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The nasal cycle, characterized by alternating congestion and decongestion of the nasal passages, plays 
a vital role in nasal function. Predicting the nasal cycle using data from medical imaging modalities, 
such as magnetic resonance imaging (MRI) and computed tomography (CT), can help elucidate its 
impact on nasal physiology and inform surgical intervention strategies. This study introduces an image 
processing algorithm that predicts temporal variations in nasal airway morphology during the nasal 
cycle by utilizing a single MRI or CT scan from a patient. Our approach pipelines two algorithms: an 
active contour (snake) algorithm followed by a path planning algorithm. The active contour algorithm 
identifies corresponding sets of points between contours of the nasal wall and the desired turbinate 
geometry, while the path planning algorithm generates pathways connecting the corresponding 
point sets. This process enables the prediction of intermediate geometries between two different 
levels of nasal congestion observed at distinct time points during the nasal cycle. Prediction accuracy 
was assessed by comparing predicted and actual intermediate nasal turbinate geometries in scans 
taken from the same subject at different time points, using a total of six human patients. Two distinct 
path planning models, linear image morphing and A-star, were evaluated for their accuracy in 
predicting intermediate nasal geometries at various congestion levels. Cross-sectional area was used 
to characterize nasal airway geometry. Prediction accuracies for nasal geometries within respiratory 
regions, including middle and inferior turbinates, ranged from 72.51% − 92.17% for the linear image 
morphing method and from 70.73% − 90.8% for the A-star method. This algorithm-based tool offers a 
reliable means to estimate nasal geometries at different congestion levels throughout the nasal cycle 
using MRI and CT scan data. Coupling this technology with computational modeling could further aid 
in studying how the nasal cycle influences airflow dynamics under various breathing conditions or 
pathological states.
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The human nasal cavity is a complex structure that includes the nasal vestibule, three distinct turbinate 
regions (superior, middle, and inferior), and the nasopharynx32. Nasal geometry exhibits substantial variability 
among individuals due to differences in bone structure and temporal fluctuations, such as the nasal cycle15,26. 
The study of nasal geometry and airflow dynamics provides insight into the complex functions of the nose, 
including olfactory sensation, filtration, humidification, and the warming of inhaled air5,11,32. Additionally, such 
investigations can inform the analysis of nasal drug deposition under various physiological or pathological 
conditions, breathing states, and anatomical variations18,20,27.

The periodic changes in nasal airway geometry are known as the nasal cycle15,25,26,30. The nasal cycle has 
been observed in approximately 70–80% of the adult population25,34. The periodicity of this ultradian cycle 
ranges from 30 min to 6 h15. During the nasal cycle, one nostril experiences airway constriction due to turbinate 
engorgement, while shrinkage of the turbinate on the contralateral side results in airway dilation25. These cyclic 
changes in the congestive state are driven by asymmetric blood flow distribution between the two nasal passages. 
Increased blood flow causes expansion of the erectile tissue located on the inferior and middle turbinates, and 
the anterior nasal septum, creating a congested nasal airway (Fig. 1)15,25. Literature suggests that nasal congestion 
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and decongestion, which reflect vasodilation and vasoconstriction of the nasal mucosa respectively, are regulated 
by the autonomic nervous system15.

The underlying rationale for the existence of nasal cycles remains ambiguous. One hypothesis suggests that 
the low airflow velocities generated in the congested nostril help maintain nasal mucus hydration and support 
mucociliary clearance4,8,30,35, which is used to remove harmful particles and substances from the airways10,35. 
Consequently, nasal cycles may provide protection against respiratory infections and allergies10,35. Alternatively, 
some researchers have proposed an olfaction-centered functional role for nasal cycles21,28,31,39. According to this 
theory, nasal cycles can optimize each nostril for the detection of different odors by simultaneously transmitting 
two distinct sets of olfactory signals to the brain, thereby enhancing the overall olfactory range21,28,31. 
Additionally, olfactory perception may be selectively tuned to certain odorants based on their sorption rates and 
the degree of stimulation of olfactory receptors, both of which are influenced by airflow properties, including 
rate and direction21,28. Moreover, computational fluid dynamics (CFD) has been used to investigate how the 
nasal cycle influences temperature regulation inside the nasal cavity due to airflow velocity, pressure, and 
nasal resistance in a three-dimensional (3D) CT scan model with asymmetric nostril geometry, representing 
congested and decongested nostrils34. Using CFD simulation in ANSYS Fluent, Wei et al. revealed that the 
congested side increases the heat of inhaled air effectively and rapidly due to greater wall contact and higher 
airflow velocity compared to the decongested side34. Furthermore, the suspected influence of the nasal cycle on 
particle deposition within the nasal cavity may stem from fluctuations in air pressure caused by cyclic changes 
in nasal airflow patterns21,28,31,34. Elucidating the underlying mechanisms of the nasal cycle through simulation 
of its behavior could potentially enhance the efficacy of systemic absorption via intranasal drug delivery systems 
and help uncover related factors that impact olfactory function29.

