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Mechanisms by which prior tuberculosis (TB) increases long-term risk for cancer, cardiovascular, and 
neurological disorders remain unclear, particularly in people with HIV (PWH). This study investigated 
DNA methylation (DNAm) patterns and associated pathways in PWH with and without prior TB 
infection. DNAm was analyzed in blood samples from 30 PWH (10 with prior latent TB infection [LTBI], 
10 with previous successfully treated active TB, and 10 with no TB) using the Illumina MethylationEPIC 
BeadChip covering over 850,000 CpG sites. Epigenetic age was estimated, and age acceleration 
was calculated. Differentially methylated CpGs (dmCpGs) and regions (DMRs) were identified, and 
functional enrichment analyses for Gene Ontology, KEGG pathways, PANTHER database, and 
gene set enrichment analysis (DisGeNET, dbGaP) were performed. Statistical significance was set 
at a false discovery rate (FDR) of < 0.05. PWH exhibited significant epigenetic age acceleration, 
with a mean of 19.32 ± 10.82 years greater than chronological age. This accelerated aging was 
more pronounced in individuals with any prior TB infection (21.60 ± 12.03 years) compared to those 
without TB (17.42 ± 9.38 years). In the prior active TB vs. no TB comparison, 7461 dmCpGs were 
identified, corresponding to 150 DMRs (p < 0.05), with top associated genes including GRAMD1C 
(hypomethylation), DPP6 (hypermethylation), and HDAC4 (hypomethylation). In the LTBI vs. no TB 
comparison, 8598 dmCpGs were observed, corresponding to 39 DMRs (p < 0.05), associated with genes 
such as PLEKHG5 (hypermethylation), STK32C (hypermethylation), and SPATC1L. When comparing 
any prior TB (active or latent) to no TB, 71,774 dmCpGs and 14 DMRs were identified, including 
genes like PLEKHG5, KCNN3, and BRSK2. Pathway analyses of prior TB (active or latent) vs. no TB 
revealed enrichment in neurogenesis, neuron differentiation, axon guidance, and neuroactive ligand 
signaling. Additional enriched pathways included those related to platelet activation, vascular muscle 
contraction, and chemokine signaling. Cancer-related pathways such as proteoglycans in cancer, small 
cell lung cancer, prostate cancer, breast cancer, hepatocellular carcinoma, and thyroid cancer were 
also enriched. PANTHER analysis showed consistent enrichment in the Wnt signaling pathway and 
inflammation-mediated pathways across compared groups. DisGeNET analysis linked prior TB DNAm 
patterns to lymphoid leukemia, while dbGaP analysis identified associations with phenotypes like 
asthma, body mass index, tunica media, and lymphocyte count. Prior TB infection in PWH is associated 
with distinct DNAm changes in pathways related to neural function, cardiovascular health, and cancer 
risk, and is linked to more pronounced epigenetic age acceleration, suggesting epigenetic mechanisms 
for TB-related long-term complications.
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KEGG	� Kyoto encyclopedia of genes and genomes
LTBI	� Latent tuberculosis infection
MsigDB	� Molecular signatures database
NK	� Natural killer (cells)
PANTHER	� Protein analysis through evolutionary relationships
PWH	� People with HIV
QFT	� QuantiFERON
RMSD	� Root mean squared deviation
TB	� Tuberculosis
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Despite the improvement in diagnostic modalities and discovery of effective chemotherapeutic agents, 
tuberculosis (TB) is the leading cause of death from a single infectious agent, contributing 1.25 million deaths 
in 20231. Although the global TB treatment success for drug sensitive TB is high, long-term complications of 
TB contribute to significant disability and mortality even after TB treatment success2,3. After completion of TB 
treatment, previously treated patients are 3 times more likely to die than individuals without TB, and this is 
independent of age, sex, country income and type of TB4 or drug resistance profile5. For this reason, there are 
growing calls for programmatic follow up of TB patients after TB cure or treatment completion6,7. While these 
calls draw attention to the several post TB pulmonary complications resulting from structural changes in the 
lung (such as chronic obstructive airway disease, bronchiectasis, and fibrosis) 7, cardiovascular disease (CVD) 
and cancer account for almost 40% of deaths after TB treatment completion, while respiratory causes contribute 
only 14%4. Evidence from cohort studies shows that pulmonary TB (PTB) increases the risk for ischemic stroke8, 
acute coronary syndrome9, myocardial infarction10, and chronic kidney disease11. Additionally, PTB has been 
reported to increase the incidence of neurologic complications even in the absence of central nervous system 
tuberculosis. Dementia12, parkinsonism13 and depression14 are reported in population-wide cohort studies. 
Finally, TB is associated with an increased risk for cancer at ten sites15. Latent TB infection (LTBI) has been 
associated with similar risks for cancer, CVD and mental health problems16–18. There is an urgent need to 
understand the mechanisms underlying long term complications of active and latent TB.

