Table 4 Results for evaluation of processing methods for YOLO11 and RT-DETR based models.

From: Inspection of railway catenary systems using machine learning with domain knowledge integration

 

YOLO11 based methods

 

AP50

Recall

Precision

F1

Time

 

Basic elements

Full inference

1

88.95 (1.17)

91.45 (1.12)

81.06 (1.80)

85.88 (0.95)

0.507 (0.016)

2

89.44 (1.64)

92.12 (1.56)

80.93 (2.28)

86.11 (1.56)

1.839 (0.037)

3

89.44 (1.64)

92.12 (1.56)

80.93 (2.28)

86.11 (1.56)

0.703 (0.055)

3+D

89.33 (1.74)

91.45 (1.59)

85.60 (1.63)

88.39 (1.26)

0.823 (0.014)

3+M+D

89.33 (1.74)

91.45 (1.59)

85.60 (1.63)

88.39 (1.26)

0.894 (0.018)

 

Small elements

 

1

35.97 (2.55)

81.80 (4.12)

22.44 (1.63)

35.10 (2.09)

 

2

70.87 (2.21)

90.84 (2.21)

38.40 (2.65)

53.33 (2.61)

 

3

68.32 (2.68)

90.42 (1.07)

51.85 (1.50)

65.79 (1.29)

 

3+M

69.50 (1.90)

89.29 (1.41)

55.87 (1.95)

68.67 (1.65)

 

3+M+D

68.91 (1.72)

88.63 (1.64)

56.58 (1.87)

69.02 (1.66)

 
 

RT-DETR based methods

 

AP50

Recall

Precision

F1

Time

 

Basic elements

Full inference

1

89.53 (1.33)

92.74 (1.12)

67.83 (3.90)

78.24 (2.83)

0.745 (0.008)

2

90.83 (2.18)

94.30 (1.53)

63.21 (5.24)

75.37 (4.07)

3.948 (0.021)

3

90.83 (2.18)

94.30 (1.53)

63.21 (5.24)

75.37 (4.07)

1.632 (0.161)

3+D

90.73 (2.16)

93.60 (1.59)

72.26 (3.47)

81.41 (2.56)

1.839 (0.071)

3+M+D

90.73 (2.16)

93.60 (1.59)

72.26 (3.47)

81.41 (2.56)

1.731 (0.040)

 

Small elements

 

1

42.43 (2.84)

89.28 (3.48)

18.21 (1.21)

30.23 (1.82)

 

2

80.82 (2.29)

92.95 (2.20)

26.41 (4.02)

40.39 (5.06)

 

3

80.14 (2.81)

93.78 (1.10)

40.61 (4.59)

56.19 (4.71)

 

3+M

77.88 (2.40)

92.18 (1.76)

43.61 (3.36)

58.73 (3.36)

 

3+M+D

77.50 (2.35)

91.63 (1.79)

45.73 (2.58)

60.60 (2.56)