the common clinical manifestation presented in MPS disease, highlighting the model’s capabilities in 

Fig. 5.  Variables Importance: Variable importance plot for Naive Bayes trained on the features extracted from 
a domain expert using LIME Analysis.
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capturing MPS disease pathology. The obtained results demonstrate the potential of utilizing ML models with 
historical diagnostic data in RD diagnosis, particularly MPS disease, enabling more efficient and cost-effective 
screening tools. Future research could involve integrating additional clinical data, such as laboratory results, 
imaging, and genetic information, with diagnostic features to further enhance predictive performance and 
contextual insight. Moreover, extending the framework to include larger, multi-center datasets could improve 
generalizability, while exploring MPS subtype classification could offer more precise and personalized diagnostic 
support.

Methods
Data source and study cohort
In this retrospective study, we extracted anonymized patients’ medical records from the Abu Dhabi Health 
Services Company (SEHA) healthcare system. The SEHA dataset is a high-dimensional UAE population 
healthcare data source that includes rich patients’ medical information such as demographics, comorbidity, 
symptoms upon admission, growth parameters, laboratory results, and medications. The final dataset included 
106 patients, of which 37 were diagnosed with MPS and 69 were controls.

Study variables
The study outcome was the diagnosis of MPS; the variable was dichotomized (0 and 1), where one indicates 
MPS positive and zero otherwise. The covariates or independent variables included all patients’ medical history, 
which was also dichotomized to indicate the disease’s presence or absence. In total, we extracted 1186 covariates/
comorbidities covering a wide range of medical conditions. Then after feature selection, the selected features 
were used to train the nine machine learning models. Table 2 presents the features identified by the domain 
expert.

Machine learning framework
Figure 6 presents the study pipeline. We used Scikit-learn v1.3.0 of Python programming language v3.9.17 to 
implement the machine learning models along with Hyperopt v0.2.7 and Imbalanced-learn v0.11.0 python 
packages. We utilized nested-cross validation (double cross-validation) to stratify the dataset into training 
and testing sets, as well as to optimize feature selection algorithms and machine learning model parameters. 
The nested-cross validation consists of an outer loop and an inner loop. The outer loop is used to estimate 

List of clinical covariates

Unspecified hearing loss Sleep disorder, unspecified Stiffness of right shoulder, not 
elsewhere classified Other visual disturbances

Unspecified sleep disturbance Pectus carinatum Unspecified hearing loss, left ear Splenomegaly

Developmental disorder of speech and language Chronic rhinitis Hypertrophy of tonsils Acute tonsillitis due to other specified 
organisms

Acute bronchitis
Unilateral inguinal hernia, without 
obstruction or gangrene, not specified as 
recurrent

Other developmental disorders of 
scholastic skills Asthma

Circadian rhythm sleep disorder, unspecified Unspecified hearing loss, unspecified ear Hepatomegaly
Unilateral or unspecified inguinal 
hernia, without mention of obstruction 
or gangrene (not specified as recurrent)

Cardiac murmur, unspecified Specific developmental disorder of motor 
function Abnormality of gait and mobility Other specific developmental learning 

difficulties

Nasal congestion Disorder of the teeth and supporting 
structures Acute tonsillitis, unspecified Accretions on teeth

Dental caries extending into dentine Macrocephaly Wheezing Unspecified otitis media

Bilateral inguinal hernia, without mention of 
obstruction or gangrene (not specified as recurrent) Streptococcal pharyngitis Acute pharyngitis Other congenital corneal opacities

Other viral pneumonia Umbilical hernia without obstruction or 
gangrene Congenital mitral insufficiency Personal history of pneumonia 

(recurrent)

Acute pharyngitis due to other specified organisms Corneal opacity
Other specified pervasive 
developmental disorders, current or 
active state

Otitis media

Unspecified hearing loss, right ear Lack of normal physiological development Hydrocele, unspecified Developmental disorder of scholastic 
skills, unspecified

Short stature Conductive hearing loss Acute upper respiratory infection Unspecified hearing loss, bilateral

Expressive language disorder Mitral valve insufficiency and aortic valve 
insufficiency

Umbilical hernia without mention of 
obstruction or gangrene Hypertrophy of adenoids

Sensorineural hearing loss, bilateral Acquired deformity of chest and rib Acute tonsillitis Developmental coordination disorder

Other developmental speech disorder Family history of consanguinity Abnormal auditory perception Acute gingivitis, plaque induced

