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This paper presents the first comprehensive deep learning-based Neural Machine Translation (NMT) 
framework for the Kashmiri-English language pair. We introduce a high-quality parallel corpus of 
270,000 sentence pairs and evaluate three NMT architectures: a basic encoder-decoder model, an 
attention-enhanced model, and a Transformer-based model. All models are trained from scratch using 
byte-pair encoded vocabularies and evaluated using BLEU, GLEU, ROUGE, and ChrF + + metrics. The 
Transformer architecture outperforms RNN-based baselines, achieving a BLEU-4 score of 0.2965 
and demonstrating superior handling of long-range dependencies and Kashmiri’s morphological 
complexity. We further provide a structured linguistic error analysis and validate the significance of 
performance differences through bootstrap resampling. This work establishes the first NMT benchmark 
for Kashmiri-English translation and contributes a reusable dataset, baseline models, and evaluation 
methodology for future research in low-resource neural translation.

Neural Machine Translation (NMT) is a deep learning-based approach that enables automatic text translation 
from one language to another, significantly improving fluency and contextual accuracy over traditional 
statistical methods1,2. Unlike Statistical Machine Translation (SMT), which depends on phrase-based probability 
models, NMT systems learn sequence-level mappings directly from data, allowing them to model long-distance 
dependencies and richer syntax3.

While NMT has achieved remarkable success for high-resource languages such as English, French, or 
Chinese4, its application to low-resource and morphologically rich languages like Kashmiri remains largely 
unaddressed. Kashmiri poses unique computational challenges due to its complex morphology, Perso-Arabic 
script, and regional dialectal variation5,6. The language lacks publicly available corpora, robust tokenizers, or 
neural translation systems, severely limiting research and development.

While multilingual models such as IndicTrans23 have recently begun to support Kashmiri, the language 
remains significantly underrepresented in large-scale pretrained translation systems. Notably, mBART and mT5 
do not include Kashmiri among their supported languages. Even in IndicTrans2, Kashmiri is not fine-tuned for 
the English target direction, and support remains generic rather than task-specific. As a result, these models offer 
only limited translation quality for Kashmiri-English tasks. To date, no prior study has built a dedicated NMT 
pipeline or conducted a systematic evaluation for this language pair.

To address this gap, we present the first end-to-end Kashmiri-English NMT system, built upon a high-quality 
parallel corpus of 270,000 sentence pairs. We evaluate three neural architectures — a basic encoder-decoder 
model, an attention-enhanced model, and a Transformer-based model7 — and assess their performance using 
multiple metrics. In addition, we introduce a structured linguistic error taxonomy and perform statistical 
significance testing via bootstrap resampling to validate performance differences across models.

This study establishes a foundational benchmark for Kashmiri-English neural translation and contributes 
a scalable methodology for adapting deep learning to other under-resourced and morphologically complex 
languages.
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	1.	 We present the first deep learning-based NMT pipeline dedicated to the Kashmiri-English language pair, 
introducing a methodological foundation for neural translation in a previously unexplored low-resource 
setting.

	2.	 We develop the first high-quantity and high-quality Kashmiri-English parallel corpus, consisting of 270 K 
sentence pairs, which we make publicly available on the Hugging Face platform. This dataset significantly 
enhances the resources available for low-resource language translation research.

	3.	 We propose three distinct NMT architectures tailored for Kashmiri-English translation:

	 i.	 a basic encoder-decoder model,
	 ii.	 an encoder-decoder model with an attention mechanism, and.
	 iii.	 a Transformer-based model leveraging multi-head self-attention.

	These models are systematically evaluated to assess their effectiveness for morphologically rich and low-resource 
language pairs.

	4.	 We conduct a detailed empirical evaluation using BLEU, GLEU, ROUGE, and ChrF + + metrics. The Trans-
former model achieves a BLEU-4 score of 0.2965, outperforming both RNN-based baselines, and demon-
strating its ability to model long-range dependencies and complex morphology.

	5.	 We provide a structured qualitative analysis, including a linguistic error taxonomy covering tense, morphol-
ogy, fidelity, and structural coherence. This analysis, supported by example-based comparisons, highlights 
the specific challenges of translating Kashmiri and the comparative strengths of each model.

	6.	 We perform statistical significance testing using paired bootstrap resampling to validate the observed im-
provements, showing that the Transformer model’s performance gains are statistically reliable.

In addition to these contributions, our study introduces the first end-to-end neural machine translation pipeline 
tailored for Kashmiri-English, combining corpus creation, modern model benchmarking, and structured 
linguistic evaluation. This work represents a methodologically novel foundation for future NMT research on 
Kashmiri, and more broadly demonstrates how to adapt deep learning pipelines to structurally complex, under-
resourced languages.

Related work
Machine Translation (MT) is a complex challenge within the field of Natural Language Processing (NLP), where 
researchers strive to develop automated methods for translating between human languages. This research area 
dates back to 1949 when Warren Weaver introduced it in his “Memorandum of Translation.” Achieving human-
level translation accuracy remains an elusive goal, as no existing machine has yet matched human performance 
in translating between languages8. One of the primary challenges lies in establishing correlations between 
languages that often lack standardization, whether in linguistic morphology or topology. This requires much 
more than simple word or phrase substitution.

Traditionally, machine translation approaches have been rule-based, statistical-based, example-based, or a 
combination of these techniques9. However, these methods have faced significant drawbacks, primarily due to 
their dependence on manual feature engineering and explicit annotations. As a result, they lack scalability and 
generalizability. The advent of neural network-based translation systems, known as Neural Machine Translation 
(NMT), has brought about a more flexible and scalable solution, outperforming traditional methods. Unlike 
earlier approaches, NMT does not rely on manual, automated, or semi-automated annotations, making it more 
efficient and adaptable1.

Deep learning has become the most popular technique for addressing various research challenges, including 
computer vision, NLP, automatic speech recognition, and bioinformatics10,11. Specifically, in NLP, deep learning 
has proven superior to conventional methods in tasks such as language modeling12, sentiment analysis13,14, 
conversational modeling15, machine translation9, handwriting generation16, and text-to-speech conversion17,18.

One of the groundbreaking innovations in machine translation using deep learning is the encoder-decoder 
framework introduced in 201319, which was later improved with the sequence-to-sequence model in 201420. 
This model utilized Long Short-Term Memory (LSTM) networks for both the encoder and decoder, effectively 
addressing issues like long-distance reordering and the vanishing/exploding gradient problem4. However, it had 
a limitation in that it relied on a single context vector to store all encoder information. Subsequent enhancements 
incorporated attention mechanisms, allowing the decoder to focus dynamically on relevant input parts, thereby 
significantly improving translation quality1,21.

Attention models have since gained prominence, as they have demonstrated notable improvements in NMT 
performance2. Moreover, word embeddings, such as Word2Vec22, GloVe23, and FastText24, have been used as 
input to encoders to provide richer word representations compared to simple one-hot encoding. FastText stands 
out for its ability to generate embeddings for rare and out-of-vocabulary words25, despite being slower than 
other models. Additionally, techniques have been extended to learn distributed representations for paragraphs26, 
sentences27, and topics28. Several advanced techniques have been employed to further enhance neural networks. 
Residual connections have been introduced to LSTM-based encoder-decoder models to maintain performance 
when stacking deeper layers9,29–31. Regularization methods, such as dropout30,32, have been effective in 
preventing overfitting and have been widely used in various applications, including machine translation5, 
question answering33, image classification34, and speech recognition35.

Kashmiri is an extremely low-resource and morphologically rich language, posing unique challenges for 
computational processing. Despite its linguistic complexity, the application of deep learning techniques to 
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address research problems related to the Kashmiri language remains virtually unexplored. Currently, there are 
no established linguistic resources available, such as automatic speech recognition systems, sentence boundary 
disambiguation tools, sentiment analysis models, or transfer learning applications tailored for Kashmiri36. 
Significantly, no research has been conducted on Neural Machine Translation (NMT) for Kashmiri, primarily 
due to the absence of parallel corpora and annotated datasets that are essential for training state-of-the-art 
translation models36. Furthermore, the lack of modern techniques such as encoder-decoder architectures20, 
attention mechanisms2, and beam search37 within Kashmiri language processing underscores a considerable gap 
in existing research and innovation.

