Table 5 Pseudocode of the SMA optimization Process.
Step | Description |
---|---|
Input | Model parameters \(\:\theta\:\), dataset \(\:X\) |
Output | Optimized model parameters \(\:{\theta\:}^{*}\) |
Initialization | Randomly generate initial positions of the slime mould individuals \(\:{X}_{0}\), set the maximum iteration count \(\:T\) |
Optimization Process | For each iteration t = 1 to \(\:T\): |
1. Compute Fitness | Calculate the fitness value for each individual \(\:{fitness(X}_{t})\) |
2. Select Food Sources | Select food sources \(\:{X}_{A}\) and current individual \(\:{X}_{B}\) based on fitness values |
3. Update Position | Update the position of individuals \(\:{X}_{t+1}\) based on the distance from food sources and the current individual |
4. Update Model Parameters | Update the model parameters \(\:\theta\:\) through the optimization process |
Output | Return the optimized model parameters \(\:{\theta\:}^{*}\) |