Body mass index (bmi) pediatric, greater than or 
equal to 95th percentile for age Chronic gingivitis, plaque induced Dental caries on smooth surface 

penetrating into dentin
Injury of conjunctiva and corneal 
abrasion without foreign body, eye

Unspecified delay in development Congenital stenosis of aortic valve Acute pharyngitis, unspecified

Table 2.  Clinical covariates selected based on domain expert knowledge.
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the unbiased prediction accuracy of the machine learning models42; in this stage, we utilize stratified five-fold 
cross-validation to create training folds that the machine learning models use to learn the new representation 
that distinguishes MPS patients from the control patients. After training the models, we evaluated the trained 
models’ performance on the unseen testing fold. Based on the performance of different models in the testing 
set, we compared them to select the best model to tackle this challenge. Stratification sampling was selected for 

Dataset

SMOTE (
synthetic minority oversampling

technique)

Feature Selection
"Tune parameters"

Model fitting
"Tune parameters"

Expert

Chi-squared

Lasso cross-validation

AdaBoost Classifier

Decision Tree

Gaussian Naive Bayes

Gradient Boosting for classification

Best model performance
evaluation

SHAP (SHapley Additive exPlanations)
Identification of features that affect the

prediction significantly

Outer loop
Train with optimal
paramters using
Stratified Five-Folds
Cross-Validation

Inner loop
Tune parameters using 5-fold repeated stratified cross validation to
maximize the Area Under the Receiver Operating Characteristic Curve

Hyperparameter optimizaion:
Tune parameters using bayesian optimization with
100 trials for each fold to maximize the auc value on
the validation set.
We simultaneously optimizing the hyperparameters
for both feature selection and model parameters

Training foldsTesting fold

Training foldsValidation fold

Mutual Information

Select from Model (Logistic Regression)

K-Nearest Neighbors

Logistic Regression

Multi-layer Perceptron classifier

Random Forest Classifier

C-Support Vector Classification

Fig. 6.  Machine learning workflow.
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cross-validation to guarantee the training and testing are representative of the different groups’ distribution in 
our cohorts43. The inner loop of the nested-cross validation is responsible for hyperparameter optimization 
for both feature selection algorithm parameters and machine learning model parameters42 – hyperparameters 
(Table 3 Models’ hyperparameters). We applied Bayesian Optimization (BO)44 with five-fold cross-validation. 
The hyperparameter-tuning process supports us in automatically selecting the set of parameters that gives 
almost optimal results using the training set. During this process,100 sub-models were trained for each model 
and a feature selection-specific set of parameter values was selected during the optimization process. Since it is 
an optimization process, we set the objective function of the process to minimize the error on the validation set 
based on the Area Under the Receiver Operating Characteristic Curve (ROC AUC) score.

Imbalaced data
MPS is a rare condition; therefore, our training set is expected to be severely imbalanced in the number of 
samples between the two groups (a minority of the samples are MPS patients’ records). It is well known that 
class imbalance affects machine learning techniques’ decisions and directs the decision to the majority class45. 
Therefore, several approaches were implemented to solve this problem, such as up-sampling the minority class 
or down-sampling the majority class. In this study, we applied the Synthetic Minority Oversampling Technique 
(SMOTE)46 to increase the number of samples in the minority class. SMOTE works by generating new synthetic 
data points by linear interpolation of MPS records and K-Nearest Neighbors; for this work, we fixed K to five 
neighborhoods of samples to be used for generating the new synthetic samples.

Fearure selection algorithms
Before training the model, we applied different supervised feature selection techniques to reduce the number of 
covariates for model training. The main objective of feature selection is to reduce the number of variables used to 
learn the new representation from the original dataset. This process helps to select the most informative features, 
exclude noisy or irrelevant features, prevent model overfitting, improve model performance, and minimize the 
computation power needed to run the code24,47,48. We employed four automated feature selection methods and 
one domain expert-reported feature set. The automated feature selection techniques are Chi-Square feature 
selection, Lasso (Least Absolute Shrinkage and Selection Operator), mutual information (MI), and select from 
the model (logistic Regression).

•	 Chi-square feature selection is a univariate feature selection method that individually tests each feature and its 
relevance to output. A feature with a large Chi-Square value indicates a more important feature. The feature 
extracted is based on the hypothesis tests by selecting the statistically significant features where the significant 
level is set to p-value < 0.0524,48. The formula for Chi-Square is: 

	
χ2 =

∑
i

(Oi − Ei)2

Ei
� (1)

 Where: O is the observed frequency and E is the expected frequency.

