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Railway catenary system inspection is a critical task where high accuracy and reliability are essential to 
ensure operational efficiency and safety. This objective is achieved by assessing the technical condition 
of the infrastructure and maintaining a comprehensive inventory of its components. The application 
of machine learning methods to this problem is non-trivial, due to various constraints, including the 
cost of data acquisition. This paper presents innovative solutions leveraging domain knowledge to 
significantly improve the inference quality of machine learning models using existing training data. 
Key innovations include a two-stage approach and clustering of selected objects to extract regions 
of interest (ROI), dynamic confidence score weighting, and ROI masking, aimed at reducing false 
positives and enhancing precision. Additionally, the system was extended with ensemble learning 
methods and custom test-time augmentations (TTA). Proposed methods substantially improve metrics 
such as AP50, precision, recall, and F1-score, particularly in detecting small and hard-to-spot catenary 
components such as insulators. Notably, the proposed enhancements were optimized to mitigate 
processing time increases, enabling their application in industrial settings. The results demonstrate 
the effectiveness of integrating domain knowledge into the process of machine vision inspection, 
achieving an improvement in the F1-score metric from 61.97 (0.59) to 82.53 (0.38) compared to 
the baseline single-model approach while maintaining practical runtime constraints for real-world 
overhead catenary system inspection.
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Railways are a key component of modern transportation systems, particularly in the European Union, where 
in 2023 passenger transport reached 429 billion passenger-kilometers, and freight transport accounted for 
378 billion tonne-kilometers1. As one of the most environmentally friendly modes of transport, railways 
significantly contribute to reducing CO2 emissions compared to road transport, aligning with EU sustainability 
goals. Beyond their environmental benefits, railways represent a critical element of national and international 
infrastructure, ensuring economic stability, territorial connectivity, and resilience in times of crisis. They play 
a strategic role in national security policies, enabling the rapid and efficient mobilization of troops, equipment, 
and essential supplies during emergencies or conflicts2. Therefore, ensuring reliability, security, and resilience 
of railway infrastructure is not only an economic necessity but also a strategic priority for governments and 
infrastructure operators.

The railway networks are extensive—Poland alone has 18,600 km of actively operated railway lines managed 
by Polish Railway Lines (PKP PLK)3. The railway infrastructure, essential for the safe transport of passengers and 
goods, is highly complex and undergoes gradual wear and tear during operation. Maintaining it in good condition 
involves inspection, repairs and modernization, which is crucial for passengers, goods, and environmental 
safety. Additionally, changing climate conditions, such as extreme temperatures or heavy rainfall, accelerate 
the degradation process, further emphasizing the need for frequent and reliable inspections. To manage such 
a vast and intricate network, Geographic Information Systems (GIS) are used to digitize infrastructure assets. 
Updating these digital maps demands efficient methods for data acquisition and processing, which serves as 
the motivation for this work. This article focuses on the automation of railway infrastructure inspection, with a 
particular emphasis on the assessment of overhead line components.
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Elements of the railway overhead caternary system are particularly critical components of railway 
infrastructure. They enable the continuous and safe electrical contact between the train’s pantograph and the 
overhead power supply—failures in these elements can lead to power outages, mechanical damage, or even 
derailments at high speeds. Consequently, there is a strong need for precise and reliable methods for monitoring 
and assessing their condition.

Given their role and specific characteristics, inspecting elements of the overhead catenary system is not 
a trivial task. The main challenges in the inspection of power supply infrastructure include the small size of 
components—such as insulators, switches, and disconnectors—which significantly complicates their detection, 
especially when captured from aerial imagery where they may blend with the background of the railway tracks. 
Moreover, their placement several meters above track level requires careful configuration of the acquisition 
system. Finally, the presence of high-voltage power introduces additional safety considerations, necessitating the 
maintenance of a safe distance between the imaging equipment and the overhead wires.

Currently, most inspection tasks are performed visually. Trained personnel walk along selected track 
sections and assess the technical condition of components according to established procedures. This approach is 
characterized by low efficiency and high time consumption. Therefore, some efforts have been made to develop 
machine vision systems for the automatic (or partially automatic) inspection of railway infrastructure. These 
efforts can be categorized on the basis of two factors: the approach to data acquisition and the data processing 
methods used.

In terms of acquisition methods, two main groups can be distinguished: image acquisition from traction 
vehicles or UAVs (unmanned aerial vehicles). Traction vehicles are widely used in the inspection of railway 
infrastructure. Recently, these vehicles have been equipped with vision systems to perform tasks such as 
detecting rail fasteners4, evaluating the technical condition of cantilevers and insulators on rail overhead lines5, 
and assessing the condition of tunnel walls on high-speed rail lines6. Using vehicles as platforms for vision 
systems offers several advantages such as: high payload capacity (allowing for multiple cameras/sensors and 
other necessary equipment) and ability to position cameras close to the elements under inspection (rails, 
sleepers, overhead line components). However, there are notable disadvantages, such as high operating costs, the 
requirement for highly specialized personnel (train drivers and vehicle operators) and track occupancy during 
inspections. These challenges can be mitigated by using UAVs as platforms for the inspection systems developed.

UAV platforms equipped with various sensors have been widely adopted for telemetric and scanning 
tasks, including railway infrastructure imaging. Infrastructure operators such as Deutsche Bahn (Germany), 
Network Rail (United Kingdom), and CAF Signalling (Spain) have successfully deployed UAVs for monitoring 
infrastructure conditions7. Studies confirm the feasibility of UAV-based vision systems for railway inspection 
within existing regulations8. Recent advancements include drone-based rail surface defect inspections9, sleeper 
condition assessment10, rail positioning measurements using photogrammetry11, and vegetation and obstacle 
detection along railway lines12.