The mechanisms underlying the long-term complications of TB are not well elucidated. Chronic inflammation 
and traditional CVD risk factors such as diabetes mellitus, smoking, and age have been implicated in increasing 
CVD risk19,20. Active TB and LTBI could contribute to cancer development by inducing chronic inflammation, 
genomic instability, and modulation of host cell signaling pathways21. Further, DNA methylation is thought 
to occur in genes and pathways involved in immune-regulation even after TB treatment. For example, this 
has been observed in genes involved in cytokine production (Interleukin (IL)-6), toll-like receptor signaling 
(TLR2), and other immune-related pathways (PI3K-AKT, MAPK, mTOR)22. Moreover, people with prior active 
TB have been shown to have an increase in the DNA methylation age by 13 years above the chronological age 
while cellular aging is increased by 14 years among people with LTBI23. However, these mechanisms have been 
demonstrated in predominantly HIV negative cohorts despite evidence that people with HIV (PWH) already 
experience ongoing accelerated aging driven by persistent inflammation, immune senescence, mitochondrial 
dysfunction, epigenetic alterations, and long term toxicities attributed to anti-retroviral therapy (ART) 24. There 
is a paucity of studies that have evaluated DNA methylation patterns associated with prior TB in PWH.

Our study aim was to determine whether prior TB infection is associated with DNA methylation (DNAm) 
patterns and pathways that could confer future risk for long term complications among PWH. By elucidating 
these mechanisms, the findings could inform targeted interventions to mitigate long-term complications, 
offering new avenues for improving the care of individuals with TB-HIV coinfection.

Methods
Study design and population
In this cross-sectional study, 30 adult PWH on ART were randomly selected from three HIV clinics in Uganda. 
Detailed study methods are described elsewhere25. Participants were stratified into three groups: 10 with prior 
LTBI, 10 with previously treated active TB, and 10 with no history of TB infection. Previous treatment for 
active TB (diagnosed either by sputum GeneXpert, microscopy or urine lipoarabinomannan) was ascertained 
from the HIV care records and the unit TB register at the respective clinics. LTBI was defined as a positive 
Quantiferon (QFT)-plus assay, according to manufacturer’s instructions, in an individual without previous 
treatment for active TB26. PWH with LTBI had all completed a course of TB preventive therapy according to 
national guidelines prior to enrollment27. Prior TB was defined as either LTBI or previous treated active TB. 
PWH with no TB had never been treated for active TB and had a negative QFT-plus assay.
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Sample collection and processing
Whole blood samples (5 ml) were collected from each participant using EDTA vacutainers. Genomic DNA was 
extracted from the blood using the QIAamp DNA Blood Mini Kit (QIAGEN, Hilden, Germany) according to the 
manufacturer’s instructions. DNA quantity was measured using Qubit 4 fluorometer (ThermoFisher Scientific, 
USA), following the manufacturer’s instructions. For the methylation assay, 500 ng of DNA was used. DNA 
methylation (DNAm) levels were assayed using the Illumina Infinium MethylationEPIC v2.0 BeadChip array 
and the iScan system (Illumina, Inc., San Diego, CA, USA), in accordance with the manufacturer’s instructions, 
generating IDAT files for downstream bioinformatics analysis to assess methylation levels.

Data processing and analysis
The raw data files obtained from the Illumina MethylationEPIC BeadChip were preprocessed and analyzed 
using the minfi package in the R statistical software environment. The minfi package is a comprehensive 
toolkit specifically designed for the analysis of Illumina Infinium methylation arrays28. The preprocessing steps 
involved an initial quality assessment of the raw data using various metrics, including visualization of beta value 
distributions and evaluation of control probes to ensure optimal bisulfite conversion efficiency. Subsequently, 
background correction and quantile normalization were performed using the preprocess Quantile function 
to minimize technical variation and ensure consistent methylation value distributions across samples. To 
ensure data quality, probes with a detection p-value greater than 0.01 were removed, and probes located on 
sex chromosomes (X and Y) were excluded to avoid confounding due to sex differences. Additionally, probes 
containing single nucleotide polymorphisms (SNPs) were removed using the dropLociWithSnps function to 
prevent methylation differences caused by genetic variation.