Surgical procedures involving the nasal cavity typically include pre- and post-operative assessments using 
imaging modalities, such as magnetic resonance imaging (MRI) and computed tomography (CT). However, 
capturing the time-dependent morphological changes in nasal anatomy caused by the nasal cycle requires 
multiple scans over time. A method to simulate these changes without repeated imaging has yet to be developed. 
Such an approach would improve the evaluation of surgical outcomes by accounting for temporal variations like 
the nasal cycle.

Fig. 1.  The nasal cycle refers to the periodic alternation of congestion and decongestion between the two nasal 
passages, a process that can be visualized with CT and MRI imaging. These coronal sections of the nasal cavity 
show dilation of the left nasal passage and constriction of the right, indicating left-side dominance and greater 
airflow through the left passage at the time of imaging.
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To simulate the nasal cycle with scans of a single nasal cavity from only a few timepoints, it is necessary 
to generate intermediate geometries that represent different phases of the cycle. Predicting these intermediate 
geometries requires the implementation of morphing prediction techniques. Gaberino et al. developed a 
method to create intermediate states of the nasal cycle by offsetting the boundary of the airway in a nasal slice 
using the erosion/dilatation tool in Mimics™ (Materialise Inc.; Version 16.0; ​h​t​t​p​s​:​​/​/​w​w​w​.​​m​a​t​e​r​i​​a​l​i​s​e​.​​c​o​m​/​e​​n​
/​h​e​a​l​​t​h​c​a​r​e​​/​m​i​m​i​c​​s​/​m​i​m​i​c​s​-​c​o​r​e) and used them to estimate the nasal geometry at the midpoint of the nasal 
cycle6. However, they did not validate the accuracy of the predicted intermediate states. Nejati et al. proposed 
a deformable template method that creates an average nasal geometry using coronal CT slices taken at a single 
timepoint from multiple individuals22. This approach generates geometries representing nasal cycle transitions 
based on anatomical variation across patients at a single time point by using skeletonized representations of the 
nasal airway to reduce inter-individual variations. While this method avoids the need to artificially synthesize 
intermediate or transitional geometries characteristic of the nasal cycle, it requires acquiring CT scan data 
from numerous individuals22. In contrast, the present study introduces a technique to predict intermediate 
nasal geometries of the nasal cycle using a single MRI or CT dataset from an individual patient that captures 
approximate congestion and decongestion extremes in each nostril (Fig. 1).

Herein, we detail a computational method to simulate the morphology of the nasal cycle using two pipelined 
algorithms: an active contour algorithm and a path-planning algorithm. The morphological change we simulate 
is the expansion and contraction of the turbinate within the nasal passage. To achieve this, we consider two 
boundary contours, one representing the entire nasal cavity and one representing the turbinate. At full (100%) 
simulated expansion, the contour of the turbinate is anticipated to conform closely to the adjacent nasal cavity 
boundary. Building on this concept, we use the nasal cavity contour as an active contour that can conform to the 
shape of the turbinate, thereby simulating the morphological transitions of turbinate expansion and contraction 
within the nasal cavity wall at different phases of the nasal cycle.

The active contour algorithm, originally developed for identifying boundary edges and contours of objects 
in images16, is employed in our approach to identify corresponding sets of points on the boundaries of two 
distinct anatomical geometries, the fixed nasal cavity wall and the turbinates contained within it. The method 
allows a nasal contour to evolve and conform to anatomical features and offers increased accuracy and efficiency 
compared to manual point selection. Unlike other techniques, such as Procrustes analysis and the Iterative 
Closest Point (ICP) algorithm, the active contour method emphasizes local boundary features and provides 
non-rigid transformations7,38. Feature-based algorithms, such as Scale-Invariant Feature Transform (SIFT) or 
Speeded-Up Robust Features (SURF), identify key points or local features within images instead of on object 
boundaries. The active contour method identifies corresponding points on the boundary contours of images as 
key features, which is more suitable for our approach2,14.

To create a path between the corresponding sets of points identified by the active contour algorithm, we 
implemented two path planning models: linear image morphing and the A-star (A*) algorithm. Linear image 
morphing, originally introduced for smooth image transformation, was adapted for our purposes of creating 
linear pathways between points9,36. Additionally, the A* algorithm, initially developed for efficient obstacle 
avoidance in autonomous robotic navigation9, was incorporated into our methodology to generate pathways, 
while treating anatomical boundaries as obstacles. Intermediate geometries of the nasal cavity at different phases 
of the nasal cycle can be generated using these pipelined algorithms to track paths. Reconstructing the nasal cycle 
using morphing algorithms to produce intermediate nasal geometries may prove useful for understanding the 
influence of the nasal cycle on nasal function, especially when supported by computational simulations3,22, and 
for guiding surgical interventions for conditions impacted by the nasal cycle, such as septoplasty, turbinectomy, 
and functional rhinoplasty6.

