Table 4 The performance comparison of different ML models.

From: Non-invasive acoustic classification of adult asthma using an XGBoost model with vocal biomarkers

Model

Accuracy

AUC

Recall

Prec.

F1

Kappa

MCC

TT (s)

Extreme gradient boosting

0.8514 ± 0.0622

0.9130 ± 0.0774

0.8804 ± 0.0758

0.8387 ± 0.0757

0.8567 ± 0.0594

0.7018 ± 0.1254

0.7071 ± 0.1275

0.015

Extra trees classifier

0.8510 ± 0.0936

0.9125 ± 0.0604

0.8536 ± 0.1605

0.8556 ± 0.0881

0.8467 ± 0.1146

0.7012 ± 0.1878

0.7107 ± 0.1843

0.028

CatBoost classifier

0.8505 ± 0.1055

0.9286 ± 0.0565

0.8500 ± 0.1971

0.8498 ± 0.1045

0.8378 ± 0.1524

0.7009 ± 0.2107

0.7130 ± 0.2028

1.179

Random forest classifier

0.8443 ± 0.0946

0.9157 ± 0.0655

0.8268 ± 0.1547

0.8645 ± 0.0983

0.8374 ± 0.1145

0.6882 ± 0.1898

0.6982 ± 0.1866

0.023

Light gradient boosting machine

0.8371 ± 0.1294

0.9010 ± 0.0821

0.8268 ± 0.1547

0.8481 ± 0.1323

0.8345 ± 0.1396

0.6730 ± 0.2602

0.6762 ± 0.2602

0.016

Decision tree classifier

0.8257 ± 0.0675

0.8250 ± 0.0662

0.8125 ± 0.1036

0.8506 ± 0.1066

0.8236 ± 0.0663

0.6504 ± 0.1336

0.6625 ± 0.1385

0.004

Naive Bayes

0.7776 ± 0.0773

0.8311 ± 0.1033

0.7821 ± 0.1143

0.7794 ± 0.0816

0.7761 ± 0.0817

0.5519 ± 0.1557

0.5582 ± 0.1552

0.004