Blood cell composition was estimated using the estimateCellCounts2 function, referencing the FlowSorted.
CordBloodCombined.450  k dataset and utilizing the IDOLOptimizedCpGsCordBlood marker set. The cell 
types assessed included CD4+ T cells, CD8+ T cells, B cells, monocytes, natural killer (NK) cells, granulocytes, 
and nucleated red blood cells. The consistent proportion of blood cell types across samples, as detailed in 
Supplementary Table 1, indicated the absence of biological bias in the experimental setup. This consistency is 
important because the selected Horvath’s methylation clock, used for age estimation, incorporates various cell 
types, including blood cells.

Methylation beta values were also used to estimate epigenetic age for each individual using PC-PhenoAge, 
a second generation methylation clock able to predict mortality29. Age acceleration represented the extent to 
which the biological age of an individual exceeds their chronological age at the time of measurement. Age 
estimates were determined using dnaMethyAge package version 0.2.0 and the measure for age acceleration was 
defined as residuals yielded from regressing epigenetic age on chronological age from which root mean squared 
deviation (RMSD) and mean absolute deviation (MAD) were computable.

Identification of differentially methylated CpGs and regions
Differentially methylated CpGs (dmCpGs) and regions (DMRs) were identified using the dmpFinder function 
in minfi, which applies a linear model to compare methylation levels while adjusting for age and sex, methylation 
batch effect and cell-type covariates. This function performed pairwise comparisons between the three groups 
(LTBI, active TB, and no TB) to identify CpG sites that exhibit significant differences in methylation levels. 
Significant regions were defined by β-value differences > 0.2 and permutation testing (B = 0). The dmpFinder 
function utilizes statistical tests to assess the significance of methylation differences, adjusting for multiple 
comparisons to control the false discovery rate (FDR). An FDR < 0.05 was considered statistically significant. 
The Comparisons included: 1. Previous Active TB vs. no TB; 2. Prior LTBI TB vs. no TB; 3. Prior TB infection 
(both LTBI and previous active TB) vs. no TB; and 4. Previous active TB vs. LTBI.

Pathway analysis
Pathway and gene ontology (GO) enrichment analyses were conducted using the missMethyl package to 
identify biological pathways associated with significant DMRs. These included GO enrichment analysis30 
using the gometh function and pathway analysis through the gsameth function, leveraging gene sets from 
the Kyoto Encyclopedia of Genes and Genomes (KEGG)31, Molecular Signatures Database (MSigDB)32 and 
PANTHER version 16 database33. We further performed gene‐set enrichment analysis of our 120-gene signature 
using the Enrichr web server (http://amp.pharm.mssm.edu/Enrichr; accessed June 1, 2025)34. Up-regulated 
genes (FDR < 0.05, |log2FC|> 1) in prior-TB versus TB-naïve samples were submitted and tested against both 
the DisGeNET library of curated gene–disease associations (v7.0) and the dbGaP library of GWAS-derived 
phenotype associations. For each term, Enrichr computes a Fisher’s exact test p-value, Benjamini–Hochberg–
adjusted p-value (FDR), odds ratio, and combined score (–log10 p × z-score of deviation from expected rank). 
We considered terms with FDR < 0.05 as significant and report, for all hits, the gene overlap, odds ratio, adjusted 
p-value, and combined score.

All statistical analyses were carried out using R version 4.3.1.

Results
Characteristics of study participants of PWH with and without prior TB
Of 30 participants, 17 (57%) were female and the median (interquartile range, IQR) age was 46.5 (40.0–50.0) 
years. All participants were on ART and had achieved viral load suppression (viral load < 1000 copies/ml). Table 
1 shows characteristics of the participants.
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Chronological and epigenetic age of in PWH with and without prior TB
In the combined 30 PWH (mean chronological age 43.6 ± 9.3  years), PC-PhenoAge estimates averaged 
62.95 ± 10.65 years, yielding a mean epigenetic age acceleration of 19.32 ± 10.82 years. Overall, epigenetic age 
exceeded chronological age by a highly significant margin (paired t(29) = 9.77, p < 0.001, 95% CI 15.28–23.36).