Deep learning techniques inherently rely on substantial amounts of data to effectively model linguistic 
diversity and capture the inherent complexities of both source and target languages. Consequently, the availability 
of large-scale datasets is fundamental to the successful development of robust translation systems. The presence 
of a parallel corpus not only enhances model training but also fosters continued research within the domain. 
Historically, most efforts have been concentrated on resource-rich languages such as English, Spanish, French, 
German, Russian, and Chinese. These endeavors have been significantly supported by projects like the Europarl 
Corpus38, United Nations Parallel Corpus39, and TED Talks Corpus40, which encompass diverse linguistic 
domains and have proven invaluable for both linguistic research and the advancement of machine translation. 
These corpora are typically constructed through manual translation processes or automated methods, including 
web crawling techniques exemplified by the News Crawl Corpus41 and ParaCrawl Corpus42.

Despite these advancements, extending parallel corpora to low-resource languages continues to present 
significant challenges. Various initiatives, including the use of Amazon Mechanical Turk43 for Indian languages 
and the implementation of the Gale & Church algorithm for English-Myanmar alignment44, demonstrate the 
research community’s commitment to promoting linguistic inclusivity. However, the persistent scarcity of 
parallel data for languages spoken by smaller communities or those with limited digital representation poses 
considerable obstacles to the development of high-quality machine translation systems45–47. This scarcity 
perpetuates the digital divide and hinders the integration of underrepresented languages into modern 
technological frameworks48.

Notably, the Kashmiri language remains devoid of a dedicated parallel corpus, thereby revealing a significant 
research gap in the field of language processing and machine translation. To the best of our knowledge, neural 
network-based translation techniques have yet to be applied to Kashmiri-English translation, with only limited 
preliminary work reported in the literature49. Furthermore, the absence of a publicly available Kashmiri-English 
parallel corpus considerably restricts progress in the development of contemporary translation systems. In 
response to these challenges, the present study seeks to address this gap by developing machine translation 
models and constructing a comprehensive parallel corpus specifically designed for Kashmiri-English translation.

Dataset
This study introduces the first large-scale, publicly available Kashmiri-English parallel corpus, constructed to 
support neural machine translation (NMT) and low-resource language research. The corpus contains 269,288 
sentence pairs, built using three complementary pipelines: (1) digitized bilingual literary texts, (2) manually 
authored and translated conversational dialogues, and (3) a filtered legacy corpus subjected to semi-automatic 
refinement. Special attention was given to orthographic normalization, dialectal variation, and script consistency, 
ensuring linguistic integrity across sources. Approximately 83% of the data is human-translated and reviewed, 
making the corpus one of the most linguistically reliable resources for Kashmiri to date.

Translated literary texts (Source 1)
The first component of the corpus comprises translated literary texts obtained from the Jammu & Kashmir 
Academy of Art, Culture and Languages (JKAACL), local publishers, and academic repositories. Books were 
selected based on cultural relevance and linguistic richness, with preference given to prose and narrative works. 
Notable examples include Folktales of Kashmir, The Story of My Experiments with Truth, and translations of 
works by Tolstoy, Chekhov, and Shakespeare.

Digitization was performed using the TVS Electronics PDS 8  M scanner, followed by deskewing and 
noise removal. Optical character recognition (OCR) was conducted using Google OCR, which outperformed 
alternatives like ABBYY FineReader and gImageReader in recognizing Perso-Arabic script. Nevertheless, OCR 
outputs required substantial post-processing to restore missing diacritics, correct misrecognized characters, 
and reintegrate split or merged tokens. Problematic scans (e.g., decorative calligraphy or poetic formats) were 
excluded due to low OCR accuracy. The cleaned text was segmented by chapter and aligned at the sentence level 
through a semi-automatic process involving programmatic extraction and manual correction using Microsoft 
Word. This component contributed approximately 48,000 aligned pairs.

Manually authored conversations (Source 2)
To capture spoken Kashmiri and ensure domain diversity, we created a manually authored dataset of 70 dialogues, 
each averaging 25–30 speaking turns. Prompts were developed by native speakers and covered a wide range of 
culturally grounded scenarios, including: “Talking about a new house,” “Discussing historical places of Kashmir,” 
“Shopping for dry fruits,” and “Consulting a doctor.” These prompts were expanded into full conversations by 
two annotators acting as speakers. The conversations were subsequently translated into English by bilingual 
experts and reviewed collaboratively.

The resulting dialogues span daily life, cultural practices, education, healthcare, administrative domains, 
and tourism. This data is rich in questions, imperatives, honorifics, and morphosyntactic variation—capturing 
linguistic constructions typical of real-world communication. All translations were performed with full-context 
visibility, enabling direct alignment without external tools. This subset contributes over 200,000 aligned pairs.
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To expand syntactic coverage, we also translated a selected subset of English conversational sentences from 
the ManyThings.org dataset into Kashmiri. These additions target general-purpose expressions and reinforce 
alignment quality.

Filtered legacy corpus (Source 3)
An existing Kashmiri-English dataset of ~ 120,000 sentence pairs (e.g., BPCC, IndicTrans2) was filtered using a 
custom Redundancy-Based Parallel Corpus Refinement pipeline. Key issues included high repetition, language 
substitution (e.g., Urdu instead of Kashmiri), and non-parallel or nonsensical alignments.

We first removed approximately 11,000 repeated alignments, then identified highly duplicated Kashmiri 
sentences (e.g., “بایتسد ھٹیپِ ہٹیاس بیو” repeated 3,000 + times). We filtered out such cases, retaining 
only alignments with unique and verified content. Manual review further eliminated noise, gibberish, or 
mismatches. The final cleaned subset contributes ~ 14,000 high-quality pairs.

Corpus composition and domain coverage
To ensure the corpus supports general-purpose and domain-specific translation tasks, materials span literary, 
conversational, administrative, and cultural registers. Table 1 provides an overview of corpus composition by 
source type, domain, and translation methodology.

This distribution supports both domain-general and domain-specific NMT applications. While regional 
dialects were considered in manual and OCR data, some bias toward standard and urban Kashmiri may remain 
due to the availability of published and edited sources.

Dataset statistics
The finalized corpus contains 269,288 aligned sentence pairs, with over 2.9  million Kashmiri words and 
2.8 million English words. Summary statistics are presented in Table 2.

The significantly higher number of unique words in Kashmiri reflects its morphological complexity, free word 
order, and dialectal variation. Kashmiri sentences are often longer and structurally more flexible than English 
ones, requiring translation models to handle long-distance dependencies and complex verb morphology.

Dataset availability
The dataset is publicly available on Hugging Face, ensuring accessibility for researchers working on Kashmiri 
language processing and low-resource machine translation tasks. The dataset can be accessed at [DOI: ​h​t​t​p​s​:​/​/​d​
o​i​.​o​r​g​/​1​0​.​5​7​9​6​7​/​h​f​/​3​6​6​0​​​​​] and with the URL: ​h​t​t​p​s​:​​​/​​/​h​u​g​g​i​n​g​f​a​c​​e​.​c​​o​/​​d​a​t​a​s​​e​​t​s​/​S​M​​U​Q​a​m​​a​​r​/​K​a​s​h​​m​​i​r​i​-​E​n​g​l​​i​s​h​-​D​a​
t​​a​s​e​t​-​2​7​0​ ​K​/​t​r​e​e​/​m​a​i​n. Usage guidelines and licensing information are also provided to facilitate responsible and 
ethical utilization of the corpus in future research.

Building NMT models for Kashmiri-English translation
Overview
To investigate neural approaches to Kashmiri-English translation, we implement and compare three distinct 
neural machine translation (NMT) models of increasing architectural complexity: (i) a baseline sequence-
to-sequence encoder-decoder model using LSTM layers, (ii) an attention-enhanced encoder-decoder model, 
and (iii) a Transformer-based model. This section details the architecture, training configurations, and 
implementation strategies for each system.

These models are designed to explore how different architectures handle the linguistic challenges of Kashmiri, 
including its rich morphology, flexible word order, and orthographic variation. All models were trained using 
the same preprocessed dataset (as described in Sect. 3) and evaluated on identical splits for comparability.

Statistic Kashmiri English

Total number of sentences 269,288 269,288

Total number of words 2,963,612 2,800,713

Total number of unique words 116,233 56,822

Average number of words per sentence 11.00 10.40

Table 2.  Corpus statistics.

