Table 4 Comparative outcome of XAICR-HDLOA approach under the Edge-IIoT dataset with existing models.
Edge-IIoT dataset | ||||
---|---|---|---|---|
Technique | \(\:\varvec{A}\varvec{c}\varvec{c}{\varvec{u}}_{\varvec{y}}\) | \(\:\varvec{P}\varvec{r}\varvec{e}{\varvec{c}}_{\varvec{n}}\) | \(\:\varvec{R}\varvec{e}\varvec{c}{\varvec{a}}_{\varvec{l}}\) | \(\:\varvec{F}{1}_{\varvec{S}\varvec{c}\varvec{o}\varvec{r}\varvec{e}}\) |
RF | 92.91 | 88.55 | 83.77 | 84.12 |
K-NN Algorithm | 95.14 | 85.16 | 84.47 | 85.49 |
CNN Classifier | 96.84 | 86.74 | 87.19 | 83.64 |
XGBoost | 97.09 | 83.80 | 85.96 | 85.29 |
FFNN Method | 93.60 | 87.14 | 89.04 | 84.57 |
MLP Model | 94.73 | 87.67 | 84.42 | 85.39 |
SVM Method | 92.31 | 83.37 | 89.86 | 83.01 |
XAICR-HDLOA | 98.41 | 90.42 | 90.01 | 90.19 |