Among the 10 TB–naïve individuals the mean chronological age was 43.8 ± 8.5 years while among the 20 TB 
survivors it was 44.3 ± 8.8  years. PC-PhenoAge estimates averaged 61.2 ± 10.7  years in the TB–naïve group 
and 65.9 ± 9.2 years in the prior-TB group. Within the TB–naïve cohort, epigenetic age significantly exceeded 
chronological age by a mean of 17.42 ± 9.38 years (paired t(9) = 5.87, p < 0.001; 95% CI 10.71–24.14). Similarly, 
among participants with a prior TB infection, PC-PhenoAge exceeded true age by 21.60 ± 12.03 years (paired 
t(19) = 8.03, p < 0.001; 95% CI 15.97–27.23). The mean epigenetic‐age acceleration was 4.18 years greater in TB 
survivors compared with TB–naïve individuals (95% CI: –4.13 to 12.49). However, this difference did not reach 
statistical significance (Welch’s t(22.6) = 1.04, p = 0.307), and the effect size (Cohen’s d ≈ 0.37) indicates only a 
small‐to‐moderate group separation, suggesting that a larger sample may be required to confirm this trend.

The comparison of epigenetic and chronological age between prior TB infection (both LTBI and active) and 
those without TB is shown in Fig. 1. The results demonstrate an overall trend toward accelerated aging among 
PWH that was more pronounced in people with prior TB infection (both LTBI and active TB).

DNA methylation patterns in PWH with and without prior TB
A total of 7461 differentially methylated CpGs (dmCpGs) were identified in the comparison between prior 
active TB vs. no TB groups. These dmCpGs corresponded to 150 differentially methylated regions (DMRs) with 
p < 0.05, associated with the following top genes: GRAMD1C (hypomethylation), DPP6 (hypermethylation), 
ANKRD53 (hypomethylation), HDAC4 (hypomethylation), ADAMTS16 (hypomethylation), FAM208B 
(hypomethylation), BFSP2(hypomethylation), ZNF665 (hypermethylation), DOCK1 (hypermethylation), and 
PRDM16 (hypermethylation) (Supplementary Table 2 and Fig. 2: A1&A2).

In the comparison between LTBI vs. no TB, 8598 dmCpGs were observed. These were associated with 
39 DMRs at p < 0.05, including genes such as PLEKHG5 (hypermethylation), STK32C (hypermethylation), 
MCF2L (hypermethylation), PTPN6 (hypermethylation), SAMD11 (hypermethylation), AP001468.58 
(hypomethylation), EPCAM (hypermethylation), NEURL4 (hypomethylation), SLC25A31 (hypomethylation), 
DNMT3A (hypomethylation), TTC7B (hypomethylation), FAM208B (hypermethylation), BRSK2 
(hypermethylation), as well as the SPATC1L gene region with both hypo and hypermethylated probes 
(Supplementary Table 2 and Fig. 2: B1&2).

Overall, 71,774 dmCpGs were identified when comparing individuals with any history of TB infection (both 
active and latent TB) to the control group. These dmCpGs corresponded to 14 DMRs associated with genes 
such as PLEKHG5 (hypomethylation), KCNN3 (hypermethylation), SLC16A9 (hypomethylation), BRSK2 
(hypermethylation), MCF2L (hypermethylation), NUP98 (hypomethylation) and hypermethylated SH3GL2. 
(Supplementary Table 2 and Fig. 2: C1&2). Meanwhile even though only two DMRs (PLEKHG5 and KCNN3) 
in this comparison were active TB vs No TB and prior latent TB vs No TB comparisons.