•	 Lasso with 5-fold cross-validation is an embedded-based method for feature selection. This method shrinks 
the regression coefficients to zero with respect to their contribution to the model output. Therefore, the algo-
rithm selects the features based on their coefficient magnitude24,48, due to the L1 regularization. The lasso loss 
function is calculated as follows: 

	
Minimize:

n∑
i=1

(
Yi −

p∑
j=1

Xijβj

)2

+ λ

p∑
j=1

|βj |� (2)

 Where n is the total number of samples, Y is the outcome, X is the independents/features, p is the total number 
of features, and β is the regression coefficient.

•	 Mutual information is a multivariate features selection method based on selecting the subset of features based 
on their inter-dependencies and the outcome. The method chooses features with the highest entropy-based 
estimation with the target48. The MI represents as follows: 

	 I(X;Y)=H(X)-H(X|Y)� (3)

 Where I(X; Y) is the MI for X, Y; H(X) represents the entropy for X, while H(X|Y) is the conditional entropy 
for X given Y.

•	 Select from the model (logistic Regression) is a wrapper-based method for feature selection; the algorithm se-
lects the features based on the magnitude of their coefficients reported by logistic Regression49. The logistic 
regression equation is: 
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Machine Learning Search Space

Model Parameter Parameter Space

AdaBoost Classifier
Maximum number of estimators {10, 50, 300, 750, 1200}

Learning rate {0.0001, 0.001, 0.01, 0.1, 1}

Decision Tree

Criterion {Entropy, gini}

Max depth Anumerical value like round (uniform(10, 1200)/10) * 10

Max features {Auto, sqrt, log2, None}

Min samples leaf Numerical space ranging from 0 to 0.5

Min samples split Numerical space ranging from 0 to 1

Gaussian Naive Bayes Portion of the largest variance of all features that is added to variances 
for calculation stability Numerical space ranging from 1e-09 to 1

Gradient Boosting Classifier

Learning rate Numerical space ranging from 0.0001 to 1

Number of estimators {10, 50, 300, 750, 1200}

Min samples split Numerical space ranging from 0 to 1

Min samples leaf Numerical space ranging from 0 to 0.5

Max depth A numerical value like round(uniform(10, 1200)/10) * 10

k-nearest neighbors

Number of neighbors {2,3,4,5,6,7,8,9,10}

Weights {Uniform, distance}

Algorithm {Auto, ball tree, kd tree, brute}

Logistic Regression Penalty {l1, l2, elasticnet, none}

Multi-layer Perceptron

Hidden layer sizes {(100,), (100,100), (50,100), (50,50), (50,100,100), 
(50,50,50)}

Alpha Numerical space ranging from 0.0001 to 1

Activation {Relu, logistic, tanh}

Solver {Adam, sgd, lbfgs}

Random Forest Classifier Criterion {Entropy, gini}

Max depth A numerical value like round(uniform(10, 1200)/10) * 10

Max features {Auto, sqrt, log2, None}

Min samples leaf Numerical space ranging from 0 to 0.5

Min samples split Numerical space ranging from 0 to 1

Number of estimators {10, 50, 300, 750, 1200}

C-Support Vector Classifier

Regularization parameter Numerical space ranging from 0.01 to 100

Kernel {Rbf, linear, sigmoid}

Degree Numerical value like round(uniform(2, 5))

Gamma {Scale, auto}

Feature Selection Search Space

Chi-Square K:Select features according to the k highest scores {5, 10, 20, 50, 70}

Lasso
Alpha Numerical space ranging from 0.0001 to 0.001

Threshold Numerical space ranging from 0.001 to 0.15

Select From Model (Logistic 
Regression) C: Inverse of regularization strength Numerical space ranging from 0.1 to 0.9

Mutual Information K :Select features according to the k highest scores {5, 10, 20, 50, 70}

Genetic Algorithm (GA)