Inspection systems relying solely on classical image processing methods are not commonly used for complex 
railway infrastructure due to their limited flexibility. Classical computer vision techniques are primarily applied 
to well-defined tasks, such as measuring rail-to-sleeper fasteners13. A more effective approach involves hybrid 
solutions that integrate classical machine vision (MV) methods with machine learning (ML). For instance, 
a system for rail position detection14 utilizes classical methods such as binarization, segmentation, and edge 
detection to identify object positions and extract features (e.g., height, length, eccentric color). These features are 
then classified using a k-Nearest Neighbors (k-NN) algorithm, significantly improving precision.

Another example is a system designed for inspecting insulators in railway overhead lines for high-speed 
rail networks15. The authors proposed a two-stage detection process: (1) identifying regions of interest (ROIs) 
containing individual rods of the cantilever structure through image binarization and segmentation, and (2) 
localizing insulators within these ROIs using discriminatively trained parts-based models16.

Although these solutions achieved high effectiveness under controlled conditions, they also exhibit several 
limitations. A major drawback is their low flexibility, which restricts their applicability. For example, the described 
insulator inspection system requires nighttime data acquisition with additional illuminators to enhance object 
visibility and contrast. Any variations in acquisition conditions or differences in analyzed objects (e.g., different 
insulator or cantilever types) may lead to a significant decline in inference quality. Consequently, such systems 
are limited to a narrow range of railway infrastructure and specific data acquisition settings.

Another category of approaches that has found widespread application in quality inspection and infrastructure 
inventory management is based on deep learning (DL). Within this category, off-the-shelf models such as Faster 
R-CNN12,17,18 and YOLO (You Only Look Once)19–21 dominate, frequently used for detecting infrastructure 
elements. Notable custom solutions also exist, such as the Real-Time Rail Recognition Network (TriRNet)22, a 
deep architecture designed for detecting the positions of railway tracks from UAV-acquired images.

Deep learning methods are widely regarded as state-of-the-art solutions for the inspection of railway 
infrastructure. They offer greater flexibility and robustness to data variability compared to the previously 
described approaches, enabling automated detection and analysis of complex infrastructure components with 
higher accuracy—even under challenging environmental conditions that often hinder traditional rule-based or 
manual approaches. By learning patterns directly from data, DL systems are capable of detecting subtle defects 
and generalizing across various infrastructure designs. This capability translates into faster, safer, and more 
consistent inspections at scale, significantly improving the efficiency and reliability of maintenance workflows. 
Moreover, maintaining and monitoring a DL-based system after deployment is generally easier and more 
standardized. Unlike classical methods, which often require extensive manual adjustments or rule redesign, 
DL models can be updated or fine-tuned with minimal intervention, making them more scalable and adaptable 
to changing operational conditions23. However, DL methods are not without limitations. One of the most 
significant challenges for supervised deep learning models is the requirement for sufficiently large and diverse 
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labeled training datasets. The quality of the available data directly affects the performance and generalization 
capabilities of the developed models. However, the processes of data acquisition, proper dataset preparation, and 
model training are both costly and time-consuming.

As a result, there is a growing demand for methods that enhance inference quality without necessitating 
the creation of new, larger datasets. One effective approach to improving the performance and generalization 
capabilities of deep learning models is the incorporation of domain knowledge—that is, expert knowledge specific 
to a given problem or application domain24. Several strategies exist for integrating domain expertise into deep 
learning pipelines. These include, for instance, embedding domain knowledge during the architecture design 
stage, such as implicitly reflecting temporal dynamics25, leveraging prior knowledge from established diagnostic 
systems to enhance novel systems and enable cross-modality knowledge transfer26, applying conditional 
alignment strategies27, or incorporating known characteristics during data preprocessing and structured feature 
learning using Transformer-based models28.

Considering the aforementioned challenges related to data acquisition, as well as the additional need to 
improve the interpretability of automated inspection systems—for instance, by decomposing them into smaller, 
more comprehensible modules—the authors propose a multi-stage processing framework that explicitly leverages 
domain-specific knowledge in the context of railway infrastructure inspection. This framework includes: (1) 
filtering detections based on their spatial distance from the tracks; (2) clustering detections to form “traction 
groups” and define regions of interest (ROIs) for downstream processing; (3) masking ROIs using outputs from 
previous detection stages to limit irrelevant context; (4) employing a custom test-time augmentation (TTA) 
strategy tailored to the structural characteristics of the problem. The proposed enhancements are designed to 
significantly boost the inference quality of deep learning models by providing an additional layer of contextual 
filtering and optimization. Importantly, these techniques are model-agnostic and can be implemented 
independently of the core architecture, ensuring seamless integration into a wide range of existing railway 
inspection pipelines.

Materials and methods
Problem definition
The research problem addressed in this article focuses on developing methods to efficiently and accurately detect 
key elements of railway infrastructure, with particular emphasis on overhead line components, using images 
obtained from unmanned aerial vehicles (UAVs). The need for such methods arises from the requirement to 
reliably identify and monitor the condition of various infrastructure components, ensuring the safe and efficient 
operation of the railway system. The elements selected for this purpose—such as overhead lines, poles, and 
associated structural components—are listed in Table 1.

The methods proposed in this paper form the foundation of a larger system aimed at automating the 
inventorying and inspection of railway infrastructure maintenance. By employing rapidly deployable UAVs, the 
system can acquire high-quality images, even in hard-to-reach or challenging areas, thereby reducing the time, 
cost, and risks typically associated with traditional inspections. This approach not only improves the efficiency 
of infrastructure monitoring but also facilitates real-time decision-making by providing accurate data on the 
condition of the railway system.

The proposed approach utilizes UAVs exclusively for image acquisition. All processing is performed 
offline on a workstation after the flight images have been captured. This method enables image processing at 
full resolution, avoiding the hardware limitations imposed by restricted computing power and power supply 
constraints. The inference results and metadata are integrated with the commercial GIS-based DRONonLine 
platform (GISonLine, Poland), which visualizes the UAV flight path, the locations of the captured images, as well 
as information regarding the location and condition of railway catenary system components. The overall scheme 
of the proposed solution is shown in Fig. 1.