Characteristic
Total
(N = 30), (%)

Prior active TB
(n = 10), (%)

Prior latent TB infection
(n = 10), (%)

No prior TB
(n = 10), (%) p-value

Age, median (IQR), (years) 46.5 (40.0–50.0) 47.5 (47.0–51.0) 42.0 (36.0–51.0) 45.5 (40.0–47.0) 0.36

Female sex 17 (57%) 5 (50%) 7 (70%) 5 (50%) 0.58

Duration on ART, median (IQR) (months) 144.0 (117.0–168.0) 144.0 (117.0–197.0) 144.0 (120.0–153.0) 144.0 (117.0–168.0) 0.99

Any history of alcohol use 17 (57%) 5 (50%) 5 (50%) 7 (70%) 0.58

Any history of cigarette smoking 3 (10%) 1 (10%) 1 (10%) 1 (10%) 1.00

Use of biomass fuel for cooking 18 (60%) 7 (70%) 5 (50%) 6 (60%) 0.66

Baseline CD4 Count at HIV diagnosis, median (IQR) (cells/mm3) 208.0 (47.0–405.0) 217.5 (69.0–420.0) 184.0 (0.0–350.0) 136.0 (47.0–405.0) 0.72

Time since Treatment completion, mean (SD) years N/A 12.0 (6.1)

Current CD4 Count at study enrolment, median (IQR) (cells/mm3) 911.0 (691.0–1374.0) 847.5 (548.0–1357.0) 1141.5 (875.0–1451.0) 875.0 (589.0–1180.0) 0.50

Haemoglobin level, median (IQR), (g/dl) 15.0 (14.3–16.0) 15.2 (14.7–16.3) 14.4 (13.4–15.0) 15.6 (14.3–16.1) 0.15

Aspartate aminotransferase, median (IQR) (IU/L) 26.9 (23.5–33.5) 26.8 (23.4–33.5) 27.4 (24.7–31.4) 27.9 (22.3–35.3) 1.00

Gamma-glutamyl transferase, median (IQR), (IU/L) 46.5 (42.6–58.5) 44.8 (30.1–57.6) 45.6 (42.6–56.9) 51.9 (44.6–61.2) 0.37

Alanine aminotransferase, median (IQR), (IU/L) 22.2 (16.7–31.5) 19.7 (16.0–26.0) 23.6 (16.4–32.7) 23.4 (20.1–32.8) 0.55

Alkaline phosphatase, median (IQR) (IU/L) 114.0 (85.0–152.0) 109.5 (89.0–141.0) 120.0 (81.0–163.0) 119.5 (85.0–152.0) 0.94

Albumin, median (IQR), (g/l) 4.2 (3.4–5.8) 4.5 (3.4–6.3) 3.6 (2.2–4.9) 4.4 (3.6–5.6) 0.50

Total protein, median (IQR)(g/l) 7.7 (7.1–8.3) 7.6 (7.4–8.0) 7.5 (6.9–7.8) 8.3 (7.1–8.6) 0.13

Urea, median (IQR), (mmol/l) 3.7 (2.8–4.7) 3.7 (2.9–4.2) 4.4 (3.1–4.8) 2.9 (2.5–4.6) 0.39

Creatinine , median (IQR), (mmol/l) 113.0 (96.1–126.5) 113.0 (98.1–126.5) 104.7 (92.6–129.2) 118.5 (96.1–124.4) 0.88

Serum Uric acid, median (IQR), (μmol/l) 265.5 (195.0–370.6) 341.2 (261.2–454.8) 222.1 (195.0–287.2) 300.2 (36.1–370.6) 0.14

Serum lactate dehydrogenase, median (IQR), (U/L) 595.5 (490.0–780.0) 636.5 (450.0–882.0) 605.0 (555.0–689.0) 513.0 (430.0–751.0) 0.43

Table 1.  Characteristics of study participants.
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Enriched pathways associated with DNAm patterns in PWH with and without prior TB
Gene ontology, KEEG and human C2 GSEA
In the prior TB (active or latent) vs. no TB comparison, DNAm changes were enriched in pathways related to 
neurogenesis, neuron differentiation, axon guidance, neuroactive ligand signaling, morphine addiction, and 
nervous system development. Additional pathways related to platelet activation, vascular muscle contraction, 
chemokine signaling, and cytokine-cytokine receptor interaction. Further, pathways relating to cancer, 
proteoglycans in cancer, small cell lung cancer, prostate cancer, lung cancer, breast cancer, hepatocellular 
carcinoma, and thyroid cancer were enriched (Fig. 3A).

The other pairwise comparisons (prior active TB vs. no TB and prior LTBI vs. no TB comparisons) are shown 
in Fig. 3B and C but they did not meet statistical significance.