Number of generations Numerical space ranging from 20 to 40

Number of individuals Numerical space ranging from 10 to 40

Parent selection method {Roulette,tournament}

Crossover probability Numerical space ranging from 0.0 to 1.0

Mutation probability Numerical space ranging from 0.0 to 1.0

Bat Algorithm

Number of generations Numerical space ranging from 20 to 40

Number of bats Numerical space ranging from 10 to 40

Minimum frequency Numerical space ranging from 0 to 2

Maximum frequency Numerical space ranging from 0 to 4

Initial loudness of bats Numerical space ranging from 0.0 to 1.0

Initial pulse emission rate Numerical space ranging from 0.0 to 1.0

Loudness damping factor Numerical space ranging from 0.0 to 1.0

Pulse rate increasing factor Numerical space ranging from 0.0 to 1.0

Table 3.  Models’ hyperparameters: machine learning models parameterized using a random search 
optimization algorithm of 100 different parameter settings with a 5-fold repeated stratified cross-validation to 
maximize the Area Under the Receiver Operating Characteristic Curve (AUC).
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Y = eβ0+β1X

1 + eβ0+β1X
� (4)

 Where y is the outcome, X is the independent/feature variable and β is the logistic regression coefficient.

•	 Bat Algorithm (BA) is a metaheuristic inspired by bat echolocation. Each “bat” i has a position xi, a velocity 
vi, and a frequency fi

50. At iteration t, the velocity and position update is: 

	

v t
i = v t−1

i +
(
x t−1

i − x t−1
∗

)
f t

i ,

x t
i = x t−1

i + v t
i .

� (5)

 Where x t−1
∗  is the best solution found up to iteration t − 1, and f t

i  is the bat’s frequency at iteration t.

•	 Generic Algorithm (GA) is an evolutionary method that evolves a population of solutions via selection, cross-
over, and mutation51. The probability of selecting individual i (with fitness F (xi)) for reproduction is: 

	
pi =

F
(
xi

)
∑N

j=1 F
(
xj

) .� (6)

 Where N  is the population size, and pi is the chance that xi is chosen as a parent.

Machine learning algorithms
In this study, we developed and trained nine well-known machine learning models: the Adaptive Boost Classifier 
(AdaBoost), decision tree (DT), Naive Bayes (NB), gradient boosting classifier (XGBoost), k-nearest neighbors’ 
algorithm (KNN), logistic regression (LR), multi-layer Perceptron classifier (MLP), random forests (RF), and 
support vector classification (SVM). Following is a description of each method:

•	 AdaBoost is an ensemble machine learning model based on training multiple classifiers to improve model 
performance by learning from their errors in sequential matter. The AdaBoost algorithm was first proposed 
by Yoav Freund and Robert Shapire in 1995 stemming from an example of optimizing decisions of a horse-
race gambler52. It combines the power of weak learning (a decision tree with a single level as a base classifier) 
to build a powerful and robust classifier with the iterative approach53. AdaBoost has the power to adapt by 
improving the efficiency of classifiers such as decision trees but is very sensitive to noisy data and outliers. All 
weights start equally then on each round it increases the weights of misclassified samples, forcing the weak 
learner to focus on harder examples in subsequent iterations. The final model combines all weak learners 
aiming to minimize classification error52. The boosting algorithm is described as follows: Initialize the weight 
of distribution D on training example i on round t = 1: 

	
Dt=1(i) = 1

m
.� (7)

 For t = 1, . . . , T : 
	1.	 Train weak learner using distribution Dt.
	2.	 Get weak hypothesis ht : X → {−1, +1} with error εt: 

	
εt = Pr

x∼Dt

[ht(x) ̸= y].� (8)

	3.	 Choose: 

	
αt = 1

2 ln
(1 − εt

εt

)
.� (9)

 Update: 

	
Dt+1(i) = Dt(i)e−αtyiht(xi)

Zt
,� (10)

 where Zt is a normalization factor.

	 Output the final hypothesis: 

	
H(x) = sign

(
T∑

t=1

αtht(x)

)
.� (11)
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•	 DT is a non-parametric flowchart-like tree structure consisting of nodes (features), leaf nodes (outcomes), 
and a set of decision rules. They were first introduced in the 1960s and have been used in various disciplines 
because they are robust, easy to use, and free of ambiguity. Several statistical algorithms are used to build 
decision trees such as CART (Classification and Regression Trees), C4.5, CHAID (Chi-Squared Automatic 
Interaction Detection) and QUEST (Quick, Unbiased, Efficient, Statistical Tree). Given their advantages de-
cision trees can have some limitations such as overfitting and underfitting when using a small dataset, and 
using correlated input variables may lead to misleading model improvements54. The root node represents 
the top node in the tree; the tree is created in a recursive manner in which the rules are learned based on the 
values provided during the training time. Splitting refers to separating a single node (parent node) into many 
(child nodes) using input variables related to target variables by first identifying the most important input 
variables54. The popular splitting rules are Gini impurity (Gini) and information gain (entropy)49,53; which 
are expressed mathematically as follows: 

	
Gini(E) =1 −

c∑
i=1

p2
i � (12)

 Where p is the probability that a sample belongs to a specific class (c). 

	
entropy : H(X) = −

n∑
i=1

p(xi) log2 p(xi)� (13)

 Where p is the probability of the entropy.