Methods
Patient MRI and CT scan data
Deidentified CT imaging scan data from the head of a single healthy patient (Patient A) (female, 56 years 
old) were sourced from a data collection at the University of Chicago Medical Center to reconstruct nasal 
airway images for this study. The use of CT scan data in this study was approved by the University of Chicago 
Institutional Review Board. All CT scanning procedures conducted in this study adhered to the relevant IRB 
guidelines and regulations. Since the study analyzed pre-existing anonymized imaging data, the University of 
Chicago Institutional Review Board waived the requirement for patient informed consent (protocol number: 
IRB18-1247). During the CT scanning process, the patient was oriented in a supine position and remained 
awake. The CT scans were obtained with a planar resolution of 0.44 × 0.44  mm and an interslice spacing of 
1 mm. Additional patient MRI or CT scan data sets (Patients B-F), taken at two time points and representing 
the approximate congestion and decongestion extremes in each nostril, were acquired from literature1,13,24,33. 
The coronal sections from sequential scans were compared at approximately the same distance from the nares. 
Collectively, a total of 10 of these time-matched scans were supplied from patients (Patient A-F) and used to 
evaluate the accuracy of predicting nasal cycles with an algorithm. Nasal airway contours and corresponding 
data sources for all patients are summarized in Table 1.

Nasal cavity segmentation
Segmentation of the nasal cavity into airway, turbinate and mucosal portions was performed using a sequence 
of steps involving software-based image editing and drawing tools, along with custom segmentation algorithms. 
The entire flow process for segmentation of the nasal structures is visually summarized in Fig. 2(a) and was 
performed on coronal nasal slices with an end goal of obtaining an image with segmented turbinated regions and 
a segmented nasal cavity, with extracted turbinate regions. DICOM (Digital Imaging and Communications in 
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Medicine) files containing the MRI or CT scan data were converted to JPEG (Joint Photographic Experts Group) 
format using MicroDicom DICOM Viewer (Version 2024.3; https://www.microdicom.com/) (Fig. 2(a1)).

Nasal airway regions were then segmented and isolated from the grayscale coronal MRI and CT images using 
ImageJ software (Version 1.54 g; https://imagej.net/ij/) through a series of image processing steps. First, a boxed 
region enclosing only the nasal passages was cropped from each image, and the cropped image was scaled by a 
factor of 5 to enhance visibility (Fig. 2(a2)). The nasal airway region appeared black, with pixel intensity value 
near 0 (black), while non-airway regions appeared gray. To segment the nasal airway region, a thresholding tool 
was used to set all gray appearing non-airway regions to 255 (white), while pixels in the airway region were set 
to 0 (black) (Fig. 2(a3)).

Next, turbinate regions were segmented using a series of steps outlined in Fig. 2(a). Initially, a skeletonized 
version of the nasal airway was generated in ImageJ (Fig. 2(a4)). A custom Python algorithm then segmented 
the nasal airway by its branches and assigned a unique color to each branch, following a three-step process. First, 
the algorithm segmented individual branches of the skeletonized airway at points of intersection (Fig. 2(a4)). 
Second, the skeletonized nasal airway image was superimposed on the original segmented nasal airway image. 
Third, the K nearest neighbor method was applied to mask different tiers of the segmented nasal airway with 
unique colors (Fig. 2(a5)), assigning colors based on the corresponding branch overlay. The resulting branch-
based segmented airway image was imported into Microsoft PowerPoint (Version 2504; ​h​t​t​p​s​:​​​/​​/​w​w​​w​.​m​i​c​r​o​s​
o​f​​t​.​c​​​o​m​/​​e​​n​​-​u​s​/​m​​i​c​r​o​s​​​o​f​t​​-​3​​6​5​/​p​o​w​e​r​p​o​i​n​t), where drawing tools were used to create a line that delineates the 

Patient ID

Nasal Airway Contours

SourceSection Timepoint 1 Timepoint 2

A

1

Scans were 
sourced 
from a 
dataset 
collection 
at the 
University 
of Chicago 
Medical 
Center and 
deidentified 
for the 
present 
study.