PANTHER
Analysis using the PANTHER database consistently showed enrichment in the Wnt signaling pathway, with 
38 associated genes in the active TB vs no TB comparison and 41 genes in the latent TB vs. no TB comparison. 
Pathways involved in inflammation mediated by chemokine and cytokine signaling, integrin signaling, 
angiogenesis, Cadherin signaling pathway, CCKR signaling pathway and Nicotinic Acetylcholine Receptor 
signaling pathway were also enriched in all compared groups (Table 2). De novo pyrimidine deoxyribonucleotide 
biosynthesis, Pyrimidine Metabolism, 2-arachidonoylglycerol biosynthesis, Cholesterol biosynthesis, Gamma-
aminobutyric acid synthesis, Aminobutyrate degradation and Histamine synthesis pathways were observed in 
only active TB vs no TB comparison. Fructose galactose metabolism, Heme biosynthesis, Pentose phosphate 
pathway, Pyridoxal-5-phosphate biosynthesis, S-adenosylmethionine biosynthesis, Leucine biosynthesis, 
Isoleucine biosynthesis, Alanine biosynthesis, Valine biosynthesis, Anandamide and degradation were also 
entirely specific to the latent TB vs. no TB comparison.

DisGeNET (disease associations)
Out of 274 queried terms, only lymphoid leukemia remained significant after multiple-testing correction 
(Benjamini–Hochberg FDR = 0.0119) for the prior TB vs. no prior TB dmDNA patterns. Specifically, 139 of 213 
DisGeNET-annotated lymphoid leukemia genes overlapped with our list (overlap = 139/213), yielding an odds 
ratio of 1.96 and a combined score of 26.7.

dbGaP (GWAS phenotypes)
In contrast, enrichment against the dbGaP library identified seven phenotype associations at FDR < 0.05 (out 
of ~ 300 tested) for the prior-TB vs. no-prior-TB DNAm patterns. These were lymphocytes (overlap = 36/44; 
OR = 4.69; FDR = 0.0025; combined score = 55.4), tunica media (71/104; OR = 1.58; FDR = 0.0095; combined 

Fig. 1.  Epigenetic Age (DNAm) Compared to Chronological Age in Individuals with and without Prior 
Tuberculosis Infection. (A) Scatter plot of DNAm age (y-axis) versus chronological age (x-axis) estimated using 
using PCPhenoAge methylation clock. The blue dashed line represents perfect agreement between DNAm 
age and chronological age, while the red dashed line represents the regression line derived from the actual 
data. Most samples are above the blue line, indicating an overestimation of DNAm age. The bottom panel 
shows age acceleration values (DNAm age minus chronological age residuals), with positive values indicating 
accelerated aging (DNAm age > chronological age) and negative values indicating decelerated aging (DNAm 
age < chronological age). The results demonstrate an overall trend toward accelerated aging. (B) Box plot 
comparing DNAm age (Epigenetic_Age) and chronological age (Age) between individuals with previous TB 
infection and those without TB infection. Both groups show epigenetic ages that exceed their true age, but this 
over‐estimation is more pronounced in those with prior TB infection.
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score = 17.4), asthma (72/107; OR = 2.10; FDR = 0.0096; combined score = 18.6), body mass index (253/437; 
OR = 1.22; FDR = 0.0096; combined score = 16.8), leukocyte count (31/40; OR = 3.14; FDR = 0.0149; combined 
score = 15.2), body height (198/294; OR = 1.31; FDR = 0.0231; combined score = 12.5), body composition 
(154/241; OR = 1.28; FDR = 0.0314; combined score = 11.2), and cell adhesion molecules (89/135; OR = 1.45; 
FDR = 0.0427; combined score = 9.8).

Discussion
In this study, we investigated DNAm patterns associated with prior TB infection in individuals with HIV. Our 
findings reveal that both prior TB infection (LTBI or active TB) are associated with distinct DNAm changes, 
particularly in pathways related to neural function and development, cardiovascular health, and cancer risk. 
In addition, there was significant epigenetic age acceleration in PWH, which was notably more pronounced 