 

Source type Data origin # Sentences % of Corpus Translation method Domain coverage

Manually authored data Curated dialogues by native speakers ~ 205,000 76% Human-written + expert review Conversational, cultural, practical

OCR-digitized books Bilingual literary texts ~ 32,000 12% Existing books (aligned) Literary, historical, folklore

Translated English sources English datasets → translated to Kashmiri ~ 19,000 7% Professional translation Everyday language, general topics

Filtered public corpus Cleaned from noisy legacy corpora ~ 14,000 5% Semi-automatic filtering Generic, administrative, educational

Table 1.  Overview of the parallel corpus by source type and domain.
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Data preparation
Preprocessing and cleaning
To ensure high-quality input for the NMT models, several preprocessing steps were applied to the raw Kashmiri-
English sentence pairs. These aimed to eliminate noise, maintain linguistic consistency, and prepare the data for 
effective tokenization.

	a.	 Data cleaning

•	 All Kashmiri and English texts were cleaned to remove non-printable and unknown characters, extra spac-
es, and malformed data.

•	 For Kashmiri, we retained only characters within the Unicode range U + 0600–U + 06FF, encompassing the 
Perso-Arabic script, diacritics, and symbols.

•	 English data was restricted to standard ASCII characters (A–Z, a–z, 0–9).
•	 Extraneous spaces between words and sentence boundaries were removed to standardize formatting.

	b.	 Normalization

•	 Kashmiri text was normalized using Normalization Form Canonical Composition (NFC) to handle char-
acter encoding variations and diacritics.

•	 English sentences were lowercased to ensure consistent tokenization and reduce vocabulary sparsity.
•	 All text was encoded in UTF-8 for cross-platform compatibility.

	c.	 Data splitting

•	 The dataset was randomly shuffled and split into training (90%), validation (5%), and test (5%) subsets.
•	 This ensured representative coverage across linguistic styles and domains for all evaluation stages.

Tokenization and vocabulary construction
Following normalization, we applied Byte Pair Encoding (BPE) using the SentencePiece library to tokenize 
sentences into subword units. This method was chosen due to the morphological richness of Kashmiri and the 
structural asymmetry between Kashmiri and English.

•	 Handling Morphological Complexity: BPE reduces vocabulary size by learning frequently co-occurring char-
acter sequences, capturing common prefixes, suffixes, and inflections.

•	 Script Separation: Kashmiri (Perso-Arabic script) and English (Latin script) were tokenized separately to pre-
vent cross-linguistic token merging.

Separate vocabularies were constructed:

•	 15,000 subword units for Kashmiri
•	 10,000 subword units for English

This allowed each model to learn language-specific subword representations independently, Fig. 1.

Padding and sequence handling
To facilitate batch processing, tokenized sequences were padded or truncated to a maximum sequence length of 
230 tokens. Sentences shorter than this length were padded with zeros, while longer sentences were truncated, 
Table 3. Each sentence was also wrapped with special tokens:

•	 [SOS]: Start-of-sequence.
•	 [EOS]: End-of-sequence.

This structure ensures that models can correctly interpret sentence boundaries.

Baseline encoder-decoder model
Model architecture
The baseline model adopts a standard sequence-to-sequence framework using stacked Long Short-Term 
Memory (LSTM) layers. The architecture consists of two LSTM layers each for the encoder and decoder4.

Encoder: The encoder processes the input Kashmiri sequence x = (x1, x2, x3 . . . . . . , xT ), where T  is 
the sequence length. Each token in the sequence is transformed into an embedded vector.

	 et = Embedding (xt) , t = 1,2, . . . , T � (1)

The embedded vectors are passed through two LSTM layers, each consisting of 512 units. The LSTMs process the 
sequence step by step, generating hidden states ht​ and cell states ct​:

	 ht, ct = LST M
(
et, ht−1, ct−1

)
, t = 1,2, . . . , T � (2)

The final hidden and cell states from the second LSTM layer h
(2)
T , c

(2)
T ​ are passed to the decoder as the initial 

states for generating the target translation.
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Language Sentence (Tokenized and Padded) Integer IDs (with Padding)

Kashmiri وک چنٕرک فاعم ہٕت چنٕزور لدمحر  ورٔک ششٗ
?? ??----------?? ?? [ 1 6558 4238 28 3250 762 955 1303 0 0 0 ------- 0 0 0 2]

English try to be generous and forgiving??-----------?? ?? [ 1 1076 13 55 7879 43 4403 0 0 0 0 ------- 0 0 0 0]

Table 3.  Tokenized and padded Kashmiri and english sentences with corresponding integer representations.

 

Fig. 1.  Snapshort of a vocabulary bullt after using BPE tokenization seperately on kashmir and English 
sentences.
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Decoder: The decoder also consists of two LSTM layers with 512 units. It generates the target English sequence 
y = (y1, y2, y3 . . . . . . , yT ′ ) where T ′  is the length of the target sequence, token by token. At each time 
step, the decoder predicts the next word based on its hidden state and the previously generated word.

	 h′ t, c′ t = LST M
(
et, h′ t−1, c′ t−1

)
, t = 1,2, . . . , T ′ � (3)

The output at each time step is passed through a dense layer with a softmax activation to produce a probability 
distribution over the target vocabulary:

	 ŷt = softmax
(
Whh′

t + bh

)
, t = 1,2, . . . , T ′ � (4)

Here, Wh​ and bh represent the trainable weights and biases in the dense layer.
This architecture enables the model to learn complex sequence mappings from Kashmiri to English. Figure 2 

illustrates the flow of data through our encoder-decoder architecture.

Training the model
Training was conducted on an NVIDIA A100 GPU using Google Colab. The model was trained over a maximum 
of 50 epochs, with early stopping applied after three consecutive epochs without improvement in validation loss. 
Each epoch took approximately 10 min. Model checkpoints were saved after every epoch.

Hyperparameters and settings:

•	 Batch size: 64.
•	 Embedding dimension: 300.
•	 LSTM units: 512 for both encoder and decoder.
•	 Learning rate: Initial rate of 1e-4, exponentially decayed after epoch 10.
•	 Optimizer: Adam, with gradient clipping (clipnorm = 1.0).
•	 Loss function: Sparse categorical cross-entropy with label smoothing (smoothing factor = 0.1).

Optimizer and Loss Function:
The Adam optimizer was employed with the following parameters:

•	 β1 = 0.9.
•	 β2 = 0.98.
•	 ϵ=1e − 9.

Gradient clipping with a threshold of 1.0 was used to prevent exploding gradients, ensuring smooth convergence 
during backpropagation. The loss function incorporated label smoothing, which reduced overconfidence in the 
model’s predictions by redistributing a small fraction of the probability mass across incorrect classes:

	
Loss = −

∑
T ′
t=1

∑
V
i=1yt,ilog(ŷt, i),� (5)

where yt,i represents the smoothed target probability for word i at time step t, and ŷt, i ​ is the predicted 
probability.

Training Strategy:

•	 Learning rate decay: Begins after 10 epochs to allow fine-tuning.

Fig. 2.  Our Encoder-Decoder based NMT architecture.
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•	 Early stopping: Based on validation loss stagnation.
•	 Checkpointing: Enables recovery and analysis of best-performing epochs.

. As seen in Figs. 3 and 4, the training and validation accuracy and training and validation loss respectively, curves 
indicate stable convergence. The model demonstrated a steady improvement in performance during the initial 
epochs, reaching an acceptable level of accuracy for shorter sentences. The graphs show a steady improvement 
in both training and validation accuracy during the initial epochs, with training accuracy eventually surpassing 
90%. However, validation accuracy plateaus around 81%. The training and validation loss curves show a similar 
trend, with both decreasing steadily until around epoch 16, after which validation loss stabilizes. This suggests 
the model has reached its optimal performance, and further training would not yield significant improvements. 
Early stopping at epoch 24 was justified as the model began to overfit, performing better on the training data than 
on unseen validation data. This highlights the need for more sophisticated techniques like attention mechanisms 
to improve performance, especially for longer sentences.

Encoder-decoder model with attention
Attention mechanisim
The attention mechanism plays a critical role in modern neural machine translation (NMT) systems, particularly 
when translating long and syntactically complex sentences. Unlike traditional encoder-decoder models that 
compress the source sentence into a single fixed-length vector, attention dynamically computes a context vector 
at each decoding step, enabling the model to focus selectively on relevant parts of the input sequence1,5.