•	 NB is a simple supervised statistical model based on the Bayes theorem. The model is built on the assumption 
that the features are independent, in which each feature’s effect is not related to/correlated with the other 
features49,53. It works by calculating prior probabilities of a given class label and its likelihood probability and 
returns the conditional probability of a given target. NB is one of the simplest algorithms and is much faster 
than other supervised algorithms as it only calculates probabilities. However, it has limitations, such as the 
assumption that all features are independent, which may not hold in real-world data. Additionally, it assigns 
zero probability to categorical variables not seen during training, leading to an inability to predict such cas-
es55. The following is the mathematical formula for the NB model. 

	
P (c | x) = P (x | c)P (c)

P (x) � (14)

 Where P(c x) is the posterior probability of class c given x, P(c) is the prior probability of class c, P(x c) is the 
probability of the x given c (likelihood), and P(x) is the prior probability of the x.

•	 XGBoost (eXtreme Gradient Boosting) is an ensemble machine learning model where the models are trained 
sequentially. It was first introduced by Tianqi Chen in 2014 as part of the Distributed (Deep) Machine Learn-
ing Community (DMLC) group56. XGBoost is particularly known for its high speed, performance and effi-
ciency as it can utilize multiple CPU cores and it supports multiple loss functions making it adaptable. The 
prediction of XGBoost is based on the sum of outputs from multiple trees56. The main idea is that each subse-
quence model intends to improve the previous model’s performance by reducing errors using the gradient in 
a process known as boosting. The gradient minimizes the loss function by reducing the cumulative predicted 
errors by adding weak learners, typically DT53. XGBoost also has an objective function that balances model 
performance and the complexity of the model. This function consists of two key components: a loss term that 
measures prediction accuracy and a regularization term that prevents overfitting by controlling model com-
plexity. The objective function is expressed as follows: 

	
obj(θ) =

n∑
i=1

l(yi, ŷi) +
K∑

k=1

Ω(fk)� (15)

 where l is the loss function measuring the difference between prediction ŷi and target yi, and Ω is the 
regularization term controlling model complexity.

•	 KNN is an “instance-based learning”, one of the simplest non-parametric machine learning models. KNN 
classifier is widely used in multiple applications that include recognition and estimation and is the preferred 
classifier for its high simplicity and convergence22. During the inference phase, all the training values are used 
to assign a label to the new instance; typically, it’s a memory-based learning algorithm. The algorithm assigns 
a label to the new instance based on the majority vote for the nearest/closest k points in the training set us-
ing similarity measures functions such as Euclidean distance, Hamming distance, and Manhattan distance, 
etc49,53,57. In KNN, Euclidean distance is usually used for continuous variables while hamming distance is 
preferred for discrete variables22. For instance, the Euclidean distance is mathematically expressed as follows: 
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d(xi, xj) =

√√√√
N∑

n=1

(xi,n − xj,n)2� (16)

 where xi and xj  represent feature vectors, and N is the number of features.

•	 LR is a probabilistic-based statistical model for binomial/binary outcomes and was introduced by COX in 
195822. It uses a logistic probability distribution to model the relationship between the dependent (categorical) 
and independent variables. Logistic regression is easy to implement, interpretable, and provides probabilistic 
predictions, making it a preferred choice for binary classification. However, it assumes a linear relationship 
between predictors and log-odds, which can limit its effectiveness with complex or nonlinear data struc-
tures58. LR can suffer from overfitting, especially in the high-dimensional dataset; therefore, regularization 
techniques such as L1-penalty and L2-penalty are used49,53. The mathematical equation for LR is as follows: 

	
g(z) = 1

1 + e−z
� (17)