Fig. 2.  Heatmaps A1, B1, and C1 derived from beta values of the differently methylated CpG sites identified in 
pairwise comparison across different groups with stringency criteria of adjusted P < 0.01 and mean methylation 
difference > 0.2. Dendrogram shows separation based on groups. Enhanced Volcano plots A2, B2 and C2 of the 
differentially methylated CpG‐sites separating different groups. The x‐axis is the log fold change and the y‐axis 
is the negative log10 of p‐value with the cut off p‐value of 0.05 shown with dash‐dotted horizontal line. Blue 
CpGs indicate hypomethylated while red CpGs are hypermethylated.
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in individuals with a history of TB infection (21.60 years of acceleration) compared to TB-naïve individuals 
(17.42 years of acceleration). This suggests that prior TB may exacerbate the already accelerated aging processes 
driven by HIV, potentially contributing to an earlier onset of age-related comorbidities. Similar to our findings, 
Bobak et al. (2022) demonstrated that active tuberculosis in humans was associated with approximately 12.7 
years of cellular aging, as measured by epigenetic clocks (Horvath clock), and 14.38 years using gene expression-
based cellular clocks23.

The analysis of DNAm patterns identified a substantial number of dmCpGs and DMRs. Specifically, 7461 
dmCpGs (150 DMRs) were found when comparing prior active TB to no TB, and 8598 dmCpGs (39 DMRs) 
when comparing LTBI to no TB. The combined group of any prior TB showed 71,774 dmCpGs (14 DMRs) 
compared to no TB. These findings highlight that both forms of prior TB exposure leave lasting epigenetic 
marks. Genes implicated in these DMRs, such as GRAMD1C and DPP6 in active TB history, and PLEKHG5 and 
STK32C in LTBI history, warrant further investigation for their roles in TB-related sequelae. For instance, genes 
like KCNN3 and BRSK2 were identified in the overall prior TB group, pointing to common epigenetic alterations 
irrespective of TB history type.

Functional enrichment analyses of these DNAm changes provide insights into the potential biological 
consequences. Across individuals with any prior TB exposure, pathways related to neural functions such as 
neurogenesis, neuron differentiation, axon guidance, and neuroactive ligand signaling were significantly 
enriched. This aligns with reports of increased risk for neurological and cognitive disorders post-TB and suggests 
an epigenetic basis for these observations in PWH12,13,35,36. The consistent enrichment of the Wnt signaling 
pathway across different TB comparison groups, as identified through PANTHER database analysis, further 
supports a role for altered neurodevelopmental and cell signaling processes37.

Cardiovascular health also appears to be epigenetically impacted by prior TB. Pathways including platelet 
activation and vascular smooth muscle contraction were enriched in the combined prior TB group. The dbGaP 
analysis further identified an association between prior TB DNAm patterns and “tunica media”, a component 
of blood vessels, suggesting structural or functional vascular changes that could engender atherosclerosis 
in the setting of hyperlipemia38. These findings support epidemiological evidence linking TB to increased 
cardiovascular disease risk19. The enrichment in pathways related to cholesterol biosynthesis and body mass 
index suggests epigenetic changes underlying the effect that prior TB migt have on cardiovascular disease risk 

Fig. 3.  Pathway enrichment analysis for association of prior TB and DNA methylation. In each panel, the 
x-axis represents the p-value for pathway enrichment (adjusted for false discovery rate [FDR]), while the y-axis 
lists the enriched pathways. The size of the dots indicates the number of genes involved in each pathway, and 
the color gradient represents the FDR, with red indicating higher significance (lower FDR).
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factors as we have previously reported in our study setting39. Our previous work among PWH with prior active 
TB suggests that prior TB is associated with normal body mass index and a lower prevalence of dyslipidemia39.

The study also uncovered significant DNAm alterations in cancer-related pathways. In individuals with any 
prior TB, enrichment was seen for pathways associated with small cell lung cancer, prostate cancer, lung cancer, 
breast cancer, hepatocellular carcinoma, thyroid cancer, and proteoglycans in cancer. Furthermore, DisGeNET 
analysis directly linked DNAm patterns in the prior TB group to lymphoid leukemia. These epigenetic changes 
may contribute to the increased cancer incidence observed in TB survivors particularly for lung, hepatobiliary, 
and leukemia15,40. Moreover, the prominent enrichment in the gene sets associated with embryonic stem cell 
identity: BENPORATH_ES_WITH_H3K27ME3, BENPORATH_EED_TARGETS, and BENPORATH_
SUZ12_TARGETS suggests potential risk for the development of aggressive, poorly differentiated, and 
estrogen receptor-negative tumors41. The association between prior TB and advanced cancer types needs to be 
demonstrated in epidemiological studies.