Given the decoder hidden state at time step t, denoted as ht​, and the encoder hidden states h1, h2, h3 . . . .hT , 
where T  is the source sequence length:

•	 Score calculation.

		  et,k = Score( ht, sk) = v⊤ tanh (W [ ht; sk ])

Fig. 4.  Basic NMT training and validation loss over time.

 

Fig. 3.  Basic NMT training and validation accuracy over time.
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� (6)

	 where W  and v are learnable parameters, and [ ht; sk] is the concatenation of ht​ and sk .
•	 Attention Weights:

		
at,k = exp ( et,k)∑

T
i=1exp ( et,k) � (7)

•	 Context Vector:

		
ct =

∑
T
k=1at,k sk � (8)

The resulting context vector ct is combined with the decoder hidden state to compute the next word prediction. 
This mechanism significantly improves the model’s ability to align source and target tokens, especially in 
morphologically rich languages like Kashmiri.

This process is illustrated in the attention part of Fig.  5, where the attention mechanism dynamically 
adjusts focus on different parts of the source sentence, ensuring that the model can handle long and complex 
sentences effectively. The attention function improves the ability to align words in the source sentence with 
their corresponding translations in the target sentence2,50, which is especially beneficial for morphologically rich 
languages like Kashmiri.

This attention mechanism ensures that, instead of encoding all the information into a fixed-length vector, 
the model can attend to different parts of the source sequence at different times, resulting in better translations, 
especially for longer sentences.

Model architecture
The attention-based model extends the baseline LSTM architecture by integrating global attention into the 
decoder.

Encoder:
The encoder processes the input Kashmiri sequence x = (x1, x2, x3 . . . . . . , xT )where T  is the length of 

the source sequence. Each input token xT ​ is transformed into an embedded vector using the embedding layer:

	 et = Embedding (xt) , t = 1,2, . . . , T � (9)

The embedded vectors are passed through two LSTM layers, each consisting of 512 units. The hidden and cell 
states are updated as follows​:

	 ht, ct = LST M
(
et, ht−1, ct−1

)
, t = 1,2, . . . , T � (10)

Here, ht​ and ct​ are the hidden and cell states at time step ttt, and the final hidden and cell states from the second 
LSTM layer h

(2)
T , c

(2)
T ​ are passed to the decoder as the initial states for generating the target translation.

Attention Mechanism:

Fig. 5.  Our attention based 2 layer NMT.
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The attention mechanism, as described in the previous section, takes the sequence of hidden states produced 
by the encoder and computes a weighted context vector for each target word to be generated. This context vector 
is used to align the decoder’s focus on specific parts of the source sentence at each time step.

•	 Attention Weights: The decoder’s current hidden state and the encoder’s hidden states are used to compute the 
attention weights. These weights determine how much focus should be placed on each encoder hidden state 
(i.e., on each word of the source sentence).

	
at,k = exp ( et,k)∑

T
i=1exp ( et,k) � (11)

	 where et,kis the score for the kth word in the source sentence at the tth time step of the decoder.

Decoder:
The decoder also consists of two LSTM layers with 512 units. At each time step ttt, the decoder generates a 

prediction for the next word in the target sequence yt​ based on the context vector c′
t​, the current hidden state 

h′
t​, and the previous hidden state h′ t−1​:

	 h′
t, c′

t = LST M
(
[et, ct], h′

t−1, c′
t−1

)
, t = 1,2, . . . , T ′ � (12)

Here, ete_tet​ is the embedding of the previous target word, and the context vector ct ​ is concatenated with the 
embedded word et​ before being passed to the LSTM.

The output from the LSTM is passed through a dense layer with a softmax activation function to produce a 
probability distribution over the target vocabulary:

	 ŷt = softmax
(
Whh′

t + bh

)
, t = 1,2, . . . , T ′ � (13)

Here, Wh​ and bh represent the trainable weights and biases in the dense layer.

Training the model
The attention-based model was trained using an NVIDIA A100 GPU. The training setup is as follows:

•	 Epochs: Up to 50.
•	 Batch size: 32.
•	 Embedding dimension: 256 (for both languages).
•	 LSTM layers: 2 for encoder and decoder (512 units each).
•	 Dropout rate: 0.3.
•	 Learning rate: 0.001 (Adam optimizer).
•	 Teacher forcing ratio: 0.5.
•	 Vocabulary sizes: 15,000 for Kashmiri; 10,000 for English.
•	 Sequence length: Padded/truncated to 60 tokens.
•	 Precision: AMP with GradScaler for stability.

Early stopping was applied based on validation loss stagnation. Figures 6 and 7 illustrate model convergence.

•	 Training loss consistently declined to ~ 1.0.

Fig. 6.  Attention based NMT training and validation loss over time.
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•	 Validation loss reduced to ~ 2.0.
•	 Training accuracy surpassed 90%.
•	 Validation accuracy stabilized at ~ 80%.

As seen in Figs. 6 and 7, the training and validation accuracy, as well as the training and validation loss curves, 
show improved convergence compared to the basic NMT model. The attention-based model demonstrated a 
steady increase in performance throughout the training process, with training accuracy surpassing 90% and 
validation accuracy stabilizing around 80%. Notably, the validation accuracy improved more consistently, 
indicating the model’s ability to generalize better than the basic model, especially for longer and more complex 
sentences.

Both the training and validation loss curves decrease steadily over time, with training loss dropping to around 
1.0 and validation loss reaching approximately 2.0 by the end of 50 epochs. This reflects improved alignment 
between the source and target sequences, attributed to the attention mechanism’s ability to focus on relevant 
parts of the source sentence.

Unlike the basic model, the attention-based NMT model does not show early signs of overfitting, and the 
gradual improvements in accuracy and loss demonstrate the benefits of integrating attention. The results suggest 
that attention mechanisms significantly enhance the model’s performance, especially when handling longer or 
more complex sentences, which is critical for translating morphologically rich languages like Kashmiri.

Transformer-based model
Model architecture
The Transformer architecture7 represents a paradigm shift in neural machine translation by eliminating 
recurrence and using self-attention to model global dependencies in sequences, Fig.  8. This design allows 
for superior handling of long-range contextual information and improved training efficiency through full 
parallelization.

The core components of the Transformer model are as follows:

•	 Encoder-Decoder Stacks: 6 layers each in the encoder and decoder.
•	 Multi-head self-attention: 8 attention heads per layer.
•	 Feed-forward network (FFN): Position-wise FFN with hidden size of 2048.
•	 Embedding size: 512.
•	 Dropout rate: 0.1.
•	 Positional Encoding: Sinusoidal positional encodings are added to input embeddings to retain token order.

Both encoder and decoder use residual connections followed by layer normalization. Token embeddings are 
shared between the encoder and decoder. Separate vocabularies are used:

•	 15,000 subword units for Kashmiri
•	 10,000 subword units for English

The model employs learned embeddings and sinusoidal position encodings, ensuring position information is 
retained without relying on recurrence.

Training configuration
The Transformer model was trained using the same training-validation-test splits and tokenized dataset as the 
RNN-based models. The training configuration is as follows:

•	 Hardware: NVIDIA A100 GPU (Google Colab).

Fig. 7.  Attention based NMT training and validation accuracy over time.
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•	 Batch size: 32.
•	 Epochs: Up to 50.
•	 Optimizer: Adam.

•	 β1 = 0.9, β2 = 0.98, ϵ=1e − 9.

•	 Learning rate schedule: Warm-up for 4,000 steps followed by inverse square root decay.
•	 Loss function: Label-smoothed cross-entropy (e = 0.1).
•	 Precision: Automatic Mixed Precision (AMP).

The model was trained with early stopping to prevent overfitting. Model checkpoints were saved periodically for 
rollback and analysis.

Training results and observations
Figures 9 and 10 present the training and validation accuracy and loss curves. Compared to the RNN-based 
models, the Transformer converged more smoothly and exhibited better generalization:

•	 Training loss: Decreased steadily, reaching ~ 0.8.
•	 Validation loss: Stabilized at ~ 1.5.
•	 Training accuracy: Surpassed 90%.
•	 Validation accuracy: Stabilized at ~ 83%, outperforming both LSTM-based models.

The Transformer’s multi-head self-attention mechanism improved the model’s ability to capture long-range 
dependencies and morphological variation in Kashmiri. It also exhibited better robustness to sentence length 
variability, which is critical in low-resource settings.