Input data
Data acquisition was performed using an UAV equipped with a ZENMUSE P1 camera (SZ DJI Technology Co. 
Ltd., China), capable of capturing images at a resolution of 8192 × 5460. The camera was positioned at an angle 
of approximately 45 degrees to the terrain. Due to regulations governing railway operations, UAV flights were 
conducted at a minimum altitude of 30 m.

The prepared dataset comprises 733 high-resolution images of railway infrastructure, captured during seven 
flights over various railway lines and stations (Fig. 2): 

	1.	 Nowy Targ—railway station, summer, sunny;

Infrastructure Description Class names

Support structures Individual and group structures such as frames and poles Pole, horizontal bar

Registration arms/cantilevers Load-bearing structure attaching the suspension line to the substructure Mount

Insulators Insulators used in cantilevers and in the mounting of section power cables Insulator

Power switches and disconnectors Equipment to disconnect the power supply to a section of the overhead line Electrical component

Railroad switches – Railroad switch

Semaphore Colour light signal Semaphore

Table 1.  Relevant groups of railway infrastructure facilities.
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	2.	 Poronin—railway line, summer, sunny;
	3.	 Osielec 1—station and railway line, winter, cloudy;
	4.	 Osielec 2—station and railway line, winter, sunny;
	5.	 Jeleśnia—station and railway line, spring, sunny;
	6.	 Bielsko-Biała—abandoned railway line, spring, cloudy;
	7.	 Osielec 3—station and railway line, summer, sunny.

In total, 15,335 objects were labeled in the images. The dataset was divided into training and validation subsets 
in an 80/20 ratio.

As shown in Fig. 3, the labeled objects can be categorized into two groups based on the size of their bounding 
boxes: large objects (horizontal bar, pole, mount, railway switch, semaphore) and small objects that are challenging 
to detect in the images (insulator, electrical component). Three datasets were created: (1) containing only large 
objects (‘basic elements’), (2) containing only small objects (‘small elements’), and (3) containing both groups of 
objects. Due to the dimensional characteristics of the images and objects, input image scaling and tiling were 
applied during the dataset creation process (Table 2).

Two stage processing
The most straightforward approach to object detection would be to employ a single model trained on all classes 
described in “Problem definition”. However, due to differences in the size and characteristics of the objects 
(Fig. 3), a multistage approach was adopted, utilizing two models. The first model detects objects belonging 
to the “basic elements” group, while the second focuses on “small elements”. Each model employs its own 
preprocessing parameters, identical to those used during the creation of the training dataset (Table 2). These 
parameters are as follows:

Figure 2.  Review of images taken during UAV flights (original images courtesy of GISonLine).

 

Figure 1.  General scheme of the proposed image processing system. (original images courtesy of GISonLine).
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•	 Tile size—the dimensions of square tiles used for image tiling.
•	 Overlap—the degree of overlap between adjacent tiles.
•	 Scale factor—the scaling factor applied to resize the image before tiling.

The adoption of two-stage processing significantly increases processing time, as images are tiled twice and 
transferred to the corresponding models. Furthermore, similar to the one-step approach, there is a considerable 
risk of false-positive errors, particularly for objects with small dimensions, such as insulators. To mitigate these 
challenges, and considering the characteristics of the analyzed infrastructure, a method was proposed to suggest 
regions of interest (ROIs) for the second processing step.

The objects in the “small elements” group—insulators, power disconnectors, and power switches—are found 
exclusively on support structures such as cantilevers, poles, or gates, which are detected during the first stage 
of processing. To leverage this observation, a mechanism was developed to group the detected objects from the 
“mount”, “pole”, and “horizontal bar” classes using the density-based spatial clustering of applications with noise 
method (DBSCAN)29 and to determine their bounding rectangles. The DBSCAN method utilizes a custom 
distance matrix, defined in Eq. (1), which represents the relative distance between the centers of two bounding 
boxes (described as xi, yi and xj , yj), relative to the sum of their height (hi, hj) and width (wi, wj). By using 
this form of scaling, it is possible to compare distances between pairs of objects with significantly different 
bounding box dimensions. The ROI coordinates derived through this process are then used to extract areas 
of interest for the second processing step (Fig. 4). The resulting clusters of detected objects are referred to as 
“traction groups”.

	
dij =

√(
xi − xj

wi + wj

)2

+
(

yi − yj

hi + hj

)2
� (1)

Dynamic confidence score threshold (DCST) and ROI masking
In order to increase the precision of inference by reducing the number of false-positive detections, a dynamic 
confidence score threshold (DCST) was implemented for objects detected during the first processing. The system 
allows filtering predictions by taking into account both their confidence scores and their positions by linking 
the value of the confidence score threshold (CST) to the normalized distance from the tracks (d). The distance 
is calculated as the Euclidean distance in pixels from the track mask and normalized to a range of 0 to 1, where 
1 corresponds to the maximum possible Euclidean distance between any two pixels in an image with the given 
dimensions. The CST value is described by the equation (Eq. 2). Values range from CSmin, set as the confidence 
threshold for the model (working point), to CSmax, set as 1.0.

	

CST (d) =




CSmin if d < d1
t

d−d1
t

d2
t

−d1
t

× (CSmax − CSmin) + CSmin if d1
t ≤ d ≤ d2

t

CSmax otherwise
� (2)

Group name Classes Tile size Overlap Scale

Basic elements All except insulator and electrical component 1216 35% 0.35

Small elements Insulator, electrical component 1216 25% 1.0

All elements All classes 1216 35% 0.35

Table 2.  Object groups and their scaling and tiling parameters for input images used during data set creation.