2

3

B 1 Abolmaali 
et al.1,

C 1

Patel et 
al.24,

D 1

E 1 Thaploo et 
al.33,

F

1

Jo et al.13,2

3

Table 1.  Nasal airway contours from medical imaging data acquired for this study and from previously 
published literature. Each section was obtained from a unique scan dataset corresponding to the indicated 
patient. Only the nasal sections shown were used to test the pipelined algorithm. CT scan data were used for 
four patients and MRI scan data for two patients. Nasal airway contours for patients B-F were adapted with 
permission from prior studies1,13,24,33.
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Fig. 2.  (a) MRI and CT scan data were preprocessed to segment turbinate regions and the entire nasal cavity 
(excluding the turbinates) using a combination of software-based image editing, manual drawing tools, and 
custom segmentation algorithms. MRI/CT scan data were converted into JPEG format using MicroDicom 
DICOM Viewer (1). Using ImageJ, scan images were then cropped and scaled (2), color-thresholded to 
segment the nasal airway (3) and transformed into a skeletonized nasal airway (4). Using a custom Python 
algorithm, the nasal airway skeleton was superimposed over the segmented airway image to generate a nasal 
airway image with subregions color-coded by branch level (5). A line (colored according to branch level) was 
drawn in Microsoft PowerPoint to demarcate the boundary where each turbinate region meets the nasal wall 
(6). Masking and filling tools from ImageJ were then used to create images with the turbinates appearing in 
black (7) and the nasal cavity segmented with subregions color-coded by branch level (8). (b) Process flow 
diagram illustrating the generation of intermediate or predicted turbinate contours that simulate structural 
morphing during the nasal cycle. (1) Segmented turbinate and nasal cavity (excluding turbinates) regions 
were prepared as inputs for the active contour algorithm. (2) The active contour (snake) algorithm wraps the 
nasal cavity contour around the decongested turbinate region, identifying corresponding point sets between 
the initial nasal cavity contour (dotted red) and the wrapped turbinate contour (cyan). (3) A path planning 
algorithm connects these corresponding point sets to create intermediate (transitional) turbinate contours. 
Gray-shaded boxes denote steps where algorithms (active contour and path planning) were applied.
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boundary where each turbinate extends from the lateral nasal cavity wall (Fig. 2(a6)). The color of each line was 
matched to that of its corresponding branch.

Finally, the image with the demarcated turbinated regions (Fig. 2(a6)) was imported into ImageJ, to generate 
two separate images: (1) a segmented turbinate image (Fig. 2(a7)) and (2) a segmented nasal cavity with the 
turbinate regions extracted (Fig.  2(a8)). To create the segmented turbinate image, a multi-step process was 
implemented. First, the branch-based segmented airway image was converted to grayscale (if not already in 
grayscale), and the entire airway region was filled with a color that contrasted with the background. Next, a mask 
was created in which the turbinate regions appeared black against a white background (Fig. 2(a7)). To generate 
the segmented nasal cavity image, the turbinate regions in the branch-based segmented image (with demarcated 
wall boundaries) were filled with branch-specific colors (Fig. 2(a8)).

Since the custom Python algorithm changed the scale of the segmented image, the size scale of all the input 
images were also adjusted according to the original segmented nasal airway image using PowerPoint. The branch 
intersection points on the nasal airway image (Fig. 2(a4)) and the lowest point of the nasal airway boundary were 
considered for aligning the images (Fig. 2(a)). The outcomes of this image processing technique are illustrated 
in Fig. 2(b).

To make comparisons across images taken at different time points within a single patient dataset, the height 
of the airways segmented at corresponding locations was standardized in PowerPoint, ensuring consistent 
values across time points. The other dimensions were then scaled proportionally based on the adjusted height. 
Segmentation was subsequently performed using the previously described methodology.

Variability in nasal geometry was observed within scan data acquired from the same patient at different time 
points. To align images of nasal slices at corresponding distances from the nares, a pair of bone-based anatomical 
landmarks was used as a reference: (1) the tip of the anterior maxillary spine, at the intersection of the nasal 
septum and maxilla bone, and (2) the beginning of the opening of choana, where the left and right airways merge 
(Fig. 3)22. This normalization process ensured that images captured at different time points corresponded to the 
same anatomical location prior to their input in the nasal cycle simulation algorithms.

Active morphing pipeline algorithm
Two inputs images were used for the proposed pipeline algorithm: 1) the segmented geometry of the turbinate 
in its decongested extreme and (2) the nasal cavity with the turbinate regions extracted (Fig. 2(b1)). A morphing 
pipeline algorithm comprising two distinct algorithms, an active contour (snake) algorithm16 and a path planning 
algorithm9,36, was implemented (Fig. 4). The active contour algorithm is employed to identify corresponding sets 
of points between the contour of the decongested turbinate and the contour of the complementary nasal cavity. 
First, the contour of the nasal cavity (dotted red line in Fig. 2(b2)), serving as the active contour, was wrapped 
around the decongested turbinate to create a wrapped contour (solid cyan line in Fig. 2(b2)). The points along 
the contour remain consistent as the nasal cavity contour (dotted red) evolves into the turbinate contour (cyan). 
Subsequently, the corresponding point sets between the initial and final contours are input into the path planning 
algorithm, which generates paths between these corresponding points to create multiple intermediate turbinate 

Fig. 3.  These CT scans include anatomical landmarks, the anterior maxillary spine (left) and the choana 
(right), used to compare data across different time points. The anterior maxillary spine is a bony projection 
situated at the base of the nasal aperture, at the midline where the two maxillae meet. The choana is the 
posterior opening of the nasal cavity where the nasal passages connect to the nasopharynx.