Evaluation metrics and results
Evaluation metrics
To comprehensively evaluate the performance of our NMT models, we adopt a suite of widely used automatic 
evaluation metrics that capture various aspects of translation quality, including precision, recall, and fluency:

•	 BLEU (Bilingual Evaluation Understudy)51: Measures n-gram precision between machine-generated and ref-
erence translations. Higher BLEU scores indicate better fluency and n-gram alignment.

•	 GLEU (Google-BLEU)52: Balances both precision and recall, penalizing both under-translation and over-gen-
eration. Suitable for evaluating semantic completeness.

•	 ROUGE (Recall-Oriented Understudy for Gisting Evaluation)53: Measures n-gram recall, especially useful in 
assessing how much of the reference content is captured in the translation.

•	 ChrF and ChrF++54: Character-level metrics that evaluate both precision and recall. Particularly beneficial for 
morphologically rich languages like Kashmiri where word-level metrics may miss subword variation.

Fig. 8.  Transformer-based NMT architecture.
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These metrics jointly offer a robust evaluation framework, covering surface-level accuracy (BLEU), semantic 
fidelity (GLEU, ROUGE), and morphological consistency (ChrF). ChrF + + additionally incorporates word-level 
n-gram features for improved linguistic granularity.

Quantitative results
Table  4 presents the evaluation scores for the baseline encoder-decoder, attention-based, and Transformer-
based NMT models. The Transformer model demonstrates consistent and significant gains across all metrics, 
confirming its superior ability to model long-range dependencies and morphological complexity.

BLEU Scores:

•	 BLEU-1 improves from 0.4008 (baseline) to 0.4566 (attention) and further to 0.5021 (Transformer).
•	 BLEU-4 rises from 0.1201 to 0.2324, and reaches 0.2965 with the Transformer, reflecting superior phrase-lev-

el fluency.

GLEU Score:

•	 GLEU increases from 0.1960 (baseline) to 0.2893 (attention), and peaks at 0.3470 (Transformer), highlighting 
improved balance between fluency and adequacy.

Fig. 10.  Transformer-based NMT training and validation accuracy over time.

 

Fig. 9.  Transformer-based NMT training and validation loss over time.
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ROUGE Scores:

•	 ROUGE-1 rises from 0.4164 → 0.7006 → 0.7533.
•	 ROUGE-2 improves from 0.1672 → 0.5054 → 0.5782.

ChrF and ChrF + + Scores:

•	 ChrF + + doubles from 29.68 (baseline) to 59.84 (attention), and reaches 66.21 in the Transformer model, 
indicating robust character-level and subword handling.

These results clearly demonstrate that the Transformer architecture not only improves surface-level fluency but 
also enhances content fidelity and morphological precision—critical for low-resource translation settings.

Comparative analysis of NMT architectures
The performance comparison among the three Neural Machine Translation (NMT) models—baseline encoder-
decoder, attention-based encoder-decoder, and Transformer-based—demonstrates the incremental impact of 
architectural enhancements.

The baseline encoder-decoder model captures basic sequential dependencies but exhibits limitations in 
translating longer or morphologically complex sentences. Its low BLEU-4 (0.1201) and ChrF++ (29.68) scores 
confirm its restricted generalization ability in low-resource settings.

The attention-based model significantly improves upon this by integrating dynamic alignment, enabling better 
word-to-word correspondence and syntactic alignment. The BLEU-4 improves to 0.2324, and ChrF + + reaches 
59.84. Gains in ROUGE-1 and ROUGE-2 also indicate improved content retention and phrase cohesion.

The Transformer-based model delivers the strongest performance across all metrics. With BLEU-4 at 0.2965 
and ChrF + + at 66.21, it demonstrates superior modeling of long-range dependencies, enhanced fluency, and 
morphological robustness. Its self-attention mechanism, which captures global token relationships without 
sequential bias, is especially effective for Kashmiri’s free word order and rich inflectional patterns.

The Transformer also achieved the highest GLEU (0.3470) and ROUGE-2 (0.5782) scores, reflecting balanced 
translation fidelity and improved semantic preservation. These results reinforce the importance of adopting 
transformer-based approaches for structurally complex, low-resource languages.

Overall, the comparative analysis establishes that while LSTM-based models offer foundational capabilities, 
modern attention and Transformer architectures are essential for scalable, high-quality translation systems in 
resource-scarce settings like Kashmiri-English.

Statistical significance testing
To validate the observed improvements in translation quality across our proposed models, we performed paired 
bootstrap resampling on BLEU scores, following the methodology introduced by Koehn55. This statistical test 
assesses whether observed differences in model performance are due to meaningful differences rather than 
random variation.

We evaluated two key comparisons:

•	 Attention-Based vs. Transformer-Based NMT.
•	 Baseline vs. Transformer-Based NMT.

Using 1,000 bootstrap samples from the test set, we calculated BLEU score differences and associated p-values. 
As shown in Table 5, the Transformer model’s improvements are statistically significant at the p < 0.01 level.

These findings confirm that the performance gains observed with the Transformer model are not due to 
chance but represent statistically reliable improvements—particularly important when dealing with long, 
morphologically complex sentences typical of Kashmiri.

Evaluation metric Baseline NMT Attention-based NMT Transformer-based NMT

BLEU-1 0.4008 0.4566 0.5021

BLEU-2 0.2466 0.3587 0.4124

BLEU-3 0.1692 0.2906 0.3548

BLEU-4 0.1201 0.2324 0.2965

GLEU 0.1960 0.2893 0.3470

ROUGE-1 0.4164 0.7006 0.7533

ROUGE-2 0.1672 0.5054 0.5782

ChrF 29.6793 59.8404 66.2145

ChrF++ 29.6793 59.8404 66.2145

Table 4.  Evluation metrices and scores of our Kashmiri-English simple encoder-decoder based model and 
attention based model.
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Qualitative error analysis
To supplement quantitative scores and provide linguistic insight into model behavior, we conducted a structured 
qualitative error analysis across short and long Kashmiri-English sentence pairs. Our goal was to understand 
where models failed, what types of errors dominated, and how well they addressed key linguistic challenges such 
as long-distance dependencies, morphological richness, and fidelity in meaning.

Error taxonomy
To systematically classify translation issues, we developed a practical five-category error taxonomy tailored to 
low-resource NMT evaluation:

	1.	 Fundamentally Inaccurate Translation Errors – Major deviations that misrepresent or distort the original 
message.

	2.	 Meaning and Interpretation Errors – Misunderstanding of context, reference, or speaker intent.
	3.	 Content and Structure Modification Errors – Addition, deletion, or reordering that alters clause or sentence 

structure.
	4.	 Translation Fidelity and Appropriateness Errors – Inadequate preservation of tone, style, or cultural accuracy.
	5.	 Linguistic and Orthographic Errors – Grammar, tense, agreement, and punctuation problems that affect clar-

ity or formality.

This taxonomy was applied consistently across both short and long sentence evaluations to track specific 
strengths and weaknesses in each model.

Qualitative error analysis -Short sentence
We selected 22 short Kashmiri-English sentence pairs from diverse domains and linguistic patterns to evaluate 
how each NMT model performs on simpler constructions. Table 6 compares the outputs from all three models 
using our five-category error taxonomy and highlights model-specific strengths and weaknesses.

The evaluation of short sentence translations reveals important insights into the linguistic and semantic 
behavior of the models, even in structurally simple inputs. While shorter sentences are syntactically less complex, 
they still demand precision in referential clarity, morphological agreement, and lexical accuracy—areas where 
low-resource models often underperform. The Basic NMT model, though more fluent here than on longer 
sequences, frequently produced errors in WH-word usage, kinship terms, and subject identification. Examples 
such as “are these your brothers” or “your son is…” in place of expected translations demonstrate high rates of 
Meaning and Interpretation Errors (Category 2) and Linguistic and Orthographic Errors (Category 5), suggesting 
poor contextual grounding and vocabulary generalization.

The Attention-based model exhibited improvements in fluency and alignment, producing fewer malformed 
outputs. However, it still introduced Content and Structure Modification Errors (Category 3), such as generalizing 
“boys” as “children” or altering the scene context by adding information not present in the source. These shifts 
reflect stronger syntactic control but insufficient filtering of semantic transformations. While less catastrophic 
than in the Basic model, such errors can still affect reliability in real-world usage where precise role or domain 
information matters.