 

Figure 3.  Analysis of the size and location of labels.
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The values of the threshold points for the distance from the tracks (d1
t  and d2

t ) were determined by analyzing 
the inference results of the system (in two-stage processing mode) on the training dataset. The distances of 
individual predictions from the tracks, their confidence scores, and their correctness (whether they are false 
positives or true positives) were evaluated. The distance thresholds were selected using the grid search method, 
maximizing the objective function that is a weighted harmonic mean between the area under the CST (d) 
curve (the excluded area) and recall (Eq. 3). Recall is calculated after excluding some predictions according to 
the determined confidence score thresholds (Eq. 4). The weights were determined empirically and were set to 
wA = 0.175 and wR = 0.825.

This metric ensures the retention of a high recall while simultaneously selecting thresholds that maximize the 
excluded area, thereby reducing potential false-positive predictions (increasing precision of the system).

	
F (d1

t , d2
t ) = 1

wA
Area

+ wR
Recall

� (3)

	
Recall = T P

T P + F N
= T Pinitial − T Pexcluded

(T Pinitial − T Pexcluded) + (F Ninitial + T Pexcluded) � (4)

The selected threshold values and a visualization of the prediction filtering process is shown in Fig. 5.
The process of determining the weighting matrix begins by scaling the input image to a resolution of 

1024x682 and processing it with the track segmentation model. The resulting masks are utilized to create a 
512x352 distance map for the track (Fig. 6). For each detection, the corresponding value from the distance map 
is taken, where the base point is defined as the centre of the bottom edge of the bounding box. The bottom edge 
was chosen as a reference because it approximates the point of contact between the detected object and the plane 
on which the tracks are located.

Figure 4.  Traction group generation: (A) distance matrix between objects, (B) visualization of clustering 
results—unassigned objects are marked in gray, while designated traction groups are highlighted in other 
colors. (original images courtesy of GISonLine).

 

Scientific Reports |        (2025) 15:29426 6| https://doi.org/10.1038/s41598-025-15289-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Track segmentation was performed using the YOLO11n (nano) instance segmentation model30, trained on 
86 images with a resolution of 1024x682. The model achieved an AP50 of 99.2 and an F1 score of 98.0 at a 
confidence threshold of 0.67. This model was used consistently throughout the experiments.

The second stage of detection employs an alternative false-positive reduction method: ROI masking (Fig. 7). 
This method leverages domain knowledge about the spatial positioning of insulators and other electrical 
components, specifically that they occur only on support structures or cantilevers. By masking regions outside 
the bounding boxes of objects belonging to these classes, the method effectively reduces false positives.

Figure 7.  Regions of interest for the second processing stage before and after masking (original images 
courtesy of GISonLine).

 

Figure 6.  Visualization of track distance maps on input images. (original images courtesy of GISonLine).

 

Figure 5.  Calculated confidence score threshold curve (blue line).
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Ensembled processing methods
With the ensemble approach, five models were employed simultaneously for the detection task. For each input 
image tile, five sets of results were accumulated and processed separately for each class. A zero array with the 
shape of the input image was created, and for each detection, values of 1 were added to it at the detection 
locations, creating an array of detection intensities with values ranging from 0 to 5. Subsequently, the array was 
thresholded, retaining only regions (predictions) that were detected more than or equal to the specified value 
(later refered to as detection threshold). The remaining detections were merged and described using an external 
bounding box (Fig. 8). New confidence score values were calculated as a mean of cumulated detections.

The ensembled method requires the preparation of multiple models trained on different datasets. As an 
alternative, the authors proposed the Test Time Augmentation (TTA) approach, where a single model is used 
to perform inference multiple times on slightly modified images. The default implementation of TTA in the 
Ultralytics framework applies rescale and flip augmentations. Three inferences are performed with the following 
parameters: (1) scale = 1.0, no flip (original image); (2) scale = 0.83, horizontal flip; (3) scale = 0.67, no flip. The 
applied image scaling introduces significant changes to the characteristics of the image, which can negatively 
impact the inference for the problem under consideration. To address this, a custom TTA method was proposed, 
performing two predictions - one for the original image and another for the horizontally flipped image.

Evaluation measures
Evaluation was performed using PyCoCoTools and a test set of 146 high-resolution images. Base confidence 
threshold (working point) was set to 0.25. AP50, as well as precision, recall, and F1 metrics were determined, as 
shown below (Eqs. 5–7):

	
P recision = T P

T P + F P
,� (5)

	
Recall = T P

T P + F N
,� (6)

	
F1 = 2 × P recision × Recall

P recision + Recall
,� (7)

where TP, FP, and FN represent the number of true positive, false positive, and false negative predictions, 
respectively, and are calculated as shown in Eq. 8 for all (N = 146) test images.

Figure 8.  Detection combination process for different threshold values (DT = 1 and DT = 5) (original images 
courtesy of GISonLine).
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T P =
∑N

n=1 T P image
i

F P =
∑N

n=1 F P image
i

F N =
∑N

n=1 F N image
i

� (8)

Experimental setup
The experimentation, including the training of the machine learning models as well as the validation of the system, 
was carried out locally on a workstation equipped with an Intel Xeon Silver 4110 CPU (Intel Corporation, USA), 
64GB RAM and an Nvidia RTX 4080 graphics card with 16GB VRAM (NVIDIA Corporation, USA). Python 
programming language together with Pytorch and Ultralytics frameworks were used to prepare the scripts.

Model preparation
Three sets of models were prepared for this study, each trained using a subset of the training dataset derived from 
different input datasets:

•	 all elements,
•	 basic elements,
•	 small elements.

The models were developed using the five-fold cross-validation methodology, resulting in five distinct models.
In this study, two object detection model architectures were evaluated: YOLO11 (a lightweight convolutional 

model)30 and RT-DETR (Real-Time Detection Transformer, a transformer-based model)31.
In the experimental phase, models with reduced size (“small”) were utilized to minimize the time needed for 

their training and to validate the system with various processing methods. These models were trained for 200 
epochs in the “basic elements” and “all elements” scenarios, and for 250 epochs in the “small elements” scenario, 
using the Adam optimizer. For YOLO11s, a learning rate of 1.5 × 10−3 and a batch size of 20 were employed. In 
the case of RT-DETR-l models, training was conducted with a batch size of 10 and a learning rate of 5 × 10−4. 
These training configurations ensured stable convergence for both model types.