 

Scientific Reports |        (2025) 15:34026 6| https://doi.org/10.1038/s41598-025-14023-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 4.  Path planning algorithms. The path planning algorithms generate paths (blue lines) through the open 
airway space (outlined in red), which lies between the boundary of the original turbinate tissue region and 
the outer boundary of the nasal airway/cavity (excluding the turbinates). This outlined space also defines the 
navigable grid space for the algorithms. (A) The linear image morphing algorithm connects corresponding 
points using straight lines (blue), but it does not respect anatomical boundaries (red). The inset shows a 
pathway (blue) that crosses outside the open nasal airway boundary (red), highlighting this limitation. (B) The 
A* algorithm generates paths (blue) on a grid map from the start to goal nodes, while allowing for multiple 
directional turns and respecting the boundary constraints of the nasal airway contour (red). The algorithm 
calculates the heuristic cost to move from a particular node to the goal node, selecting the path with the lowest 
total cost as the best route. Inset grids are illustrative and not to scale.
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geometries representing different phases of the nasal cycle (Fig. 2(b3)). These intermediate geometries serve as 
predicted turbinate contours that simulate the morphological transitions of the turbinate as it changes shape 
throughout the nasal cycle. While several intermediate turbinate geometries can be generated instantaneously 
using the pipeline algorithm, the maximum number of predicted geometries is limited by the computational 
power of the computer system.

Active contour algorithm
The active contour algorithm is capable of detecting object boundaries by iteratively evolving contours towards 
the boundary of the object of interest16. The following function (Eq. 1) is employed to drive this evolving process 
through the minimization of energy:

	
E =

ˆ
Einternal + Eimage + Econ ds� (1)

where Einternal represents the internal energy, Eimage represents the image forces, Econ represents external 
constraint forces, and ds represents the differential element along the evolving contour, corresponding to an 
infinitesimal segment of the contour.

	
Einternal = α

(
∂ v (s)

∂ s

)2

+ β

(
∂ 2v (s)

∂ s2

)2

� (2)

In the internal energy equation (Eq. 2), α and β are weighting parameters, and v(s) represents the contour, while 
s denotes the coordinates of each point set along the contour. The internal energy term, Einternal, governs the 

smoothness and continuity of the contours by accounting for the elasticity and curvature of the contour. This 
smoothness and continuity were fine-tuned by adjusting the weighting parameters and the internal energy term 
(Eq. 2). The image forces, Eimage, attract the contour towards the boundary of the region of interest, guided 
by the large image gradient, which represents the rate of change in pixel intensity or color in an image. Any 
additional user-defined constraint forces are incorporated through the external constraint forces term, Econ.

In our case, the outline of turbinate tissue segment is treated as the image object of interest, while the outline 
of nasal cavity segment is considered as the initial contour for the active contour algorithm. Utilizing the energy 
equation (Eq. 1), the boundary of the turbinate exerts forces that attract the initial contour toward it. As output, 
the algorithm provides the final attracted contour (wrapped contour), which conforms to the boundary of the 
image object, as shown in Fig. 2b. In other words, the contour of the nasal cavity segment wraps around the 
boundary of the turbinate. Notably, this final wrapped contour retains the same number of points as the initial 
unwrapped contour, enabling the identification of corresponding point sets between the initial and final contours. 
Transitional or intermediate states of the nasal cycle can then be created by generating a series of contours that 
evolve from the initial contour (entire nasal cavity) toward the final contour (turbinate tissue segment), or vice 
versa. These sequential intermediate contours can be defined by connecting the corresponding points between 
the initial and final contours with path planning algorithms, as explained in the subsequent section.

Path planning algorithms
In this study, path planning algorithms were employed in order to investigate an optimal trajectory between the 
two correspondent point sets associated with the boundary contour of the nasal airway and the wrapped contour 
for the turbinate created from the active contour algorithm. Considering the correspondent point sets as input, 
the path planning algorithm produced a set of plausible paths between such contours. Two pre-existing path 
planning algorithms are utilized in this study: the linear image morphing algorithm and A* algorithm.

Linear image morphing algorithm  The linear image morphing algorithm computes a path between two 
contours by performing linear interpolation between the corresponding point sets on these contours19 (See 
Fig. 4(a)). This algorithm only connects corresponding points by a straight continuous line and interpolates 
points along that line. The positions of the interpolated points along this linear path can be adjusted through the 
α  parameter, as expressed in Eq. 3,

	 P (i) = (1 − α )P1 (i) + α P2 (i) � (3)

where i denotes the corresponding point set, P (i) represents the coordinates of the intermediate contour 
and P1 (i) and P2 (i) are the coordinates of the initial nasal airway contour and wrapped turbinate contour 
generated by the active contour algorithm, respectively. By initializing with corresponding point sets in two 
boundaries, this algorithm can gradually transform one set of points into the other as shown in Fig. 2(b).

