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To address the characteristic of frequent lithological alternations in the continental shale of the 
Songliao Basin in China and meet the refined requirements of reservoir modeling, it is necessary to 
establish a higher-precision lithology identification method. This study conducted scratch tests on 
shale reservoir cores from the 2360m–2409m interval of the Qingshankou Formation in the Songliao 
Basin, Jilin, obtaining nine mechanical characteristic parameters, including hardness, compressive 
strength, and Poisson’s ratio. By integrating convolutional neural network (CNN) and auto-encode 
network (AE), a novel lithology identification method based on scratch data was proposed. The optimal 
lithology identification scale was selected, and the performance of this method was compared with 
that of other neural network approaches. The results demonstrate that when the identification scale is 
set at 20 × 9, the test dataset achieves an accuracy of 89.58%, with recall rates exceeding 84% across 
all lithology recognitions, outperforming other identification scales. The convolutional autoencoder 
network (CAE) exhibits superior accuracy and recall rates in lithology identification compared to other 
neural networks, enabling a more precise representation of the actual lithological characteristics. 
This study provides a novel methodological approach for reservoir lithology identification and lays a 
foundation for modeling fracture propagation in heterogeneous shale reservoirs.
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The continental shale oil in China’s Songliao Basin exhibits unique laminated and bedding-plane structures, 
characterized by frequent lithological alternations and complex reservoir spaces1,2. Accurate lithology 
identification provides a robust analytical foundation for investigating complex fracture propagation in 
heterogeneous shale hydraulic fracturing3,4. The conventional logging data with relatively coarse sampling 
intervals (decimeter- to meter-scale) exhibit limited capability in identifying thin-bed lithological variations. 
Furthermore, the primary surface characteristics of rocks may be altered due to outcrop weathering or drilling 
mud contamination, potentially leading to deviations in image-based lithological analysis from actual features. 
Consequently, there is an urgent need to develop a novel lithology identification methodology to achieve accurate 
reservoir lithology characterization, thereby facilitating efficient shale oil resource development.

Traditional lithology identification is based on expert experience and engineering data comparison, which 
is costly and relatively complex5,6. Deep learning lithology identification methods in recent years establish 
relationships between lithology-sensitive attributes and lithology types from a large amount of observational 
data7, which brings the possibility of mining the correlation between features and lithology with reasonable 
accuracy. An Peng et al.8 trained deep neural networks and performed lithology identification using seven 
logging feature variables. Wang et al9 constructed a well logging Intelligent recognition model of lithology in 
work, which can achieve automatic recognition of rock images. Dong SQ et al.10 proposes the use of integrated 
learning strategies and principles in logging curves and lithologies, combined with ML methods as subclassifiers 
thereby reducing the variance error in the prediction process. Fu D11 achieves cross-channel feature association 
in realising automatic prediction of core images, which significantly improves the model accuracy without 
increasing the model complexity. Sun et al.12 analyzed three commonly used classifiers, one-versusrest SVM, 
one-versone SVM, and random forest, for lithology recognition of drill-following data, and found that random 
forest has fast training speed and high accuracy of recognition. Alzubaidi F13 developed a convolutional neural 
network-based method to classify images of drill core into three lithologies, and the model is based on the 
ResNeXt-50 architecture which outperforms the ResNeXt-v3 architecture in lithology identification. Gaochang 
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Z14 aiming at the problem that the accuracy of image classification techniques is too low when classifying 
small-size rock images, a conditional residual deep convolutional adversarial network is proposed to effectively 
improve the rock classification accuracy. Manuel et al15 presents a new method for automatic lithological 
facies identification of log images using deep residual convolutional neural network, which is different from 
the previous processing of log data. As a representative of deep learning, convolutional neural network can 
automatically and intelligently learn the relationship between sample features with predictive robustness and 
superiority, with high accuracy in identifying lithology16,17.