For production deployment, models based on the YOLO11l (large) architecture were employed. These 
models were trained on the full dataset for 500 epochs with a higher learning rate of 5.0 × 10−3 for the first 
stage and 5.0 × 10−3 for the second stage. These parameters ensured full convergence when training on a larger 
and more complex dataset.

Evaluation of processing methods
Six processing methods (Table 3) were explored in this study. Each method was tested five times on the same test 
dataset of 146 images, with each iteration using a different model from the same group. This approach produced 
five sets of results for each method, enabling the calculation of the mean and standard deviation of metrics for 
each processing approach.

Examination of methods enhanced by ensembled processing
In addition, the following methods for extending the base approaches were explored for a variable threshold 
value of the minimum number of detections: 

	1.	 Default YOLO TTA,
	2.	 Custom TTA with horizontally flipped images—detections threshold of 2,
	3.	 Multi-model inference (ensembled)—detections threshold in range of 1 to 5.

For the multi-model inference method, five ‘basic element’ and ‘small element’ models were used for joint 
inference, producing single metric values. In the case of dual inference, the same models were utilized to obtain 
a set of results, for which the mean and standard deviation values were calculated and used for comparison. Both 
approaches employed two-stage processing with ROI masking and confidence score weighting. The obtained 
results were compared against the baseline approach without ensemble methods.

Evaluation of domain shift robustness
To assess the generalization capability of the proposed domain-enhanced method and its robustness to domain 
shift phenomena, a cross-domain validation experiment was proposed using selected domains from the input 

ID Base processing method Additional processing method Model 1 type Model 2 type

1 Simple one-stage – All –

2 Simple two-stage (tiling) – Basic Small

3 Two-stage processing (object grouping) – Basic Small

3+M Same as 3 Second Stage ROI masking Basic Small

3+D Same as 3 Confidence score weighting Basic Small

3+M+D Same as 3 Confidence score weighting and second stage ROI masking Basic Small

Table 3.  Proposed processing methods.
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dataset (as illustrated in Fig. 2). Weak YOLO11s models were trained on the Osielec 1 and Osielec 2 domains, 
which consist of winter aerial images of a modernized station and a section of railway infrastructure. Using a 
5-fold cross-validation scheme, five models were trained and subsequently evaluated on images from separate 
test (target) domains. The experiment was conducted for two approaches: the baseline method (Method 1) and 
the domain-enhanced method (Method 3+M+D).

The target domains selected for validation were “Osielec 3”, “Poronin”, and “Jeleśnia”. “Osielec 3” corresponds 
to the same geographical area as the training domains but was captured during the summer, introducing a 
domain shift primarily due to increased vegetation coverage. In contrast, “Jeleśnia” and “Poronin” represent 
entirely different locations, with images acquired in late spring. The “Jeleśnia” flight was conducted over 
a partially modernized station and railway line, while “Poronin” covered a non-modernized segment of the 
railway. In both cases, the railway infrastructure—specifically the tracks and overhead catenary systems—is of 
an older type, and the vegetation levels are noticeably higher in “Jeleśnia” and significantly higher in “Poronin” 
compared to the winter scenes used for training.

These domains were selected to evaluate the model’s performance under varying degrees of domain shift: 
a moderate shift in the case of “Osielec 3”, and more substantial shifts in the cases of “Jeleśnia” and “Poronin”.

Results and discussion
Evaluation of processing methods
The results of the evaluation of the both YOLO11 and RT-DETR based processing methods are presented in 
Table  4 and visualized in Fig.  10. The data was collected for two groups of objects: “basic” and “small”. For 
the evaluation of the “basic elements” group, an impact on the obtained quality metrics was observed only 
for methods 1, 2, and 3+D, namely the one-stage, two-stage, and two-stage with confidence score threshold 
approaches. The remaining methods only affect objects in the “small” group.

For the objects in the “basic” group using YOLO11-based methods, no significant changes were observed in 
the values of AP50 or Recall, with AP50 ranging from 88.95 to 89.44 and Recall from 91.45 to 92.12. However, 
clear improvements were noted in other metrics. The incorporation of an additional confidence score weighting 
method (Method 3+D) increased system precision from 81.06 (1.80) to 85.60 (1.63) compared to the simple 
one-stage processing pipeline (Method 1). This enhancement, while maintaining a high Recall, also raised the 
F1 score from 85.88  (0.95) to 88.39  (1.26). Analogous results were obtained for RT-DETR-based methods, 
where the application of additional processing steps (Method 3+M+D) increased precision to 72.26 (3.47) and 

YOLO11 based methods

AP50 Recall Precision F1 Time

Basic elements Full inference

1 88.95 (1.17) 91.45 (1.12) 81.06 (1.80) 85.88 (0.95) 0.507 (0.016)

2 89.44 (1.64) 92.12 (1.56) 80.93 (2.28) 86.11 (1.56) 1.839 (0.037)

3 89.44 (1.64) 92.12 (1.56) 80.93 (2.28) 86.11 (1.56) 0.703 (0.055)

3+D 89.33 (1.74) 91.45 (1.59) 85.60 (1.63) 88.39 (1.26) 0.823 (0.014)

3+M+D 89.33 (1.74) 91.45 (1.59) 85.60 (1.63) 88.39 (1.26) 0.894 (0.018)

Small elements

1 35.97 (2.55) 81.80 (4.12) 22.44 (1.63) 35.10 (2.09)

2 70.87 (2.21) 90.84 (2.21) 38.40 (2.65) 53.33 (2.61)

3 68.32 (2.68) 90.42 (1.07) 51.85 (1.50) 65.79 (1.29)

3+M 69.50 (1.90) 89.29 (1.41) 55.87 (1.95) 68.67 (1.65)