A* path planning algorithm  The A* algorithm is a graph-based path planning method that finds the shortest 
path from a starting node to a goal node within a given map9. In the present study, the corresponding point sets 
between the wrapped turbinate boundaries and nasal airway, generated by the active contour algorithm, were 
respectively utilized as the start and goal nodes. The entire image segment of the nasal airway, bounded by the 
initial nasal cavity wall and the wrapped contour, was treated as the grid environment (Fig. 4(b)) in which the 
algorithm generates paths between corresponding points. The paths in between the turbinate and nasal wall are 
constructed by selecting the sequence of nodes between the corresponding points that minimizes the total cost 
as given in Eq. 412 (Fig. 4(b)). In Eq. 4,

Scientific Reports |        (2025) 15:34026 8| https://doi.org/10.1038/s41598-025-14023-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	 f (n) = g (n) + h (n)� (4)

where g (n) is the cost of reaching a particular node from the start node and h (n) is the heuristic estimate of 
the cost to reach the goal node from n. In this context, h(n) is typically calculated using the Euclidean distance, 
allowing horizontal, vertical, and diagonal moves.

The algorithm initializes two lists: (1) an open list containing nodes to be evaluated (starting with the start 
node), and (2) a closed list for nodes that have been evaluated. At each step, the node in the open list with the 
lowest f (n) is selected as the current node. If this node is the goal, the path is reconstructed by tracing back 
through its parent nodes. Otherwise, the current node is moved to the closed list, and each of its neighboring 
nodes are examined. If a neighboring node is in the closed list, it is skipped. If it is not in the open list, it is added 
with updated g (n) and h (n) values. If the neighboring node is already in the open list and the newly calculated 
g (n) is lower than the previously recorded value, then its g(n) is updated and the current node is set as its parent 
node. This process repeats until the goal node is reached, ensuring that the most efficient path is found12.

Validation of predicted intermediate geometries
To validate the path planning algorithms, we used the overlap metric to assess how accurately they predicted 
intermediate nasal geometries. Predicted contours of intermediate turbinate regions were compared with 
multiple actual intermediate turbinate contours from the same patient, captured at corresponding distances 
from the nares but at different timepoints. The overlap metric, defined as the ratio of the intersection to the 
union of two contours, was used to quantify the discrepancy between predicted and actual geometries. Each 
actual intermediate turbinate contour was matched to a predicted intermediate turbinate contour occurring at 
approximately the same phase of the nasal cycle though visual evaluation of intermediate geometries and the 
original scan data. The error in the overlap metric is expressed in Eq. 5,

	
Error in Overlap Metric (%) =

(
1 −

∣∣∣A ∩ B

A ∪ B

∣∣∣
)

× 100%� (5)

where A represents the area of the actual intermediate turbinate region, B is the area of the predicted intermediate 
region, A ∩ B is the intersection of the two, and A ∪ B is their union.

Quantitative analysis of nasal cycles
The proposed methodology enables simulation and quantification of changes in the cross-sectional area (CSA) 
of either the entire nasal airway or turbinate- specific nasal airway regions under varying levels of congestion. 
Although our analysis focuses on the CSA of the entire nasal airway or airway regions surrounding specific 
turbinates, calculating the CSA of individual turbinates themselves is also possible and can serve as an indicator 
of congestion severity. The CSA is determined by counting black pixels representing the airway and converting 
this count to real-world dimensions by calibrating against the actual airway dimensions obtained from DICOM 
data. This pixel-based analysis allows for the independent evaluation of congestion severity within each turbinate 
region, offering improved insight into nasal airflow dynamics and particle deposition under different congestion 
conditions.

The percentage of congestion, defined in Eq. 6, quantifies the proportion of a path length that a point travels 
from the predicted intermediate contour to the nearest turbinate boundary, typically taken from the initial 
baseline turbinate geometry:

	
Congestion P ercentage (%) = Dp

DT ot
� (6)

where Dp is the distance from a point on the predicted contour to the nearest turbinate boundary along its path, 
and DT ot is the total length of the path.

Results and discussion
The precise function of the nasal cycle remains unclear. Developing methods to identify and characterize 
associated structural changes could illuminate its role in olfaction and in conditioning inspired air through 
humidification, warming, and filtration. This study characterizes morphological changes in nasal structures 
during the nasal cycle by processing MRI/CT-derived images with a custom algorithm pipeline. Specifically, 
a pipeline integrating active contouring with two path planning strategies, linear image morphing or A*, was 
used to predict intermediate nasal geometries from a single MRI or CT scan. The pipelined algorithm generates 
transitional geometries by evolving an active contour, defined by the nasal cavity boundary, around the turbinate 
(or an erectile tissue region), using corresponding points shared between the initial and final contours to define 
paths for producing intermediate geometries.

Predicted intermediate turbinate geometries, generated by both path-planning algorithms for the same 
coronal section (including both inferior and middle turbinates) from Patient A, are shown in Fig. 5. Figure 6 
shows the variations in predicted geometries at 50% congestion for three different coronal sections from the 
same patient, comparing results from both linear morphing and A* algorithms.

To evaluate the pipeline’s predictive accuracy, intermediate geometries were compared with actual 
intermediate turbinate contours from the same patient at matching locations and different time points. Patient A 
was the only subject with comprehensive nasal scans at two time points; corresponding locations were identified 
using anatomical landmarks (Fig. 3). For Patients B - F, imaging data from the literature provided corresponding 
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coronal slices at two time points. Prediction accuracy was assessed using the percent error in the overlap metric, 
which quantifies the discrepancy between the predicted and actual contours.