The Transformer model performed most consistently, generating fluent and largely accurate outputs across 
most examples. It preserved structure, tone, and lexical integrity with few exceptions. However, it occasionally 
softened or paraphrased input (e.g., “how are you” rendered as “how are you doing”, or “daughter” generalized as 
“relative”), reflecting Fidelity and Appropriateness Errors (Category 4). These shifts were subtle but illustrate that 
even high-performing models may reinterpret input in ways that change formality, specificity, or pragmatic tone.

Overall, this analysis demonstrates that short sentence translation is not trivial, especially in morphologically 
rich, low-resource language pairs like Kashmiri-English. Despite their simplicity, short inputs require 
precise handling of morphology, kinship structures, and referential language. The Transformer model clearly 
outperforms earlier architectures, but qualitative error patterns show that semantic approximations and stylistic 
shifts persist. This underscores the need for fine-grained, manual evaluation to complement automatic scoring 
and better understand model limitations in real-world translation scenarios.

Qualitative error analysis – long sentences
We evaluated 9 long Kashmiri-English sentence pairs, each containing compound or subordinate clauses, 
idiomatic expressions, or long-distance dependencies. These examples were selected to test the models’ ability 
to preserve discourse structure, syntactic coherence, and semantic fidelity under increased complexity. Table 7 
illustrates the translations produced by each model, annotated with the relevant error category and commentary.

In contrast to the shorter sentence cases, long sentence translations expose more pronounced divergences 
in model behavior, particularly with regard to morphosyntactic complexity, clause coordination, and discourse-
level meaning. The Basic NMT model consistently failed to preserve grammatical structure and semantic 
intent, often generating incoherent or entirely unintelligible outputs. For example, constructions such as “i am 

Model comparison BLEU score difference p-value Statistically significant

Attention vs. transformer + 0.0641 < 0.01 Yes

Baseline vs. transformer + 0.1764 < 0.01 Yes

Table 5.  Statistical significance of BLEU score differences via paired bootstrap resampling.
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thinking my to i father is a a pradesh” and “the are been a institutes of the united…” reflect frequent Fundamentally 
Inaccurate Translation (Category 1) and Linguistic and Orthographic Errors (Category 5). These breakdowns 
indicate that the model struggles with long-range dependencies, clause integration, and information density, 
which are common challenges in translating longer inputs in low-resource settings.

The Attention-based model demonstrated improved clause segmentation and grammatical fluency, 
producing outputs that were structurally coherent but still semantically inconsistent. Key issues included 
Meaning and Interpretation Errors (Category 2) and Content and Structure Modifications (Category 3). In several 
examples, referential ambiguity or lexical substitution altered the intended meaning—for instance, translating 
“debt securities” as “copper security” or conflating familial roles like “uncle” and “parent.” These outputs suggest 
that while attention mechanisms enhance syntactic alignment, they remain vulnerable to semantic drift when 
handling compound and embedded structures.

#
Source 
(Kashmiri)

Reference 
(English)

Basic NMT 
output Errors

Attention NMT 
output Errors

Transformer 
output Errors Commentary

1  ۍنٲچ اھچ مُہ
یٲب

Are they your 
brothers

Are these your 
brothers 2 Are they your 

brothers – Are they your 
brothers – Basic: WH-word error (‘these’ instead of ‘they’). 

Attention and Transformer are accurate.

2 یک ۍہُت  ہاٛ
نارک وسٲ

What are you 
doing

What will you 
be doing 5 What were you 

doing – What are you doing – Basic: Verb tense mismatch. Attention and 
Transformer outputs match reference.

3 یک ہٕمِی ےٚھچ ہاٛ What are these What are they 2 What are these – What are those 2 Basic: Drops demonstrative. Transformer shifts 
reference to ‘those’ .

4  آ ۍنٲچ اھچ مِی
وانش

Are they your 
relatives

Are they your 
brothers 2 Are they your 

relatives – Are they your 
cousins 2 Basic: Kinship substitution. Transformer 

generalizes relation. Attention matches reference.

5  یٚھچ ہٕمِی ہَن
ِروکِ ہنایٛم ہٕن

No they are not 
my daughters

No they are not 
my daughters – No they are not 

my daughters – No they aren’t my 
daughters 5 Transformer uses informal contraction ‘aren’t’. 

Basic and Attention match reference.

6  ُھچ ناکمِ ہی
کُمسقِ ہنارٛپ

This house is of 
the old type

This house is 
very old 3 This house is of 

an old type –
This house 
has traditional 
architecture

3
Transformer paraphrases structure as ‘traditional 
architecture’. Basic and Attention stay closer to 
literal form.

7  ُھچ ہُس
یل رَرچکٚ He is a lecturer He is a doctor 2 He is a lecturer – He is a professor 2 Basic: Misinterprets profession. Transformer 

softens to ‘professor’. Attention is correct.

8  رفَن ژٔک مِی
ِھچ

How many 
people are they

How many 
persons are 
they

5 How many 
people are they – How many people 

are present 5 Basic: Uses ‘persons’. Transformer shifts to 
present tense. Attention matches reference.

9  یریم ہٕت ماٹ
ِہنُو ہٕنِھچ

Tom and Mary 
still haven’t 
woken up

(garbled) 1
Tom and Mary 
still haven’t 
woken up

– Tom and Mary are 
still sleeping 4 Basic: Output is malformed. Transformer shifts 

tone (‘sleeping’). Attention is accurate.

10  ۍنٲچ اھچِ ہی
وک رٗ

Is she your 
daughter

Is she your 
sister 2 Is she your 

daughter – Is she your relative 4 Basic: Kinship substitution. Transformer 
generalizes to ‘relative’. Attention is accurate.

11 ےراو اوِھچ ۍہُت How are you How are you – How are you – How are you doing 5 Transformer introduces informal tone. Basic and 
Attention are exact matches.

12 ۍرُگ اھچ مِی Are they horses Are these 
horses 2 Are they horses – Are those horses 2 Basic and Transformer alter demonstrative. 

Attention output matches reference.

13 یک ۍہُت  ہاٛ
وِھچ نارک ٕ

What are you 
doing

What are you 
doing – What are you 

doing – What is it you’re 
doing 4 Transformer paraphrases syntactic structure. 

Basic and Attention match reference.

14  ہٕنانز ژٔک مُہ
ےٚھچ

How many 
women are they

How many 
people are 
there

2 How many 
women are they – How many women 

are present – Basic: Gender omitted. Attention and 
Transformer maintain gender correctly.

15
 ِھچ ہٕکڑٔل مِی
وس وکٚ لٗ  مٲک چٕ
نارک

These boys are 
doing school 
work

They people 
are doing 
homework

1
These children 
are doing 
homework

3
These boys are 
doing class 
assignments

–
Basic: Group description unclear. Attention 
generalizes to ‘children’. Transformer is more 
specific.

16
 راد ۍرٔن ھکا
 ھکایب ہٕت
ےٲرو وؠرن

One is with 
sleeves and the 
other without

One is 
sleeves… 5 One is wearing 

sleeves… – One has sleeves, 
the other doesn’t – Basic: Fragmented structure. Attention is more 

fluent. Transformer is correct.

17
 سُھچ ہٕب
 یلُس نماش
ناگنۄش

I go to bed early 
and wake up 
early

I go to bed 
at every the 
morning…

1 I sleep well in 
the evening… 1 I go to bed early 

and wake up early – Basic and Attention collapse meaning. 
Transformer preserves full meaning.

18 ےٚھچ جٲم زنٛہت
His mother is 
very truthful 
and noble

Your son is… 2 Their mother 
is… 2 His mother is 

honest and kind – Basic: Subject confusion. Attention: referential 
shift. Transformer is accurate.

19 ِھچ ژٔک مُہ How many are 
they

How many are 
they – How many are 

they – How many are 
there 5 Transformer shifts tone (‘are there’). Basic and 

Attention match reference.

20  و۪ٮپ سَماٹ
راک رابٕ ٕ…

Tom had to go 
to Boston…

Has to go by 
Monday 1 Had to leave 

business and go 3 Had to travel to 
Boston on business – Basic: Verb tense error. Attention adds business 

context. Transformer aligns with reference.

21  اھچِ ہہۄت
رگ یتیٚی ٕ

Do you have 
your home here

Do you have 
own house 
here

5 Do you have 
your home here – Is your home here – Basic: Unnatural phrasing. Attention and 

Transformer are more fluent and accurate.

22 رَگ ہُس ھُچِ ہی ٕ 
ِ…ہتیٚی

This is the house 
where he was 
born

This is the 
house where he 
was born

–
This is the house 
where he was 
born

– This is where he 
was born 4 Transformer omits ‘house’. Basic and Attention 

match reference precisely.