The aforementioned research findings demonstrate that deep learning represents an efficient approach for 
lithology identification. However, current methodologies relying on cuttings logging, well logging, and drilling 
data for lithological analysis are constrained by relatively large sampling scales and insufficient accuracy in 
characterizing rock properties18,19. Scratch tests, as one of the primary methodologies for evaluating tribological 
and mechanical properties of materials, has been demonstrated to provide continuous characterization of rock 
mechanical properties20,21. Zhang J et al.22 proposed a method to analyse the strain hardening index and plastic 
parameters such as interfacial coefficient of friction of metallic materials by scratch tests. Liu H et al.23 The 
yield stress and interfacial coefficient of friction of materials were characterized by scratch tests using a Vickers 
indenter with high measurement accuracy. In the geotechnical field, scratch testing was initially used to measure 
rock hardness24, other mechanical parameter calculations were successively validated as the theory developed. 
Thomas Richard et al.25 demonstrated that compressive strength can be assessed from scratch tests and that 
smaller depths of cut maintain the rock in a ductile state. Akono A-T et al26–29 correlated the results tested in 
scratch experiments with the fracture properties of the material, which can be quantitatively extracted at smaller 
length sizes. Lin J-S30 gave the relationship between the angle of internal friction and the horizontal force as 
well as the vertical force by analyzing the Akono A-T experiment and the calculation process. Liu Hongtao 
et al31 analyzed the correlation between cohesion and uniaxial compressive strength and angle of internal 
friction of rocks obtained from scratch experiments and compared them with the results of triaxial compression 
experiments, and good agreement was obtained.

The aforementioned studies demonstrate that deep learning techniques can achieve efficient and accurate 
lithology identification. However, conventional approaches for acquiring lithological information exhibit 
inherent limitations, including coarse data sampling intervals and insufficient characterization precision of rock 
properties. In contrast, scratch test data enables continuous and precise characterization of rock mechanical 
parameters. This study develops an CAE architecture by integrating rock mechanical parameters obtained from 
core scratch tests with AE and CNN. The scratch test data are transformed into different sizes of two-dimensional 
feature matrices as model inputs. Through systematic optimization, the optimal feature representation dimension 
is determined, followed by comparative analysis with conventional models to validate the superior performance 
of the proposed method in terms of lithology identification accuracy and feature extraction capability. This 
study proposes an intelligent lithology identification method integrating deep learning algorithms with scratch 
test data, which is expected to overcome the limitations of conventional approaches and achieve precise 
discrimination of rock types, thereby establishing a foundation for investigating complex fracture propagation 
in heterogeneous shale hydraulic fracturing.

Result
The primary objective of this study is to identify the optimal scale for lithology identification using scratch test 
data and to validate the effectiveness of the proposed model by comparative analysis with backpropagation 
neural network (BP), random forest (RF), convolutional neural network (CNN), and residual neural network 
(ResNet). The evaluation incorporates confusion matrix analysis for each model, along with comprehensive 
assessments of overall accuracy and recall rates.

Identify size optimization
To optimize the lithology identification scale, Fig. 1 presents the accuracy and loss function curves of the test set 
obtained with different input dimensions. From the Fig. 1 it can be seen that the three sizes of the training model 
in the Mean Square Error (MSE) value of 0.003 when the model is relatively converged, and the fluctuation is 
relatively small, using the model of 20 × 9 in the iteration of about 50 times the model began to converge, and the 
convergence speed is faster compared with other sizes of the model.

Based on the comparison of the training results of the model with different sizes of inputs in (Table 1), the 
accuracy of the model can reach 89.95% on the training set and 89.58% on the test set using inputs of size 20 × 9, 
which is a better fit for the model. The accuracy of the test set is improved by 8.61 and 16.37 percentage points 
compared to the accuracy of the 10 × 9 and 30 × 9 inputs, respectively.