3+M+D 68.91 (1.72) 88.63 (1.64) 56.58 (1.87) 69.02 (1.66)

RT-DETR based methods

AP50 Recall Precision F1 Time

Basic elements Full inference

1 89.53 (1.33) 92.74 (1.12) 67.83 (3.90) 78.24 (2.83) 0.745 (0.008)

2 90.83 (2.18) 94.30 (1.53) 63.21 (5.24) 75.37 (4.07) 3.948 (0.021)

3 90.83 (2.18) 94.30 (1.53) 63.21 (5.24) 75.37 (4.07) 1.632 (0.161)

3+D 90.73 (2.16) 93.60 (1.59) 72.26 (3.47) 81.41 (2.56) 1.839 (0.071)

3+M+D 90.73 (2.16) 93.60 (1.59) 72.26 (3.47) 81.41 (2.56) 1.731 (0.040)

Small elements

1 42.43 (2.84) 89.28 (3.48) 18.21 (1.21) 30.23 (1.82)

2 80.82 (2.29) 92.95 (2.20) 26.41 (4.02) 40.39 (5.06)

3 80.14 (2.81) 93.78 (1.10) 40.61 (4.59) 56.19 (4.71)

3+M 77.88 (2.40) 92.18 (1.76) 43.61 (3.36) 58.73 (3.36)

3+M+D 77.50 (2.35) 91.63 (1.79) 45.73 (2.58) 60.60 (2.56)

Table 4.  Results for evaluation of processing methods for YOLO11 and RT-DETR based models.
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maintained a similar Recall, resulting in an F1 score of 81.41 (1.66), compared to 78.24 (2.83) obtained with the 
basic approach.

The results for objects in the “small elements” group clearly demonstrate the effectiveness of the proposed 
two-stage processing approach. Transitioning from Method 1 to Method 3 resulted in a substantial increase in 
AP50 from 35.97 (2.55) to 68.32 (2.68) for YOLO11. Recall improved from 81.80 (4.12) to 90.42 (1.07), while the 
most significant gain was observed in precision, which increased from 22.44 (1.63) to 51.85 (1.50). As a result, 
the F1 score for Method 3 reached 65.79 (1.29). Applying ROI masking before the second-stage model inference 
(Method 3+M) further improved precision to 55.87 (1.95), raising the F1 score to 68.67 (1.65).

Comparable trends were observed for the RT-DETR architecture. The use of Method  3 led to a marked 
increase in AP50 from 42.43  (2.84) to 80.14  (2.81), while recall improved from 89.28  (3.48) to 93.78  (1.10). 
Precision also saw a notable rise from 18.21  (1.21) to 43.61  (3.36), resulting in an F1 score of 56.19  (4.71). 
Incorporating ROI masking prior to second-stage inference (Method  3+M) further improved the results, 
maintaining the same precision value of 43.61  (3.36) but increasing the F1 score to 58.73  (3.36). Additional 
post-processing in the form of confidence score weighting (Method 3+M+D) did not yield significant further 
improvements for either model.

Another important aspect to consider is the image processing time. The shortest average processing times 
were recorded for the single-stage method (Method 1), with 0.507 (0.016) seconds for YOLO11 and 0.745 (0.008) 
seconds for RT-DETR. However, this time efficiency came at the expense of significantly reduced inference 
quality. In contrast, the simple two-stage method (Method 2), which achieved strong performance in terms of 
quality metrics, resulted in the longest processing times—1.839 (0.037) seconds for YOLO11 and 3.948 (0.021) 
seconds for RT-DETR. To address this, object grouping techniques were introduced in Methods  3x, which 
substantially reduced inference times. Consequently, even for the most complex methodology (Method 3+M+D), 
processing times remained well below those of Method 2, reaching 0.894 (0.018) seconds per image for YOLO11 
and 1.731 (0.040) seconds for RT-DETR.

Considering both the qualitative performance for “basic” and “small” element groups and the improved 
processing efficiency, Method 3+M+D was selected for the further experimental analyses presented in this study. 
A visual comparison of selected methods is provided in Fig. 9.

Figure 9.  Visualisation of system results for the three processing methods. False-positive errors can be seen for 
objects in the basic elements (red) and small elements (blue) groups (original images courtesy of GISonLine).

 

Figure 10.  Results for evaluation of (a) YOLO11 and (b) RT-DETR based processing methods.
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Examination of methods enhanced by ensembled processing
In this approach, the relationship between inference quality metrics and the detection threshold value was 
first examined, with the results presented in Fig. 11. The analysis was conducted separately for the “basic” and 
“small” object groups. A detection threshold of 4 was selected for subsequent experiments involving ensembled 
inference, as it yielded both high precision and recall across both groups and architectures. In contrast, for the 
TTA method with dual inference, a threshold of 2 was used. The results of the evaluation of the ensembled and 
TTA processing methods are presented in Table 5 and visualized in Fig. 12.

Among the compared methods, the default TTA approach surprisingly demonstrated the worst metrics. Its 
application reduced the F1 score for the “basic elements” group to 84.64 (1.32), primarily due to a significant 
drop in precision to 80.33 (1.93). For the “small elements” group, the F1 score fell to 64.30 (1.921), with recall at 
89.55 (0.68) and precision at 50.40 (2.21). Additionally, the processing time increased to 1.483 (0.112) seconds. 
These results unequivocally exclude the possibility of applying this method in industrial settings.

