Table 2 Comparison of the quality of the machine learning models.
Model | Accuracy | Precision | Recall | F1 score | Train time (s) | AUC-ROC |
---|---|---|---|---|---|---|
Random forest | 0.842 | 0.836 | 0.842 | 0.837 | 0.718 | 0.947 |
Gradient boosting | 0.815 | 0.805 | 0.815 | 0.801 | 1.988 | 0.932 |
K-nearest neighbors | 0.813 | 0.806 | 0.813 | 0.808 | 0.003 | 0.910 |
Support vector machine | 0.696 | 0.543 | 0.696 | 0.609 | 1.508 | 0.879 |
Logistic regression | 0.751 | 0.714 | 0.751 | 0.707 | 0.058 | 0.827 |
Decision tree | 0.813 | 0.815 | 0.813 | 0.814 | 0.017 | 0.832 |