The stacked histograms for different recognized sizes are shown in (Fig.  2), and the recall for each rock 
type is shown in (Table 2). Using the recognition size of 10 × 9 makes the lithology recognition process unable 
to recognize all the features of the lithology, making the recognition accuracy of the mixed shale lower, and 
when the recognition size of 30 × 9 is used, the data of other lithologies are mixed with each type of lithology, 
which makes sandstone, dolomite, and mixed shale have lower accuracy. The recognition accuracy of each 
lithology is improved by 3.61, 10, 9.33, 14.81, 9.76%, and the recall is improved by 16.68, 8.83, 3.85, 1.23, and 
9.36%, respectively, when the recognition size is 20 × 9, compared to the recognition size of 10 × 9. Compared 
to recognition size of 30 × 9 accuracy increased by 3.66, 5.32, 26.15, 43.08, 28.57% and recall increased by 18.46, 
6.27, 32.63, 21.95, 2.74% respectively. The comparison yields that the recognition size of 20 × 9 predicted labels 
match the real labels to a greater extent and are able to identify the positive samples more accurately.
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Comparative experimental results
For rigorous verification of CAE’s lithology identification capability, four benchmark models—BP, RF, CNN 
and ResNet—were implemented for systematic comparison. From Fig. 3, it can be seen that the CAE model 
performs well in terms of the number of iterations and accuracy at convergence. The proposed model achieved 

Identify Size clayey shale felsic shale mixed shale sandstone dolomite

10 × 9 78.59 77.61 87.12 86.06 91.44

20 × 9 91.70 84.46 90.47 87.12 100

30 × 9 77.41 79.48 68.21 71.14 97.33

Table 2.  Recall % for different recognition sizes.

 

Fig. 2.  The stacked histograms for different recognized sizes: (a) 10 × 9, (b) 20 × 9, (c) 30 × 9.

 

Identify size Accuracy of training Accuracy of the test

10 × 9 87.19 82.48

20 × 9 89.95 89.58

30 × 9 80.39 76.98

Table 1.  Accuracy of training and test sets.

 

Fig. 1.  Accuracy and loss function of test set with different sizes: (a) accuracy (b) loss function.

 

Scientific Reports |        (2025) 15:30401 3| https://doi.org/10.1038/s41598-025-14147-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


an identification accuracy of 89.58%, representing improvements of 2.12, 9.62, 4.97, and 3.49% over the BP 
(87.72%), RF (81.72%), CNN (85.34%), and ResNet (86.56%) models, respectively. This comparative analysis 
demonstrates the superior lithology discrimination capability of the proposed approach.

Figure  4 presents the confusion matrices obtained from different neural network recognition methods. 
The CAE improved the lithology identification accuracy by 6.25, 13.79, 5.12, 8.14, and 18.42%, respectively, 
compared with the RF; by 1.19, 5.32, 1.23, 1.09, and 4.65% compared with the BP; by 3.66, 7.61, 1.23, 6.90, and 
5.88% compared with the CNN; and by 11.58, 3.13, 1.22, 1.94, and 2.22% compared with the NesNet.

Table 3 displays the recall rates of the random forest and BP neural network. The convolutional autoencoder 
neural network achieved higher recall rates than the random forest by 13.94, 8.45, 10.09, 1.46, and 12.57%, and 
outperformed the BP neural network by 6.33, 0.52, 0.62, 1.46, and 5.02%. Compared with the convolutional 
neural network, the recall rates improved by 5.46, 4.23, 6.79, 0.08, and 10.17%, while the improvements over the 
NesNet neural network were 3.0, 3.0, 2.0, 2.0, and 11.43%, respectively.

The convolutional autoencoder neural network demonstrates a higher degree of alignment with the true 
labels in lithology identification, indicating its enhanced capability to accurately reflect the actual lithological 
conditions. This leads to improved reliability and precision in lithology recognition.