Table 6.  Comparison of basic NMT and attention-based NMT translations for short Kashmiri sentences.
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The Transformer model exhibited the highest degree of fluency, structural coherence, and fidelity. It accurately 
preserved clause relationships and aspectual control, and was better at interpreting idiomatic or culturally 
specific expressions. For instance, it correctly translated long constructions like “my wife belongs to Andhra 
Pradesh” and “a sharp increase in the volume of debt securities”. However, the model occasionally introduced 
Fidelity and Appropriateness Errors (Category 4) and Content Omissions (Category 3), especially in metaphorical 
or emotionally expressive content. In one case, the expressive line “rest their head on his chest and feel safe” was 
flattened to “people felt safe and respected,” reflecting semantic compression.

Taken together, these observations confirm that while the Transformer architecture is more capable of 
handling complex, long-form input, it still makes strategic approximations that may affect tone, specificity, 
and cultural nuance. This highlights the need for careful human evaluation of model outputs—particularly 
in low-resource, morphologically rich language pairs where automatic metrics like BLEU may fail to capture 
deeper semantic shifts. The application of a structured error taxonomy not only allows us to characterize the 

# Source (Kashmiri) Reference (English)
Basic NMT 
output Errors

Attention NMT 
output Errors

Transformer 
output Errors Commentary

1
 رگم کُکہٕٹانرک سُھچ ہٕب
 ہردن آ ےٚھچ نانز ۍنٲیٛم
چِشیدرپ

I am from Karnataka 
but my wife is from 
Andhra Pradesh

I am thinking my 
to i father is a a 
pradesh

1, 2, 5
I am from karnataka 
but my wife is from 
andhra pradesh

–
I am from 
Karnataka but my 
wife belongs to 
Andhra Pradesh

–

Basic: 
Hallucination + grammar 
error. Attention and 
Transformer are fluent 
and accurate.

2
 ِھچِ ہت رٕتیٚپ ۍنٲیٛم
 ِھچ بٲص دلٲو ہٕت رٹسام
راد کیھٹ

My uncle too is 
a teacher and my 
father is a contractor

My sister is a 
teacher and my 
father is a doctor

1, 2
My uncles are 
also masters and 
my parents are 
contractors

1, 2, 3
My uncle is a 
teacher and 
my father is a 
contractor

–

Basic and Attention 
confuse subject roles and 
plurality; Transformer 
preserves correct 
structure and meaning.

3 وو نَماٹ  230 ہُسِ ز ےٚم نٚ
ہنُوانزؤِ ہجب رٕطٲخ ٕ

Tom asked me to 
wake him up at 2:30

Tom told me to 
give up up at 230 1, 5 Tom asked me to 

wake him up at 230 – Tom told me to 
wake him up at 2:30 4

Basic: Verb hallucination. 
Transformer slightly 
changes request to 
command — minor tone 
mismatch (Fidelity).

4

دٲپِ ہنِك وتافآ یتردق ٕ 
 تایرورض ٕہنجاو نھژگ
روپ  سوا ھتپاب ہٕنرک ٕ
 دویسِ دیس ِہلاک ھتپ
 ہٕنامیرُہ ھٹؠپ نسکیٹ
ہنلاھک ہٕسنوپ ناوِی ٕ

In the past, 
surcharges on direct 
taxes have generally 
been levied to meet 
the revenue needs 
arising from natural 
calamities

The the past the b 
les and the s can 
been been seen 
isingred…

1, 5

In the past money 
was raised directly 
from taxes to meet 
needs arising from 
natural disasters

2, 4

In the pas, special 
surcharges were 
applied on direct 
taxes to cover costs 
of natural disasters

2, 4

Basic: Complete 
breakdown. Attention 
and Transformer have 
slight deviation in 
terminology but preserve 
overall meaning.

5

 رٕطٲخ دنٛسٕ ہجار ناضمر
 ہٕسورھب سکأ ہُس سوا
ڑوب دنم  ۍدنٛس رٕفن ٕ
 سی ناوی ہٕنھچو ۍھٹٲپ
 ھترھب ۍتٟس سملع
ناک سوا  ہکیٚہ ہت ہہٛ
 ھٹؠپ سنیس سننٛپ
 ظوفحم ہٕت ھتوھت رس
ھترٔک سوسحم

To Ramzan Raja 
he looked like a 
trustworthy old 
man who was full of 
knowledge anyone 
could rest their head 
on his chest and 
feel safe

Ramzan ramzan 
raja he was like 
a man of thy and 
man who was 
a of people and 
and be whole and 
the way and the 
very

1, 2, 5

To ramzan raja 
he seemed like a 
trustworthy old 
man who was full of 
knowledge anyone 
could hold their 
head high and feel 
safe

4

Ramzan raja looked 
like a wise and 
trustworthy elder 
people felt safe and 
respected around 
him

4, 5

Basic: Incoherent. 
Attention loses 
emotional nuance. 
Transformer simplifies 
metaphors and slightly 
compresses tone.

6
وگ زنَٛم سَناتسودنٛہ  وٚ
 سِک تَظافِح سِک ضرَٕق
 ہٕتسدربز زنَٛم سَمجح
ہفاضا ٕ

There has been 
tremendous growth 
in the volume of debt 
securities in India

The are been a 
institutes of the 
united of the in it 
in in the

1, 5

There has been a 
tremendous increase 
in the volume of 
copper security in 
India

1, 2
There has been a 
sharp increase in 
the volume of debt 
securities in India

–

Basic: Completely 
broken. Attention 
mistranslates “debt” as 
“copper”. Transformer is 
correct and fluent.

7

 نیرؤ نہنٛؠک نؠمتٔپ
و زنٛم نأِ ہنٲسِ ہھچٕ ِ ہکٔپ ِدٛ
 یجلانکؠٹ لٹِجِڈ نہینُد
ہلامعتسا ِدنٛہٕ  ؠتٟس ٕ
یلٟدبت ہایراو

In recent years the 
world around us has 
seen a lot of changes 
due to the use of 
digital technologies

The the years 
the new has the 
a been a lot of 
technology in to 
the development 
of the 
technologies

1, 5

In the last few years 
the world around 
us has seen many 
changes with the use 
of digital technology

–

In recent years 
the world has 
undergone 
significant changes 
due to the rise of 
digital technology

2, 4

Basic: Nonsense. 
Transformer captures 
main idea but omits 
“around us” and changes 
structure → slight fidelity 
loss.

8

 زاب ہٕت یھتاہ ویھچو
و ہی ھچ ےوشۄد  ھتھچٕ
وگ ہٕتپ ناژر سمأ  زاب وٚ
 سھتا سدنٛسٕ ۍمأ
ھٹؠپ

Take a look the 
elephant and the 
hawk both bowed 
down to him as soon 
as they saw him; the 
hawk then perched 
on his hand

Seeing this both 
the elephant and 
the hawk ran 
to him and the 
hawk fell on his 
hand

4

Seeing this both the 
elephant and the 
hawk ran to him and 
the hawk fell on his 
hand

4

Upon seeing this 
the elephant and 
the hawk rushed 
toward him and the 
hawk landed on his 
hand

–

All models capture 
surface action, but 
Basic and Attention lose 
poetic tone. Transformer 
preserves meaning with 
better diction.

9

وگ اذاہل  زاب ہٕت یھتاہ وٚ
 زنٛم ہتو ہیاج ھتؠرٛپ
 سدنٛسٕ راہمک مت ےکور
 ۍمأ ہٕت کٟدزن سرھگ
 زنٛسٕ ۍمأ ہٕت دنٛس
 ادا ہیرکش دنٛہ ہنرادٛناخ
وک وک ۍمأ ز ھکرٚ  بیرغ رٚ
 سدنٛہ نؠڑاگ سی رٹیزو
 سوا ہٕنبل زنٛم سٹیپ
تمآ

So the elephant 
and the hawk went 
everywhere on 
their way and they 
stopped by the 
potter’s house and 
thanked him and his 
wife for taking in the 
poor visitor who had 
been found in the 
fish’s stomach

And and and 
king king and the 
other went back 
toers and a son 
and were and the 
first anders…

1, 2, 5

So the elephant and 
the hawk stopped 
somewhere along 
the way near the 
potters house and 
thanked him and 
his wife for helping 
the poor visitor who 
had found the car in 
its belly

1, 2, 3

The elephant and 
the hawk passed by 
the potters house 
and thanked him 
and his wife for 
helping the poor 
guest who was 
found in the fish’s 
stomach

3, 4

Basic: Total breakdown. 
Attention introduces 
factual hallucination 
(“car in belly”). 
Transformer compresses 
but maintains key idea; 
some omission.