YOLO11 based methods

AP50 Recall Precision F1 Time

Basic elements Full inference

Base method 89.26 (1.68) 91.45 (1.61) 85.55 (1.61) 88.36 (1.28) 0.894 (0.018)

Default TTA 86.68 (1.64) 89.64 (1.35) 80.33 (1.93) 84.64 (1.32) 1.483 (0.112)

Custom TTA 88.82 (1.36) 90.63 (1.32) 89.67 (1.00) 90.13 (0.77) 1.646 (0.076)

Ensembled (T=4) 90.12 91.52 92.66 92.06 3.195

Small elements

Base method 69.24 (1.88) 88.94 (1.35) 56.66 (1.78) 69.17 (1.48)

Default TTA 69.58 (2.33) 89.55 (0.68) 50.40 (2.21) 64.30 (1.92)

Custom TTA 68.88 (1.43) 86.75 (1.37) 60.10 (3.22) 70.89 (2.22)

Ensembled (T=4) 70.30 88.36 61.55 72.53

RT-DETR based methods

AP50 Recall Precision F1 Time

Basic elements Full inference

Base method 90.73 (2.16) 93.60 (1.59) 72.26 (3.47) 81.41 (2.56) 1.731 (0.040)

Default TTA 87.65 (2.22) 90.59 (1.74) 64.76 (3.95) 75.26 (3.13) 3.144 (0.063)

Custom TTA 90.57 (1.12) 92.85 (0.84) 77.38 (3.04) 84.26 (1.97) 2.946 (0.070)

Ensembled (T=4) 92.04 93.86 80.17 86.35 6.165

Small elements

Base method 77.50 (2.35) 91.63 (1.79) 45.73 (2.58) 60.60 (2.56)

Default TTA 77.63 (2.28) 90.91 (1.18) 39.40 (2.81) 54.38 (3.01)

Custom TTA 79.10 (1.81) 90.14 (1.43) 51.37 (2.40) 65.11 (1.88)

Ensembled (T=4) 80.14 91.48 56.81 70.09

Table 5.  Comparison between base method (Method 3+M+D) and ensembled variants.

 

Figure 11.  Results for evaluation of ensembled inference with different detections threshold values for (a) 
YOLO11 and (b) RT-DETR based processing methods.
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The highest metrics were observed for the ensembled method, which maintained recall at 91.52 while 
increasing precision to 92.66, resulting in an F1 score of 92.06 for the “basic elements” group. For the “small 
elements” group, an F1 score of 72.53 was achieved, maintaining recall at 88.36 while increasing precision to 
61.55. However, the quality gains in inference were offset by a threefold increase in processing time, reaching 
3.195 s per image.

For the custom TTA method, system sensitivity was maintained, with recall at 90.63 (1.32) and an increase 
in precision to 89.67 (1.00) for the “basic elements” group. For the “small elements” group, a slight decrease 
in recall to 86.75 (1.37) and an increase in precision to 60.10 (3.22) were observed. The total processing time 
rose to 1.791 (0.072) seconds. These modest increases in F1 scores to 90.13 (0.77) and 70.89 (2.22), combined 
with a limited rise in processing time that remains lower than the typical two-stage approach (Met. 2) and 
without requiring the training of multiple models as in the ensembled approach, make the custom TTA method 
promising and justify its further use in industrial applications.

Analogous results were observed for models based on the RT-DETR architecture. However, in this case, 
inference times increased substantially—reaching 2.946 (0.070) seconds for the custom TTA approach and up 
to 6.165 seconds for ensemble inference. Such prolonged processing times significantly limit the applicability of 
these approaches in industrial environments, particularly in scenarios involving the processing of large batches 
of images acquired during UAV inspection flights.

Evaluation of domain shift robustness
The evaluation results on selected target domains for YOLO11-based models are summarized in Table 6 and 
visualized in Fig. 13. Two approaches were compared: Method 1 (a simple single-stage processing pipeline) and 
Method 3+M+D (a domain-enhanced, multi-stage processing approach). The results are presented separately 
for two element groups: “basic” and “small” elements.

For the basic element group, the obtained metric values across the test domains vary significantly. In the 
case of the Osielec 3 and Poronin domains, performance remained similar to or up to 1.5 times higher than 
the training-domain reference. In contrast, for the Jeleśnia domain, substantial drops in AP50, Recall, and F1 
scores were observed, with values falling to nearly half of the reference. The performance difference between 
Method 1 and Method 3+M+D in this group is marginal—both approaches yield comparable results across all 
three domains.

However, a notable improvement is observed for the small element group. In this case, the domain-augmented 
method consistently achieved higher metric values across all test domains.

These results confirm the effectiveness of domain-informed techniques and underscore their robustness 
to domain shift, demonstrating performance that is comparable to—or in some cases superior to—standard 
baseline approaches.

Final system evaluation
Due to the shorter inference time, models from the YOLO11 family were selected for the final evaluation of 
the developed system. When combined with larger variants of these models, the 3+M+D processing pipeline, 
and the custom TTA method, the system achieved high performance metrics (Table 7) while maintaining a 
reasonable inference time of 2.17 seconds per image. For the group of small elements, the AP50 score was 69.70, 
while the F1 score reached 71.00. These values are notably lowered by the challenging-to-detect “electrical pole 
component” class. Future work should prioritize expanding the dataset with additional instances of this class. 
For critically important insulators, the AP50 and F1 scores were 74.76 and 75.33, respectively. These results 
are impressive given the inherent challenges of this class, including its small size and low contrast against the 
background.

Figure 12.  Comparison between base method (Method 3+M+D) and ensembled variants for (a) YOLO11 and 
(b) RT-DETR based models.
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Class AP50 Precision Recall F1

Mount 91.13 93.40 92.75 93.07

Semaphore 92.09 89.20 93.14 91.13

Pole 84.58 84.24 88.00 86.08

Horizontal bar 93.62 92.59 96.15 94.34

Railroad switch 92.85 91.57 93.83 92.68

Insulator 74.76 64.54 90.45 75.33

Electrical component 64.66 55.88 82.61 66.67

Group: basic elements 90.86 90.42 92.77 91.57

Group: small elements 69.70 60.21 86.53 71.00

All classes 84.82 81.79 90.99 85.70

Table 7.  Results of final system evaluation. Significant values are in bold.

 

Figure 13.  Evaluation results across different target domains, illustrating model performance under varying 
levels of domain shift: (a) basic elements, (b) small elements.

