Table 4 Classification results obtained when the models are run (5 slices manually).
Models | Accuracy | Precision | Recall | F1 Score | AUC | MCC |
---|---|---|---|---|---|---|
EfficientNetB2 | 0.9177 | 0.8244 | 0.7478 | 0.7834 | 0.9569 | 0.7823 |
InceptionV3 | 0.8788 | 0.7148 | 0.6556 | 0.6864 | 0.9381 | 0.6972 |
RegNetx006 | 0.9712 | 0.9345 | 0.9203 | 0.9268 | 0.9929 | 0.9375 |
Basic ViT | 0.8898 | 0.7678 | 0.6981 | 0.7302 | 0.9482 | 0.7394 |
EfficientNetB2 + FPN (Our Model) | 0.9473 | 0.9315 | 0.9029 | 0.9167 | 0.9714 | 0.9098 |
ViT + EfficientNetB2 + FPN (Our model) | 0.9091 | 0.9082 | 0.7089 | 0.7978 | 0.9021 | 0.8236 |