Visual comparisons for Patient A demonstrated comparable performance between the two algorithms, with 
the linear morphing algorithm generating slightly lower prediction errors, overall (Fig.  7). Prediction errors 
across all patients, using MRI and CT data from both our dataset and previously published sources1,13,24,33, are 
summarized in Table 2. Additionally, we assessed prediction errors by nasal region (Table 2). Overall, overlap 
metric errors ranged from 7.83 to 27.49% across all algorithms. When considering the airway region with 
expansion from a single turbinate, the linear morphing algorithm achieved the lowest errors: 9.56% for the 
middle turbinate and 7.83% for the inferior turbinate. However, the linear morphing algorithm sometimes failed 
to respect nasal airway boundaries (the nasal wall), whereas the A* algorithm consistently adhered to these 
boundaries (Fig. 4).

Further analysis revealed more pronounced shape variations in the posterior nasal cavity. As shown in Fig. 6, 
predicted turbinate contours in closer to the nasopharynx (Sect. 3) exhibited greater variability than those in 
the more anterior respiratory regions (Sects. 1 and 2). This may reflect more substantial expansion of posterior 
turbinates, which could increase geometric complexity and reduce prediction consistency. Prediction accuracy 
was also lower for simultaneous expansion of both middle and inferior turbinates compared to single-turbinate 
expansion (Table 2), possibly due to turbinate-specific variation in maximum expansion volumes. These findings 
suggest that future algorithm refinements should incorporate region-specific maximum tissue expansion profiles 
to improve accuracy.

The pipeline also quantified nasal cycle-induced congestion levels. CSA of the nasal airway was computed by 
counting the number of pixels representing the airway geometry and converting them to physical dimensions 
using a calibration based on each patient’s nasal cavity size. The CSA was calculated both for the entire airway 
(Fig. 8a) and for specific turbinate regions (Fig. 8b) as a function of congestion percentage. CSA of the nasal 
airway in Sects. 1 and 3 decreased nonlinearly with increasing congestion levels, whereas Sect. 2 exhibited a 
more linear reduction trend (Fig. 8a). In the turbinate-specific analysis, the CSA of the nasal airway around 
the inferior turbinate region also showed a nonlinear relationship with congestion levels. By contrast, CSA of 
the nasal airways around the middle turbinate exhibited a more linear relationship compared to the inferior 

Fig. 5.  Sequence of predicted turbinate contours. Solid yellow lines show predicted turbinated contours 
generated by the linear image morphing and A* path planning algorithms for the same coronal nasal slice. 
These contours simulate the morphological changes in turbinate regions as the nasal cycle progresses.

 

Scientific Reports |        (2025) 15:34026 10| https://doi.org/10.1038/s41598-025-14023-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


turbinate (Fig. 8b). By quantifying reductions in CSA across congestion levels, our approach offers a metric for 
assessing the extent of airway obstruction.

Other research approaches, including those based on CSA, have been used to assess nasal obstruction and 
guide surgical treatment. For instance, Park et al. used acoustic rhinometry to measure the CSA at varying 
congestion levels to evaluate nasal obstruction and outcomes after septoplasty23. Krzych-Fałta et al. applied 
optical rhinometry to monitor nasal mucosa edema, or congestion, by tracking changes in blood flow and 
infrared light transmission with nasal sensors17. This approach also enabled the measurement of nasal airflow 
pressure to assess the extent of nasal congestion15. While informative, these methods cannot estimate the 

Fig. 6.  Nasal cycle simulation across three coronal views. Simulations using linear morphing and A* path 
planning algorithms are shown for three different coronal views of the nasal cavity. The initial turbinate 
geometry is indicated by the red hatched filling. The predicted turbinate contour at 50% congestion is outlined 
in cyan, and the corresponding expanded turbinate region filled with red and white hatch marks.
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CSA of turbinate-specific regions. By quantifying CSA variation for each turbinate, our approach can assess 
contributions of localized congestion to airflow resistance, offering insight into airflow behavior and the effects 
of decongestants37. This level of anatomical detail may enhance diagnostic precision and support more targeted 
and effective treatment strategies.

A key advantage of our pipeline is that it requires only a single MRI or CT scan to generate intermediate nasal 
cycle geometries, making it particularly valuable for surgical preplanning in settings with limited resources. 
In contrast, Gaberino et al.6 relied on both pre- and post-surgical scans to capture the extremes of mucosal 
congestion and decongestion in each patient, then employed erosion and dilation tools to artificially construct 
mid-cycle geometries from each scan. However, their approach has not been validated against actual patient 
data, whereas our method was validated using patient scans acquired at different time points.