Discussion
The core of this study lies in the interdisciplinary integration of rock scratch testing technology with deep 
learning-based lithology identification algorithms to enhance the accuracy and efficiency of geological 
exploration and 3D geological modeling. Rock scratch technology provides a continuous and high-precision 
method for testing rock mechanical parameters, while the CAE network offers an advanced approach for rock 
classification analysis. This innovative methodological fusion effectively addresses the limitations of traditional 
well logging and image-based classification, such as excessive data sampling intervals, discontinuous core 
samples, and insufficient classification accuracy caused by variations in rock surface morphology.

Moreover, the CAE network demonstrates high recognition accuracy in processing fine textures and 
frequently alternating lithologies. Although challenges remain in algorithm optimization and the fusion of 
diverse data types, this interdisciplinary approach significantly enhances its practical application potential.

This study not only deepens the understanding of the mechanical behavior differences among various 
lithologies but, more importantly, provides an innovative technical solution for characterizing heterogeneous 
hydrocarbon reservoirs and supporting geological resource exploration and development. Future work will 
focus on further optimizing the applicability of this integrated method across different reservoir types and 
exploring more data-driven and deep learning-based geological research approaches to advance innovation and 
progress in geosciences.

Methods
In this section, we first present the geological and petrophysical background of the study area. Subsequently, 
we describe the methodology for data acquisition using scratch tests, followed by a detailed explanation of 
the network architecture construction and hyperparameter optimization of the algorithm. Finally, we specify 
the experimental environment and evaluation metrics. The overall workflow of this study is illustrated in the 
accompanying (Fig. 5).

Fig. 3.  Comparison of model performance.
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Geological background and data collection methods
Lithological characteristics of the Songliao basin
The rock specimens for the scratch tests were sourced from the Songliao Basin (Fig. 6), the largest Cenozoic 
continental sedimentary basin in eastern China. This basin currently holds proven recoverable shale oil reserves 
exceeding 7 billion tonnes, though existing extraction technologies can only access approximately 0.7 billion 
tonnes. This substantial gap underscores the critical need for enhanced lithological characterization of these 

Fig. 4.  Confusion matrix of different methods of lithological discriminant analysis.
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shale reservoirs. The numbered zones 1–10 in Fig. 6 demarcate our study area within the Central Depression of 
the Songliao Basin, a region of particular stratigraphic interest for unconventional resource evaluation.

The shale samples from the qingshankou formation in jilin oilfield, located within the central depression 
of songliao basin, represent typical lithological characteristics of the region. Through comprehensive expert 
analysis, these shales have been systematically classified into five distinct lithotypes: clayey shale, felsic shale, 
mixed shale, sandstone, and dolomite. The compressive strength properties of these lithological units, as 
determined by scratch testing, are presented in (Fig. 7).

Figure 7 reveals distinct fluctuations in the compressive strength curves at lithological interfaces, with varying 
amplitude ranges observed among different lithotypes. These characteristic variations can be further elucidated 
through systematic data analysis.

Methodology for data acquisition via scratch test
Scratch tests technology is to control the axial load of diamond or carbide to make a precise trace on the surface 
of the specimen, using high-precision two-dimensional force sensors and high-precision displacement sensors 
to detect the axial force, tangential force, and the depth of indentation in the process of scribing, and at the same 
time, to observe the dynamic process of the mechanical behavior of the material such as the deformation and 
destruction of the material locally in the process of the experiment. Scratch test usually has a constant load and 
constant depth two test methods, in order to reduce the constant load test process of the cutter head up and 
down movement caused by experimental errors, this paper uses a constant depth loading.

Scratch tests process shown in Fig. 8, the specimen needs to be pre-cut to ensure that the test surface smooth, 
while the specimen two clamping end face also need to be cut smooth, to avoid the test process due to the 
unstable clamping led to the specimen’s rotation and deflection, thus affecting the results of the experiment. 
Clamp the processed specimen on the test bench, and adjust the specimen in the horizontal position through 
the observation of the level meter. Operate the control system to move the position of the cutterhead, in order 
to ensure that the depth of the scratch is a fixed value, first through the observation of the cutterhead will be 
placed under the specimen about 0.1mm to carry out a test scratch, and then the cutterhead down the depth of 
the experiment to start the experiment, the end of the experiment for the analysis of the data.

