Table 2 The EAE-DETR dataset is compared with various other excellent methods in in PCBA-DET.

From: An improved EAE-DETR model for defect detection of server motherboard

Methods

mAP50 (%)

mAP50:95(%)

Precision(%)

Recall(%)

Parameters

GFLOPs

YOLOv8s

74.1

47.2

72.2

71.6

11.27 M

28.8

Faster-RCNN27

70.1

23.5

64.2

63.1

41.3 M

206

RTMDet-Tiny28

69.8

23.2

64.1

62.2

4.86 M

8.13

RetinaNet29

64.2

21.5

58.8

58.3

36.6 M

93.7

YOLOv5s

71.2

25.4

69.5

68.1

7.3 M

16.2

YOLOv10n

70.1

25.6

68.8

68.1

2.23 M

6.6

SSD30

50.2

17.2

40.6

38.2

26.21 M

85.3

YOLOv6m

68.3

24.7

62.7

60.6

34.5 M

82.2

YOLOX-Tiny31

66.2

23.1

61.9

60.8

5.01 M

7.57

YOLOv9s

71.2

26.5

70.2

68.4

9.6 M

25.3

MELF-YOLOv5s32

62.6

22.1

55.1

53.8

3.5 M

8.1

YOLO11n

70.8

25.3

68.3

66.4

2.62

6.4

YOLO11s

74.7

28.7

72.3

71.4

9.43 M

21.5

D-Fine-S

71.2

25.1

69.1

67.4

10.18 M

24.85

DEIM-S

70.5

24.3

68.4

67.1

10.26 M

24.68

RTDETRV2-R18

73.3

27.5

71.2

68.8

20 M

60

PCBA-YOLO33

72.4

26.3

70.1

68.2

12.4 M

20.8

YOLO-MBBi34

70.2

25.5

69.4

66.1

6.2 M

12.8

Ours

78.5

32.6

76.8

75.4

15.56 M

50.2