Nonetheless, our study has limitations specific to the richness of datasets that affect the robustness of 
prediction accuracy:

Fig. 7.  Comparison of predicted and actual turbinate geometries. The percent error between predicted 
and actual intermediate turbinate geometry contours is shown across the nasal sections (Sects. 1–3, top to 
bottom) acquired at different timepoints for the same patient (patient A). Inset images display the nasal airway 
geometry with the lowest percent error (highlighted by a blue dotted line) between the predicted intermediate 
turbinate contour (solid yellow line) and the actual intermediate turbinate contour (red dashed line).
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	1.	 First, the limited availability of patient data restricted our ability to robustly validate the predicted geome-
tries against actual scans of the congested and decongested extremes, acquired at multiple time points and 
anatomical locations across multiple patients.

	2.	 Second, our dataset lacked transitional scans that captured intermediate nasal cycle states beyond the con-
gested and decongested extremes. Incorporating additional reference intermediate contours from patient 
scans, captured at various levels of congestion at different time points, would allow the algorithm to simulate 
smoother and more gradual transitions, thereby improving prediction accuracy.

	3.	 Third, the selected scans used to represent congestion and decongestion extremes may not fully capture the 
true physiological range for a given patient. In our simulations, we assumed that the most congested instance 
of a nasal slice represented full turbinate dilation across the entire nasal airway; however, actual extremes 
may differ depending on factors such as age and underlying health conditions15.

	4.	 Fourth, the predicted geometries may not fully account for variations introduced by different breathing con-
ditions, such as restful, shallow, heavy, sniffing, or rapid breathing (e.g., tachypnea).

Access to a larger and more diverse patient dataset, including detailed health and respiratory profiles, and the 
integration of a multi-stage path-planning approach using multiple initial contours would enable more accurate 
identification of nasal cycle extremes and enhance the pipelined algorithm’s performance across a broader range 
of physiological and clinical conditions.

The morphological metrics from our study could support computational analysis of nasal airflow patterns, 
aiding surgical planning for procedures such as septoplasty, turbinate reduction, and polypectomy by identifying 
target congested regions for geometric correction. Additionally, our algorithm enables the evaluation of 
congestion in patients with structural abnormalities.

Conclusion
This study presents a novel algorithm for simulating temporal variations in nasal cavity morphology using MRI 
and CT scan data. The algorithm successfully generates intermediate geometrical shapes at various congestion 
levels throughout the nasal cavity. Validation was performed by comparing algorithm-generated intermediate 
geometries with actual intermediate nasal shapes obtained from MRI and CT scans of the same patient at 
different time points. Additionally, we quantified variations in the cross-sectional areas of the entire nasal airway 
and specific turbinate regions under different congestion levels, providing insights into the dynamic nature of 
nasal airway geometry.

Our pipeline algorithm shows promise as a clinical tool to support surgical planning by identifying congested 
areas and quantifying the extent of tissue reduction required to alleviate obstruction. This capability could 
significantly enhance preoperative planning and improve surgical outcomes for nasal procedures. Future work 
will focus on refining the algorithm’s accuracy and expanding its clinical utility. Further validation studies 
involving larger and more diverse patient cohorts are necessary to establish the algorithm’s robustness and 
reliability across varying nasal anatomies and pathological conditions.

PATIENT SECTION NASAL CAVITY REGION

ENTIRE AIRWAY 
REGION ERROR (%)

MIDDLE TURBINATE 
REGION ERROR (%)

INFERIOR 
TURBINATE REGION 
ERROR (%)

Linear Morphing A * Linear Morphing A * Linear Morphing A *

A

1 MT, IT 20.67 20.7 11.55 12 10.55 10.76

2 MT, IT 14 13.91 13.97 29.27 10.23 10.06

3 IT 8.78 10.24 - - 8.78 10.24

B 1 MT, IT 10.37 11.43 10.64 11.1 9.94 10.44

C 1 MT, IT 13.84 14.1 9.56 10.99 13.93 13.45

D 1 MT, IT 27.49 27.13 13.85 15.05 26.01 26.38

E 1 IT 19.83 20.88 - - 19.83 20.88

F

1 IT 26.01 26.57 - - 26.01 26.57

2 MT, IT 21.89 21.81 21.66 22.15 20.14 19.28

3 ST, MT, IT 21.99 22.89 14.1 15.66 7.83 9.2

Table 2.  Comparison of simulation error for full nasal airway expansion versus isolated expansion around 
turbinate regions during the nasal cycle. Coronal sections from various nasal cavity regions were analyzed 
to assess algorithm performance. Isolated expansion was evaluated only for the middle turbinate (MT) and 
inferior turbinate (IT) regions.
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Fig. 8.  Cross-sectional area (CSA) of the nasal airway for Patient A under varying congestion levels 
simulated by path planning algorithms. (a) Plot of the CSA for the indicated nasal airway versus congestion 
percentage for each algorithm. (b) CSA measurements of the nasal airway surrounding the middle and 
inferior turbinates plotted against congestion percentage for each algorithm. Note: bottom slice only contains 
the inferior turbinate region. LIM = Linear Imaging Morphing, A* = A-star, MT = Middle Turbinate, and 
IT = Inferior Turbinate.
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