The geometry of the scratch test is shown in (Fig. 9). A vertical force Fn was applied so that the depth of 
the cutting head d was always maintained 0.5mm, the width of the head w was 2mm, and the inclination angle 
θ with the test piece was 30°. Horizontal force is applied to move the cutter head, and the scratch test data are 
collected every 0.4 mm during the horizontal movement. Due to the shearing effect, a part of the rock material 
was chipped off, and the origin of the coordinates was set at d/2 according to the fracture characteristics of the 
scratch.

Scratch testing as an experimental method for mechanical properties of materials was rationalized by Mohs 
hardness as early as 1812 as a quantitative indicator of scratch resistance for the classification of various minerals 

Fig.5.  The schematic diagram of the research workflow.

 

Neural networks Clayey shale Felsic shale Mixed shale Sandstone Dolomite

RF 80.48 77.88 82.18 85.87 88.83

BP 86.24 84.02 89.91 85.51 95.22

CNN 86.95 81.03 84.72 87.05 90.77

NesNet 82.00 96.00 80.00 91.00 78.57

CAE 91.70 84.46 90.47 87.12 100

Table 3.  Recall table for different methods %.
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according to Kouqi L et al33 The study of the rock hardness can be obtained from the projection of the cutter 
head on the moving plane:

	
Hd = Fn

wd
� (1)

The choice is based on the interface between the blade and the material, the unstressed surface at x > d/2 tan θ 
and at z = d/2 the crack tip, and the closed material surface away from the crack tip, so that the only contribution 
to the J-integral comes from the interface of the blade.The J-integral provides the energy release rate G as 
follows34:

	
G = κ

E(w2d)

(1
2F 2

s + 3
10F 2

n

)
� (2)

where, under the condition of plane stress κ = 1 and plane strain κ = 1 − υ2, υ is Poisson’s ratio and E is elastic 
modulus.

The energy release rate is equal to the fracture energy during fracture extension of the crack, and the 
relationship between fracture toughness KIc and energy release rate is:

	
G ≡ Gf = κ

K2
Ic

E
� (3)

The fracture toughness of the rock is obtained by joining Eq. (2) and Eq. (3) as:

	

√(1
2F 2

s + 3
10F 2

n

)
= KIcw

√
d� (4)

Fig. 6.  Structural divisions map of Songliao Basin32.
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For each test, a fixed ratio is maintained between the vertical force Fn and horizontal force Fs, which depends 
on the inclination of the rock and the friction of the tool, viz:

	 Fn = Fs tan(θ + φ)� (5)

where φ is the angle of internal friction between the cutter head and the rock, from which the coefficient of 
friction between the cutter head and the rock specimen can be obtained µ = tan φ. The cohesive force C of the 
rock can be obtained according to the linear Moore Cullen criterion, as shown in Eq. 6:

	
C = UCS · (1 − sin φ)

2cosφ
� (6)

Fig. 7.  Compressive strength of different lithologies.
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where UCS is the uniaxial compressive strength of the rock, which is able to be output directly during the scratch 
tests UCS = FS

wd .
Angle of internal friction in shear damage is linearly related to Poisson’s ratio35, expressed as:

	
ν = arctan[cos φ − (1 − sin φ) tan φ]

90◦
� (7)

Figure 10 shows the line graphs of the scratch parameters of different lithologies, from which it can be seen 
that: the hardness of the clayey shale type shale is the smallest, the hardness of the sandstone is the largest, the 
cohesion of the long quartz grained shale is the largest, and the friction coefficient of the mixed grained shale is 
the smallest. The magnitude of the value of the same mechanical parameter varies from one lithology to another, 
and the lithology is determined by the different contents of minerals and their arrangement and depositional 
mode, the same mechanical parameter of each lithology has a certain inherent law, and the interrelationships 
that exist between each mechanical parameter will determine the category of the lithology, which provides a 
possibility of lithology identification through the scratch parameter.