 Where z is a linear regression equation

•	 MLP is a feed-forward artificial neural network model consisting of fully connected layers: an input layer 
(defined by the number of features), hidden layers (to learn the nonlinear representation of the input fea-
tures), and an output layer (task-specific). Learning in MLP occurs by adjusting the connection weights in a 
back-propagation algorithm when the actual output deviates from the expected output. MLP is a commonly 
used supervised learning algorithm used in applications such as healthcare, finance, transportation, fitness 
and energy59. MLP is capable of learning both linear and non-linear functions making it universal, it has 
adaptive learning properties and is able to handle complex optimization problems. Its limitations include 
having too many parameters, which can result in redundancy, and has a weak generalization ability for neutral 
problems. The main building blocks of the MLP model are neurons, weights, activation functions, loss func-
tions, and optimizers. Neurons are the computation units that take the weighted input values and produce 
the nonlinear output via the activation function; weights are parametric values that the model is trained to 
learn (similar to learning regression coefficients). The activation function is the transfer function that intro-
duces the nonlinearity to learn complex decision boundaries in the model; the loss function is the cost func-
tion used to quantify the errors during the forward pass. Optimizer is the mechanism to adjust the network 
weights during back propagation49,53. Each node in the MLP incorporates a bias term, where the network 
processes n input variables X = {x1, x2, ..., xn} through the input layer and produces m output variables Y = 
{y1, y2, ..., yn} at the output layer60. The MLP’s total parameter count is calculated as follows: 

	
nh1 =

Nh1∑
k=1

hkhk+1 + hNh n� (18)

 where the number of hidden nodes hi in the ith layer is Nh. Longer computational times are required to 
optimize an MLP when Nh and hk  are higher.

•	 RF is an ensemble tree-based model introduced in 2001 that simultaneously trains collections of T trees 
(forest) independently. It uses two methods, random space approach and bagging DTs to create classification 
and Regression Trees (CART). These CART trees are binary decision trees built by continuously splitting 
data from a root node into child nodes, with each tree trained on bootstrap samples of the original data and 
searching randomly selected input variables for splits. This method handles challenges such as overfitting, 
underfitting, noise and outliers making it perfect for medical datasets22. Moreover, RF has key features that 
include effectively estimating missing data, managing unbalanced data accuracy by using Weighted Random 
Forest (WRF) and calculating variable importance in classification22. Each tree is built using a random sample 
or different sub-sample from the training set; the final prediction of the model denoted by ŷ is made based on 
the majority voting or average of generated tree decisions49,53 as provided by the following equation: 

	
ŷ = argmaxc

T∑
t=1

f(ht(x) = c)� (19)

 where c is the label, T is the total number of trees in the forest, ht(x) is the prediction output of the tth tree for 
input x.

•	 SVC is a supervised machine learning algorithm that was introduced by Vladimir Vapnik as part of his work 
on statistical modelling theories and methods to minimize prediction errors22. It is a powerful parametric ma-
chine learning model that uses the kernel trick to deal with nonlinear representation in the input spaces; the 
kernel trick transfers the data points from lower to higher multidimensional space. The latter aims to find a 
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good decision plane (hyperplane) that separates the different classes. SVC has been used for medical diagnosis 
classification and many more applications that require pattern recognition and regression estimation22. The 
model objective is to maximize the margin between the data points of different classes and the hyperplane- 
the closest points are the ones defined by the location of the hyperplane, and those points are named support 
vectors. The wider the margin range, the better the model. Allowing some misclassification can help to learn 
a wider range of margins and better hyperplane49,53,57. The SVM optimization problem can be expressed as: 

	
min 1

2∥w∥2� (20)

 Here, yi represents the class label (positive or negative) of a training sample i, and xi is its feature vector 
representation. The optimal hyperplane is derived using the following equation: 

	 yi(w · xi + b) ≥ 1, ∀i� (21)

 For all components of the training set, w and b must satisfy the constraints: 

	 yi(w · xi + b) = 1� (22)

 The data points xi that satisfy |yi| = 1 are identified as support vectors.

	 From a mathematical perspective, SVC aims to find the hyperparameter by: 

	
minimizing

1
m

+ C
∑

pi� (23)

 where m is the margin width; p Points penalty, C is a regularization parameter (a trade-off between 
misclassification and margin width).

Benchmarking
We used logistic regression, which is the simplest classifier among all machine learning, as a benchmark model. 
We also trained the nine models using the original/all features and compared the results after applying different 
feature selection algorithms. In this study, we ended up training and testing 54 models (each model was trained 
5 times for the outer loop, 5 times for the inner loop, and 100 times for hyperparameters optimization).