Table 7.  Comparison of basic NMT and Attention-Based NMT translations for long Kashmiri Sentences.
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progression in model quality, but also pinpoints where and why failures persist, informing future improvements 
in both model design and data augmentation strategies.

Performance breakdown by sentence length and domain
To further interpret model behavior we conducted a detailed evaluation of BLEU-4 scores based on sentence 
length and textual domain. This granular analysis helps elucidate where each model excels or struggles, 
particularly in handling short vs. long sequences and domain-specific stylistic variation.

BLEU-4 by sentence length
We categorized 300 test samples into three bins based on sentence length, Table 8:

•	 Short (≤ 8 words).
•	 Medium (9–15 words).
•	 Long (> 15 words).

Observations:

•	 All models performed best on short sentences, with the Transformer model showing the highest BLEU-4 
score (0.285), effectively handling WH-questions, simple clauses, and high-frequency vocabulary.

•	 For medium-length sentences, attention-based models significantly improved lexical alignment and clause 
cohesion, while the Transformer further enhanced fluency and word order.

•	 In long sentences, the RNN frequently collapsed (BLEU-4: 0.141), struggling with subordinate clauses and 
long-distance dependencies. The Transformer retained the highest fidelity (BLEU-4: 0.264), thanks to its 
global attention mechanism and parallelized context modeling.

This pattern reinforces the Transformer’s ability to scale across sentence complexity, particularly for 
morphologically rich languages like Kashmiri.

BLEU-4 by domain
We grouped 150 test samples into three broad domains, as derived from the corpus metadata, Table 9:

•	 Conversational – natural dialogue, questions, interpersonal phrases.
•	 Literary – descriptive or narrative style from books and poetry.
•	 Administrative – formal, factual statements or institutional content.

Observations

•	 Conversational text benefited from all three models, but only the Transformer maintained robust subject–verb 
agreement and preserved pragmatic intent in WH-questions and politeness forms.

•	 Literary language, with its metaphorical expressions and stylistic variation, posed difficulties for all models. 
The Transformer again led in coherence and clause reconstruction, while RNN and attention-based models 
often under-translated or distorted meaning.

•	 In administrative content, where named entity formatting and rigid syntactic structures are crucial, atten-
tion-based models showed gains in alignment. However, only the Transformer reliably captured formal struc-
tures and entity consistency.

This breakdown illustrates that while RNN and attention-based models exhibit varying strengths in different 
sentence and domain contexts, Transformer-based architectures deliver the most balanced and robust 
performance across linguistic settings. This analysis further supports the adoption of modern self-attentive 
models in low-resource NMT.

Domain BLEU-4 (RNN) BLEU-4 (Attention) BLEU-4 (Transformer)

Conversational 0.228 0.262 0.301

Literary 0.174 0.236 0.279

Administrative 0.182 0.241 0.285

Table 9.  BLEU-4 score by Domain.

 

Sentence length BLEU-4 (RNN) BLEU-4 (attention) BLEU-4 (transformer)

Short (≤ 8 words) 0.215 0.248 0.285

Medium (9–15 words) 0.188 0.233 0.271

Long (> 15 words) 0.141 0.207 0.264

Table 8.  BLEU-4 score by sentence length.
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Discussion
This study presents the first comprehensive deep learning-based pipeline for Kashmiri-English Neural 
Machine Translation (NMT), addressing longstanding challenges of data scarcity and model limitations for this 
underrepresented language pair. Through the construction of a first publicly available 270 K sentence parallel 
corpus and the implementation of three distinct NMT architectures—including a Transformer-based model—
we provide a reproducible foundation for advancing low-resource translation research.

Among the models evaluated, the Transformer architecture exhibited a consistent advantage over both the 
vanilla RNN and attention-enhanced models. Its self-attention mechanism facilitated more effective modeling 
of Kashmiri’s complex morphology, relatively free word order, and long-distance syntactic dependencies. The 
use of subword-level tokenization via Byte Pair Encoding (BPE) further improved generalization over inflected 
forms, which are common in morphologically rich languages. These architectural enhancements translated 
into measurable improvements across all automatic evaluation metrics, including BLEU, ROUGE, GLEU, and 
ChrF++, particularly for longer and syntactically complex sentences.

To complement these metrics, we conducted a structured qualitative analysis using a five-category error 
taxonomy, applied to both short and long sentence translations. This analysis revealed that while the RNN and 
attention-based models frequently exhibited issues such as referential ambiguity, structural fragmentation, 
and hallucinated content, the Transformer model produced outputs that were more coherent, morphologically 
consistent, and syntactically fluent. However, limitations remained, including occasional semantic compression, 
idiomatic flattening, and generalized kinship or spatial references—especially in culturally nuanced or 
metaphorical inputs.

When considered together, the qualitative analysis of short and long sentence translations provides a 
nuanced view of model behavior across different levels of linguistic complexity. Short sentences highlighted 
issues in morphological precision, pronoun usage, and referential clarity, while long sentences revealed 
challenges in syntactic continuity, clause-level integration, and idiomatic expression. The Transformer model’s 
consistent performance across both types confirms its robustness yet also draws attention to subtle semantic 
approximations that persist regardless of sentence length. This dual-layered analysis reinforces the importance 
of evaluating models not just by overall metrics, but by how well they adapt to specific sentence types and real-
world communication needs.

These findings highlight the limitations of relying solely on automatic metrics, which often fail to capture 
subtle semantic or pragmatic deviations. By integrating both statistical and manual evaluations, this work 
provides a more holistic understanding of model behavior and establishes qualitative baselines for further 
refinement. Statistical significance testing via paired bootstrap resampling confirmed that the Transformer’s 
BLEU score improvements over both baseline and attention-based models were not only substantial but also 
statistically meaningful (p < 0.01), reinforcing its robustness in a low-resource setting.

Limitations and future work
While our study establishes robust benchmarks for Kashmiri-English NMT using three deep learning 
architectures, it does not include comparisons with multilingual pretrained models such as mBART or mT5. This 
decision was motivated by the fact that Kashmiri is not natively supported in these models’ tokenizers or training 
corpora, resulting in poor segmentation, missing embeddings, and unreliable output for Kashmiri inputs. Given 
our goal to build task-specific models aligned with Kashmiri’s unique linguistic features—including its Perso-
Arabic script, morphology, and syntactic variability—we focused on training from scratch using a dedicated 
parallel corpus. We view future adaptation or fine-tuning of multilingual models, once Kashmiri support 
improves, as a promising direction for further research.

Some additional limitations persist. The Transformer model was trained on the same data splits as the 
other architectures and demonstrated superior performance, particularly on longer and morphologically 
complex sentences. Furthermore, while the corpus spans diverse textual domains, expansion into technical, 
spoken, or real-time conversational registers would enhance generalizability and domain adaptability. Cultural 
and idiomatic fidelity—particularly in literary and informal discourse—remains an open challenge, as literal 
translations often lose contextual nuance.

Future work should consider fine-tuning Transformer-based architectures on larger multilingual corpora 
once Kashmiri language support improves, or leveraging zero-shot and few-shot learning strategies to address 
unseen syntactic phenomena. Moreover, extending this framework to incorporate speech translation, cross-
script transliteration, and code-switching scenarios could significantly broaden the usability of Kashmiri NMT 
systems in real-world applications.

Conclusion
In conclusion, this work delivers the first large-scale dataset and end-to-end NMT evaluation pipeline for 
Kashmiri-English translation. Beyond demonstrating the effectiveness of Transformer-based architectures in 
morphologically rich, low-resource contexts, it introduces a rigorous hybrid evaluation methodology combining 
statistical, domain-based, and linguistic analyses. This approach offers a replicable model for developing robust 
machine translation systems for other linguistically complex and underrepresented languages.

Data availability
The Kashmiri-English parallel corpus created for this study is publicly available on Hugging Face and can be 
accessed at [DOI: 10.57967/hf/366]. This dataset has been specifically developed to support research in low-re-
source Neural Machine Translation and is freely available for use in related studies and applications.
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