The identification of lithology using scratch feature parameters requires accurate analysis of the variability 
and regularity within the same feature, as well as comprehensive consideration of the mutual influence and 
constraints between multiple features. The deep learning method can fully extract the correlation features 
between the data when predicting, and build a more accurate prediction model on this basis.

Data preprocessing
There was a horizontal displacement between the cutterhead and the rock specimen at the beginning of the 
scratch tests, and the mechanical parameters measured when the cutterhead just touched the specimen and 
when it left the specimen were unstable, and the number of such samples was small, so the abnormal data were 
excluded by using the normality test. For the data with missing lithology labels, they were clustered, and the one 
with the closest distance between the centre of the obtained clusters and the mean value of the known lithology 
data was given the same lithology labels to complete the data.

The feature extraction data in this paper is one-dimensional scratch data with 10,050 categorical data, 
including horizontal force Fs, vertical force Fn, uniaxial compressive strength UCS, hardness Hd, fracture 
toughness Klc, angle of internal friction φ, coefficient of friction µ, cohesion C, and Poisson’s ratio ν in each 

Fig. 9.  Schematic of the geometry of the scratch test.

 

Fig. 8.  Scratch test procedure.
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categorical data with 9 categories of feature data, which is a total of 90450 feature values. The training set and test 
set were randomly divided in the ratio of 8:2, as shown in (Table 4).

As illustrated in Fig. 10, the scratch characteristic data exhibit significant variations in magnitude. To eliminate 
the effects of unit and scale discrepancies among the scratch feature parameters, the z-score normalization 
method was applied in this experiment. The normalization formula is expressed as:

	
x′

i = xi − min(xi)
max(xi) − min(xi)

� (8)

Rock types

Sample numbers

Classestraining sets testing sets

Clayey shale 2080 520 0

Felsic shale 1880 480 1

Mixed shale 1760 440 2

Sandstone 1320 320 3

Dolomite 1000 250 4

Table 4.  Lithology recognition training and testing sets.

 

Fig. 10.  Line graph of scratch parameters for different lithologies.
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where min(xi) and max(xi) represent the minimum and maximum values of feature parameters xi, respectively, 
while x′ denotes the normalized result of the feature value.

If a single scratch point or the corresponding eigenvalue at a smaller size is used for classification, it 
cannot reflect the structural distribution characteristics of different mineral components in different spatial 
combinations. If the selected division size is too large, it may contain different lithological information and 
thus reduce the accuracy of lithological identification. According to the actual lithology, the features in the 
consecutive n points are jointly used as input, i.e., the input is an n × 9 matrix, and each scratch data point 
corresponds to a lithological label value, which is transformed into a solo thermal code to obtain an n × 5 output 
matrix.

Algorithm description
The schematic diagram of CNN architecture is shown in Fig. 11, where feature information is extracted from 
the input data through the convolutional structure and the categories of the data are output through the fully 
connected layer. It utilizes multiple filters to build features and consists of three parts: convolutional layer, 
pooling layer and classification layer.

Scratch tests were systematically conducted on 107 rock specimens extracted from 33 core boxes spanning 
the depth interval of 2360–2409 m in the Qingshankou Formation within the Central Depression of the Songliao 
Basin. Each convolutional layer extracts local features of the image using locally connected and globally shared 
connections, and combines these features to form a feature mapping map, and then simplifies the output of the 
convolutional layer through pooling operations, using the principle of local correlation of the image to reduce 
the dimensionality of the features while retaining useful information; the output is the classification layer, which 
is a fully-connected network that combines the outputs of the previous layer through a serially connected The 
output is the classification layer, which is a fully connected network that expands the output of the previous layer 
through serial connections, and all the outputs of the expansion form a feature vector. The number of neurons 
in the output layer of the network is the number of types in the training image set, i.e. the number of type labels.