The mechanisms underlying the observed DNAm changes and their specific contributions to long-term 
complications warrant further investigation by larger studies. Inflammation-related pathways, including 
chemokine and cytokine signaling and integrin signaling, were consistently enriched across comparisons, 
underscoring the role of persistent inflammation in driving these epigenetic modifications and subsequent long-
term complications22. The association of prior TB DNAm with phenotypes such as asthma and altered leukocyte 
counts in the dbGaP analysis further supports ongoing immune dysregulation. Additionally, the interaction 
between TB infection, HIV infection, and antiretroviral therapy may further contribute to epigenetic changes 
and long-term complications.

Our findings of widespread and persistent DNA methylation changes in PWH with a history of prior TB 
complement and extend studies like DiNardo et al. (2020), which demonstrated DNA hypermethylation in critical 
immune pathways leading to dampened host immune responsiveness during active TB, with some changes 
persisting post-treatment42. While DiNardo et al. focused on hypermethylation as a mechanism for immediate 
immune evasion by M. tuberculosis, our study reveals a more complex, long-term epigenetic landscape in PWH 
following prior TB, characterized by both hyper- and hypomethylation across a broader range of pathways 
implicated in neural function, cardiovascular health, cancer, and accelerated aging. Thus, while active infection 
may induce specific hypermethylation to suppress acute immunity, our results suggest that prior TB exposure 
in PWH leads to a distinct and more diverse set of lasting epigenetic modifications that likely contribute to the 
increased risk of chronic comorbidities and accelerated biological aging observed in this population.

Our study has several limitations. The cross-sectional design limits our ability to establish causal relationships 
between prior TB infection and DNAm changes. The relatively small sample size may have limited our power to 
detect additional significant associations. Furthermore, our study focused on peripheral blood DNAm, which 
may not fully reflect epigenetic changes in other tissues relevant to long-term complications. The use of the 
IGRA to identify LTBI can misclassify PWH due to immune anergy. However, PWH in our study were mostly 
immune competent (median CD4 count of > 900 cells), making the risk of misclassification low.

Pathway
Prior TB (both active and latent) 
vs. No TB Active TB vs. No TB Latent TB vs. No TB

Active 
TB vs. 
Latent 
TB

Wnt signaling pathway 159 genes 38 genes 41 genes 60 genes

Inflammation mediated by chemokine and cytokine signaling 123 genes 23 genes 26 genes 22 genes

Integrin signaling pathway 85 genes 25 genes 22 genes 25 genes

Angiogenesis 102 genes 19 genes 20 genes 18 gene

Cadherin signaling pathway 100 genes 19 genes 22 genes 45 genes

Heterotrimeric G-protein signaling pathway 73 genes 20 genes 15 genes 22 genes

FGF signaling pathway 59 genes 17 genes 12 genes 9 genes

Nicotinic Acetylcholine Receptor signaling pathway 44 genes 13 genes 9 genes 14 genes

EGF signaling pathway 70 genes 14 genes 7 genes 12 genes

CCKR signaling pathway 87 genes 19 genes 17 genes 21 gene

Interleukin signaling pathway 43 genes 7 genes 11 genes 8 genes

Apoptosis signaling pathway 53 genes 18 genes 11 genes 16 genes

PDGF signaling pathway 66 genes 12 genes 13 genes 16 gene

T-cell Activation 42 genes 5 genes 5 genes 9 genes

Hedgehog signaling pathway 11 genes 3 genes 3 genes 2 genes

Pyrimidine Metabolism 6 genes 3 genes None None

Fructose galactose metabolism 7 genes None 2 genes None

Histamine synthesis None 1 gene None None

mRNA splicing None None None 1 gene

Thiamin metabolism None None None 1 gene

Table 2.  Pathway enrichment in PWH with and without prior TB from the PANTHER database.
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Conclusion
In conclusion, prior TB infection in PWH is associated with extensive DNA methylation alterations and 
pronounced epigenetic age acceleration in pathways linked to neurocognitive health, cardiovascular function, 
and cancer susceptibility. These epigenetic signatures offer promising biomarkers for identifying PWH at highest 
risk of TB-related long-term comorbidities. Longitudinal studies are warranted to validate these methylation 
patterns as predictive markers and to explore targeted interventions—such as anti-inflammatory therapies or 
epigenetic modulators—to mitigate post-TB sequelae in this vulnerable population.
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