Table 3 Pseudocode for deep learning model training Process.
Step | Description |
---|---|
Input | Agricultural production dataset \(\:X\), labels \(\:Y\) |
Output | Trained deep learning model |
Initialization | Initialize CNN model parameters \(\:{\theta\:}_{CNN}\), LSTM model parameters \(\:{\theta\:}_{LSTM}\) |
Training Process | For each training epoch: |
1. Input Data | Feed \(\:X\) into the CNN network to extract spatial features |
2. Combine Temporal Data | Input the CNN output together with temporal data into the LSTM network |
3. Compute Loss | Compute the predicted value \(\:f\left(X\right)\) and calculate the loss \(\:L\left(\theta\:\right)\) by comparing it with the true labels \(\:Y\) |
4. Update Parameters | Update the parameters \(\:{\theta\:}_{CNN}\) and \(\:{\theta\:}_{LSTM}\) using backpropagation |
Output | Trained deep learning model |