Autoencoder (AE) is an unsupervised deep learning algorithm that reconstructs the input data into outputs 
so as to learn different representations of the data, the goal is to maximise the information and minimise the 
reconstruction error while encoding to get the deeper regularities of the original data, the structure of the model 
is shown in (Fig. 12).

CAE network is a more efficient unsupervised feature extractor by adding a convolutional structure on 
the basis of the traditional AE structure, adopting convolutional layers instead of fully connected layers, and 
preserving the local spatial structure of the data features in order to better mine the semantic information in 
the data. The network structure is divided into two stages, encoder and decoder, the encoder mainly consists of 

Fig. 12.  Structure of the AE model.

 

Fig. 11.  Schematic diagram of CNN.
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convolutional layers to achieve the extraction of high-level feature semantics of the input samples. The decoder 
consists of transposed convolutional layers, which is the inverse process of convolutional layers, and achieves 
the reconstruction of the input samples through the inverse convolution to minimise the difference between the 
input and output data and improve the recognition ability.

The convolutional layer is able to extract features from the data and its output can be expressed as:

	
A = xn

I = R

(
i

∑
i∈KI

xn−1
I × wn

ij + bn
i

)
� (9)

where xn
I  is the feature vector corresponding to the convolution kernel, KI  is the convolution kernel, wn

ij  
denotes the jth weight coefficient of the ith convolution kernel in the nth layer, bn

i  is the bias parameter, and R 
is the activation function.

After the convolutional kernel operations, downsampling is required to be able to preserve useful information 
while reducing the dimensionality of the data, and the sampling layer uses a pooling technique to maintain 
the features and thus obtain scaling invariance. In CNN, the downsampling layer is usually followed by more 
convolutional layers for secondary feature extraction and these convolutional layers learn higher level features 
from the downsampled output. After multiple convolution and downsampling operations, the network is able to 
progressively abstract more representative features. The computational formula for downsampling is:

	 B = xi
j = down(xi−1

j )� (10)

The transposed convolution is a forward convolution that increases the dimensionality of the input data and ⊕ 
represents the inverse convolution computation, with the output of the transposed convolution layer expressed 
as:

	
D = x′n

I = R

( ∑
j∈Ml

x′n−1
i ⊕ w′n

ij + b′n
i

)
� (11)

The decoder reconstructs the features extracted from the individual convolutions, compares the input samples 
with the reconstructed samples, and evaluates the training effect of the model by using the MSE function as the 
loss function, which is a statistical parameter that predicts the mean of the sum of squares of the errors of the 
original data and the corresponding points, and m is the number of samples denoted as:

	
loss = 1

m

m∑
i=1

(h(xi) − yi)� (12)

The network model structure of the convolutional self-coding neural network used in this paper is shown in 
Fig. 13, where the MaxPooling downsampling technique is introduced into the network structure to obtain the 
translational invariance of the features. The Relu function is used as the activation function to increase the linear 
relationship between each layer of the neural network to the maximum extent, which can achieve better mining 
and fitting training of data features. The last layer is the Sigmoid activation function, which maps the variables 
between [0,1] to achieve explicit prediction. For the whole network model, in order to prevent overfitting and 
improve the generalisation ability, it is processed by using the regularisation method, this paper adopts the 
Dropout regularisation method by directly modifying the number of parameters of the model mechanism, i.e., 
randomly dropping a certain proportion of neurons.

Hyperparameter optimization
In the field of deep learning, the choice of hyperparameters has a significant impact on model performance. In 
order to find the best combination of hyperparameters, this study employs the PSO algorithm, a search strategy 
based on group intelligence, for optimizing hyperparameters within a defined search space. The PSO algorithm 
is a meta-heuristic search algorithm that simulates the feeding behavior of a flock of birds, and its core lies in 
exploring the solution space and converging to the optimal solution through group cooperation and information 
exchange. In PSO, each particle searches for the optimal solution independently and records the best position 
found as an individual optimal solution. Particles collaborate with each other to determine the global optimal 
solution for the whole population by sharing their respective historical optimal positions. Subsequently, the 
particles advance the search process by dynamically adjusting their speed and position according to their 
individual optimum and the global optimum of the group.