Performance evaluation metrics
We evaluated and compared the performance of different machine learning models on the testing set (unseen 
set) using various metrics, specifically, accuracy, Area Under the Receiver Operating Characteristics (ROC) 
Curve (AUC), F1-score, MCC, NPV, PPV, Specificity, and Sensitivity47. Metrics such as NPV, PPV, specificity, 
and sensitivity are particularly informative when evaluating models on imbalanced datasets, such as those 
commonly encountered in medical applications61.

Accuracy is measuring the percentage of the predicted samples the model got right; its values range between 
0% (bad model) 0r 0 to 100 % (perfect model) or 1, which is defined as:

	
Accuracy = T P + T N

T P + T N + F P + F N
� (24)

Accuracy alone cannot be considered a good measure when working with an imbalanced dataset. Therefore, 
other evaluation metrics such as AUC, F1-score, and MCC must be considered. AUC is a well-known evaluation 
metric in the medical domain used to evaluate the discriminative capabilities of the model. AUC values range 
between 0 and 1; 0.5 indicates that the model made the decision based on random guessing, while 1 indicates 
a preferred model62. F1-score is a measure of accuracy; it is the harmonic mean of the precision and the recall; 
the measured value ranges between 0 (bad model) and 1 (perfect model). F1-measure mathematically defined 
as follows:

	
F1 - score = 2 ∗ precisionXrecall

precision + recall
� (25)

Where,

	
Precision = T P

T P + F P
� (26)

	
Recall = T P

T P + F N
� (27)

Where, TP, TN, FP, and FN refer to true positive, true negative, false positive, and false negative, respectively.
MCC is a statistical measure to quantify the model’s performance on all confusion matrix categories (TP, TN, 

FP, FN). It can be considered a Pearson correlation for discretization variables; MCC values range from -1 (bad 
model) to 1 (good model)63,64. The MCC computed as:
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MCC = (T P XT N) − (F P XF N)√

(T P + F P )(T P + F N)(T N + F P )(T N + F N)
� (28)

Where, TP, TN, FP, and FN refer to true positive, true negative, false positive, and false negative, respectively.
Positive Predictive Value (PPV), also called precision, measures the proportion of positive predictions that 

are actually positive65. The formula is given by:

	
PPV = T P

T P + F P
� (29)

Where TP, TN, and FP refer to true positive, true negative, and false positive, respectively.
Negative Predictive Value (NPV) measures the proportion of negative predictions that are actually negative65. 

The formula is given by:

	
NPV = T N

T N + F N
� (30)

Where TP, TN, and FN refer to true positive, true negative, and false negative, respectively.
Sensitivity (SE) (also known as True Positive Rate or recall) quantifies the proportion of actual positives that 

are correctly identified66. The formula is given by:

	
Sensitivity = T P

T P + F N
� (31)

Where TP, and FN refer to true positive, and false negative, respectively.
Specificity (SP) (also known as True Negative Rate) quantifies the proportion of actual negatives that are 

correctly identified66. The formula is given by:

	
Specificity = T N

T N + F P
� (32)

Where TN, and FP refer to true negative and false positive, respectively.

Model interpretation/explanation
Machine learning techniques provide a promising tool to tackle healthcare challenges; however, one of the main 
limitations of the wider use of ML in the healthcare system is the lack of model explainability and interpretability 
that signifies why the model made a specific decision about a particular patient62. For this study, we employed 
SHAP v0.43.0 and LIME v0.2.0.1 feature contribution analysis methods to understand and explain the output 
of the best predictive model. SHAP computed Shapley values which measure the contribution of each variable/
feature to the final model output/prediction47,62. Using Shapley values, we compute a variable importance plot 
for overall model analysis45. It is important to remember that the SHAP value is interpreted as an accumulative 
effect of feature interaction; therefore, we can interpret it as a direct effect of a single feature47. On the other 
hand, LIME is a local explanation technique that generates simplified approximations of complex models around 
individual predictions67. This approach provides insight into how individual features contribute to specific 
predictions by perturbing the input data and observing changes in the model’s output.

Data availability
The data that support the findings of this study are available from Department of Health (DOH), Abu Dhabi, 
UAE medical.research@doh.gov.ae but restrictions apply to the availability of these data, which were used under 
license for the current study, and so are not publicly available. Data are however available from the authors upon 
reasonable request and with permission of Department of Health (DOH), Abu Dhabi.
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