 

Test domain Method AP50 Recall Precision F1

Basic elements

Osielec 1+2 (training)
Met.1 52.19 (3.78) 67.48 (3.48) 50.96 (3.05) 54.80 (3.11)

Met.3+D+M 51.22 (4.17) 66.79 (3.96) 53.61 (4.13) 56.94 (3.22)

Osielec 3
Met.1 56.54 (5.39) 70.34 (5.75) 60.73 (2.93) 64.11 (4.50)

Met.3+D+M 55.03 (3.78) 67.84 (4.40) 60.65 (4.49) 63.25 (3.56)

Jeleśnia
Met.1 22.35 (3.80) 29.63 (4.70) 45.74 (14.65) 30.22 (4.85)

Met.3+D+M 19.44 (2.78) 24.44 (2.98) 48.13 (14.17) 28.56 (3.21)

Poronin
Met.1 59.14 (10.10) 68.74 (10.58) 61.83 (5.56) 64.76 (7.11)

Met.3+D+M 63.01 (6.37) 66.61 (5.60) 83.13 (8.91) 73.43 (4.96)

Small elements

Osielec 1+2 (training)
Met.1 23.27 (3.57) 47.88 (6.98) 20.48 (2.76) 27.76 (3.04)

Met.3+D+M 66.72 (5.35) 83.39 (3.50) 41.40 (5.45) 55.13 (5.59)

Osielec 3
Met.1 16.42 (2.13) 34.07 (4.20) 27.32 (3.58) 25.96 (3.68)

Met.3+D+M 57.92 (4.18) 76.85 (4.56) 52.51 (2.99) 62.09 (3.17)

Jeleśnia
Met.1 7.91 (1.68) 14.96 (2.76) 20.50 (11.30) 15.86 (2.75)

Met.3+D+M 19.52 (2.91) 22.86 (3.27) 64.11 (14.45) 30.56 (2.93)

Poronin
Met.1 11.94 (2.61) 21.50 (5.88) 18.79 (2.44) 19.24 (1.81)

Met.3+D+M 28.66 (4.43) 29.25 (4.41) 47.36 (1.63) 35.99 (3.61)

Table 6.  Evaluation results across different target domains, illustrating performance under varying levels of 
domain shift.
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Analysis of the data indicates that the most visible objects are located in the foreground, specifically in the 
lower half of the image. Considering the nature of the data acquisition process—photos being captured repeatedly 
during flyovers—it is reasonable to assume that all objects appear at least once in this well-visible region. Based 
on this, an evaluation of inference metrics for small elements was performed again this time for the foreground 
area—lower 50% of the image (Fig. 14). Results of this experiment are shown in Table 8. As demonstrated, the 
values obtained for both classes at this configuration are significantly higher. For the challenging class ”electrical 
pole component”, the achieved AP50 was 82.39, with an F1 score of 83.87. Similarly, for insulators, the respective 
values were 88.24 and 90.39. Considering the previously described data acquisition method and these results, the 
applicability of the approach outlined in this article for railway infrastructure inspection tasks becomes evident.

Conclusions
This work presents a comprehensive multi-stage, domain-driven framework that leverages domain knowledge 
to enhance machine learning model inference in railway infrastructure inspection. Specifically, the authors 
propose five methods: 

	1.	 A two-stage processing approach that utilizes the results from the first model to construct “traction groups” 
and define regions of interest (ROI) for the second machine learning model.

	2.	 Filtering detections based on their distance from the tracks.
	3.	 Masking the input images for the second-stage model using detections from the first stage (ROI masking).
	4.	 A custom test-time augmentation (TTA) method tailored to the problem at hand.
	5.	 An ensemble learning approach employing multiple models.

Together, these methods form a cohesive suite of domain-driven enhancements designed to improve inference 
quality in railway inspection tasks.

The approaches proposed by the authors provide an additional layer of robustness and optimization, ensuring 
broader applicability across diverse railway inspection workflows. Moreover, as demonstrated in the conducted 
experiments, the developed solutions can be effectively applied to models with different architectures (such as 
YOLO11 and RT-DETR), offering significant enhancements in detection metrics without the need for additional 
training data.

Presented results highlight the importance of preprocessing strategies, dynamic inference adjustments, and 
hybrid methodologies in developing scalable, high-performance systems for critical infrastructure monitoring. 
By applying the proposed methods, the developed processing system achieved an average precision AP50 of 
84.82 and an F1-score of 85.70, with an inference time of 2.17 seconds, meeting practical runtime constraints 
for large-scale, real-world railway inspections.

Although the described methods improve inference quality metrics, they are not a substitute for new 
data, especially in addressing the domain shift phenomenon. Given the high cost of acquiring new data, legal 
complications associated with UAV flights over active railway lines, and the significant diversity of railway 
infrastructure (even within a single country), synthetic data generation emerges as a promising approach. 
Future work will explore various methods of synthetic data generation, ranging from simple “copy-and-paste” 
techniques to advanced approaches utilizing 3D modeling, rendering environments, and generative models.

In summary, the proposed multi-stage, domain-driven framework demonstrates the value of integrating 
specialized knowledge into modern ML pipelines for critical infrastructure monitoring. Future research will 
expand on this foundation by investigating synthetic data generation to further mitigate domain shift, enhance 
model robustness, and ultimately drive safer, more reliable railway operations. We anticipate that the insights 
gained here will influence similar inspection challenges in other large-scale, safety-critical infrastructures.

Class AP50 Precision Recall F1

Insulator 88.24 88.44 92.42 90.39

Electrical component 82.39 81.25 86.67 83.87

Group: small elements 85.35 84.85 89.59 87.13

Table 8.  Results of final system evaluation for foreground elements. Significant values are in bold.

 

Figure 14.  Example images with foreground area highlighted (original images courtesy of GISonLine).
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Data availability
The data that support the findings of this study are available from the corresponding author, upon reasonable 
request.
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