Assuming that the position of the i particle in the d dimensional air is xi = (xi1, xi2, ..., xid), the flight 
speed is Vi = ( Vi1, Vi2, ..., Vid ), the personal optimal solution is Pi = (pi1, pi2, ..., pid), the current global 
optimal solution is Pg = (pg1 , pg2 , ..., pgd ), and the particle’s velocity and position update formula is as follows:

	

{
vt+1

id = w · vt
id + c1 · r1 · (pt

id
− xt

id
) + c2 · r2 · (pt

gd
− xt

id
)

xt+1
id

= xt
id

+ vt+1
id

� (13)
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where y is the velocity component of the i particle in the d dimension. t is the number of iterations of the i 
particle, w is the inertia coefficient, c1 and c2 is the learning factor, r1 and r2 is a random number between (0,1). 
The schematic of the particle position update is shown in (Fig. 14):

The flowchart of the particle swarm optimization algorithm is shown in (Fig. 15):
In this study, PSO is used to optimize four key hyperparameters of the deep learning model: learning rate 

(LR), batch size (batch_size), weight_decay, dropout rate (dropout_rate), and number of iterations (epochs). 
The search range of hyperparameters is defined as: learning rate LR: [le-5,le-1], batch size batchsize: [3,128], 
weight decay weightaecay: [1e-5,1e-1], regularization ratio Dropout dropoutrate: [0.1,0.8], iteration number 
epochs:[20, 200].

The fitness_function assesses the hyper-parameter combination’s performance by calculating the model’s 
training loss, measured by the MSE. The Adam optimizer is used to optimize the loss function of the network 
so as to avoid gradient descent as well as non-convergence.The PSO algorithm is run in a population of 50 
particles, each representing a hyper-parameter combination, over 100 iterations to find the optimal solution. The 
optimal learning rate of 0.0012, batch size of 8, decay weight of 0.032, regularization ratio of 0.301 and number 
of iterations of 150 are obtained.

Training and evaluation indicators
The experimental configuration and parameters of this experiment include: The computer processor is Intel(R) 
Core(TM) i5-10400F CPU @ 2.90GHz, the running memory is 16GB, the 64-bit operating system, and the 
editing language is python3.7.

Fig. 14.  Schematic diagram of particle position update.

 

Fig. 13.  CAE structure.
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In this paper, recall and accuracy are used to evaluate the performance of CAE networks for lithology 
classification.

1) The recall rate can be expressed as:

	
R = NTP

NTP + NFN
� (14)

where: R is the recall rate; NTP and NFN are the number of true positive and false negative samples, respectively.
2) Accuracy:

	
P = NTP

NTP + NFP
� (15)

where: P  is the accuracy rate; NFP is the number of false positive samples.

Conclusion
In this study, we integrate rock scratch tests with CAE, yielding the following key findings: 

	(1)	 Scratch experiments were conducted on core samples from a well in the Jilin Oilfield, located in the central 
depression of the Songliao Basin. Theoretical calculations derived mechanical parameters such as hardness 
and fracture toughness. Compared to conventional lithology identification data, this approach significantly 
enhances measurement continuity and resolution.

	(2)	 The proposed hybrid method provides a novel perspective and methodology for geological resource explo-
ration and heterogeneous reservoir characterization.

	(3)	 Experimental results demonstrate that at a recognition scale of 20 × 9 pixels, the model achieves an accuracy 
of 89.58%, exhibiting superior fitting performance. The CAE outperforms other neural network approaches 
in both recall rate and accuracy.

Data availability
The datasets generated and analysed in this study are not publicly available due to the confidentiality of the shale 
stratigraphic data studied, but are available upon request from the corresponding author.
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